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Simple Summary: There is increasing evidence to suggest that microcirculation becomes dysfunc-
tional earlier than large blood vessels or the heart in several diseases. In diabetes mellitus, a disease
characterized by chronic hyperglycemia, microvascular impairment is well-established; on the con-
trary, the effect of acute hyperglycemia in microcirculation remains unclarified. Our aim was to
investigate the microvascular effect of an oral glucose load (OGL) using laser Doppler flowmetry
(LDF) as a perfusion quantification technique, coupled with wavelet transform (WT) to perform a
spectral decomposition of the LDF signal. On two distinct occasions (pre-load and post-load), sixteen
healthy subjects drank either a standard glucose solution or water. Perfusion was assessed by LDF
and WT while resting and during post-occlusive reactive hyperemia (PORH), evoked by a transient
three-min occlusion of the brachial artery, in the forearm and the finger pulp. The OGL affected
microcirculation in both sites compared to water, significantly blunting the PORH response in the
forearm. The WT revealed significant differences in the cardiac and sympathetic components after
OGL between the pre-load and post-load periods. These results suggest that an OGL induces a
short-term subtle microvascular impairment, probably involving a modulation of the sympathetic
nervous system.

Abstract: Microcirculation in vivo has been assessed using non-invasive technologies such as laser
Doppler flowmetry (LDF). In contrast to chronic hyperglycemia, known to induce microvascular
dysfunction, the effects of short-term elevations in blood glucose on microcirculation are controversial.
We aimed to assess the impact of an oral glucose load (OGL) on the cutaneous microcirculation of
healthy subjects, quantified by LDF and coupled with wavelet transform (WT) as an interpretation
tool. On two separate occasions, sixteen subjects drank either a glucose solution (75 g in 250 mL
water) or water (equal volume). LDF signals were obtained in two anatomical sites (forearm and
finger pulp) before and after each load (pre-load and post-load, respectively), in resting conditions
and during post-occlusive reactive hyperemia (PORH). The WT allowed decomposition of the LDF
signals into their spectral components (cardiac, respiratory, myogenic, sympathetic, endothelial
NO-dependent). The OGL blunted the PORH response in the forearm, which was not observed with
the water load. Significant differences were found for the cardiac and sympathetic components in the
glucose and water groups between the pre-load and post-load periods. These results suggest that an
OGL induces a short-term subtle microvascular impairment, probably involving a modulation of the
sympathetic nervous system.

Keywords: laser Doppler flowmetry; wavelet transform; microcirculation; oral glucose load; flow-
motion; post-occlusive reactive hyperemia
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1. Introduction

Microcirculation in vivo has mostly been investigated in the skin by non-invasive
optical technologies, such as laser Doppler flowmetry (LDF) and laser Doppler imag-
ing, as well as photoplethysmography and polarized light spectroscopy [1]. Neverthe-
less, laser Doppler-based techniques have mostly been used due to their sensitivity and
versatility [2,3]. The signal obtained by LDF is explained by interactions of impingent light
with the moving red blood cells (RBC), which cause a wavelength shift, the well-known
Doppler effect [4], and the blood flow is assessed by LDF as the product between the
velocity of the moving RBC and their concentration.

Blood flow signals measured by LDF are known to be complex and multiscaled, re-
sulting from contributions of several factors. Specifically, these flow signals receive inputs
from the cardiac ejection and breathing cycles, as well as from local myogenic activity,
post-ganglionic sympathetic terminals and from the endothelium, each of these phenom-
ena being characterized by their own frequency range of activity, which is reflected in
microvascular blood flow [5–7]. The cardiac component [ranging from 2.0–0.4 Hz] results
from the transmission of cardiac pumping-related oscillations to the microvasculature; the
respiratory component [0.4–0.15 Hz] results from the transmission of ventilation-related
oscillations to the microvasculature, the myogenic component [0.15–0.052 Hz] from the
intrinsic changes in the tone of vascular smooth muscle, the sympathetic component
[0.052–0.021 Hz] from the control exerted on vascular smooth muscle by post-ganglionic
sympathetic fibers, and the endothelial components are related to the secretion of endothe-
lial vasodilators: nitric oxide (NO), reflecting the NO-dependent (NOd) [0.021–0.0095 Hz]
and non-NO (i.e., NO-independent, NOi) [0.0095–0.0050 Hz] vasoactive mediators, such as
prostacyclin, and other endothelium-derived hyperpolarizing factors.

Each component of the raw LDF signal can be individually assessed after performing
spectral decomposition by appropriate mathematical tools such as wavelet (WT), or Fourier
(FT) transforms [6,8]. A wavelet is defined as a small wave or oscillation of quick decay that
can adopt different shapes depending on the goal of each analysis [9,10]. After choosing
the shape of the original or “mother” wavelet, a family of wavelets is then obtained by
stretching and shortening the mother wavelet’s length in time. Compressed wavelets
are useful for the characterization of high-frequency phenomena, whereas low-frequency
phenomena are characterized by dilated wavelets. For the assessment of blood flow signals,
the Morlet wavelet has shown good localization in both time and frequency domains, as
well as good correlation between time, width and corresponding frequency [9]. The WT
can assess each individual component of a complex signal in terms of spectral location
(i.e., frequency) and contribution to the overall signal (i.e., amplitude), thus allowing a
mechanistic interpretation of the dynamics of perfusion regulation [11]. This tool has
been successfully used in the past for characterizing microvascular dysfunction in several
cardiovascular and metabolic diseases, such as hypertension [12], peripheral vascular
disease [13], ischemic heart disease [14], and diabetes mellitus [15,16]. The WT shows
several advantages over the FT, a classic spectral decomposition tool usually applied to
blood flow signals. In particular, the WT provides a good localization in both time and
frequency domains, whereas the FT only provides good localization in the frequency
domain. Additionally, the WT shows a good performance in the analysis of non-stationary
signals, such as those obtained after challenging microcirculation with provocation tests to
assess its reactivity, whereas the use of FT is restricted to stationary signals [17].

It has been established that in several cardiovascular and metabolic diseases, micro-
circulation is rendered dysfunctional much earlier than large vessels or the heart [18,19].
Therefore, an appropriate knowledge of the mechanisms governing the microvascular
function and dysfunction may help to prevent the progression or even the installation of
certain diseases with an important vascular impact. Microvascular dysfunction is among
the most important consequences of long-term hyperglycemia, one of the main features
of diabetes mellitus, being characterized by impaired endothelium-dependent vasodi-
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lation [20], impaired vasomotion [21,22] and neurogenic regulation [23], together with
increased capillary permeability [20].

Although chronically elevated blood glucose levels are known to induce microvascu-
lar dysfunction, it is unclear whether or not acutely elevated blood glucose levels affect
microcirculation and if so, to what extent and (ir)reversibility. Recent studies have sug-
gested that increased blood glucose levels during an oral glucose load (OGL) are associated
with increased aortic stiffness and maladaptive carotid remodeling [24]. However, it re-
mains underexplored whether short term elevations in blood glucose levels have an impact
on microcirculation in healthy subjects; studies assessing this issue are scarce and their
findings are partly contradictory [25–27]. Therefore, our objective was to assess the im-
pact of a standard OGL on cutaneous microcirculation and its reactivity in young healthy
subjects using LDF as a recording technique, coupled with WT as an interpretation tool,
and performing post-occlusive reactive hyperemia (PORH) as a challenge to evaluate
microvascular reactivity [28–30].

2. Materials and Methods
2.1. Subjects

Sixteen young healthy subjects, nonsmokers (21.4 ± 1.3 years old, 11 males, 5 females
who were all in the follicular phase of their menstrual cycles) were enrolled in this study
after informed written consent had been obtained. The study was approved by the local
ethics committee (no. 0120-175/2017/6) and followed the recommendations of the Helsinki
declaration and subsequent amendments for studies conducted in human subjects [31].

Before designing the study protocol for the LDF assessment, a preliminary experi-
mental set enrolling 12 healthy participants was carried out to determine the time point
corresponding to the highest blood glucose concentration after an OGL, which would
then be chosen as the appropriate time to assess microvascular reactivity. Blood glucose
was assessed spectrophotometrically by a portable glucometer (HemoCue Glucose201+,
HemoCue AB, Ängelholm, Sweden) before (baseline) and after a standard OGL (75 g of
glucose dissolved in 250 mL water); capillary blood samples were taken every ten minutes
during a two hours period. We found that the highest glucose concentration was achieved
after 35 min (8.9 ± 1.2 mmol/L, compared to baseline: 4.9 ± 0.4 mmol/L); in all subjects,
glucose remained elevated for at least 60 min after OGL.

2.2. Procedure

Subjects had fasted for 12 h and acclimatized to controlled room conditions (24 ± 1 ◦C)
for 20 min while lying supine. Each subject underwent two protocols on two separate
sessions, the test one and the control one, both of them performed between 8 a.m. and noon.
In the test protocol, the subjects drank a standard glucose solution (75 g dissolved in 250 mL
water—the solution used for a standard oral glucose tolerance test in the clinical setting),
whereas in the control protocol they drank the same volume of water, both solutions
being kept at room temperature. In each protocol, each subject underwent three capillary
blood samplings to assess blood glucose concentration: before the corresponding load
(glucose or water), 20 min after the load and 50 min after the load, which corresponded
to the end of the experiment. In each protocol, LDF recordings were performed after the
20-min acclimatization period, before and 35 min after the intervention (glucose and water
load, respectively) when the plasma glucose (after the glucose load) reached its highest
concentration (as assessed in a preliminary experiment described above). In each protocol,
the following consecutive LDF recordings were performed while participants were lying
in a supine position: a 10 min baseline recording before any intervention (resting), a
PORH recording before the load (pre-load recording), a 10 min baseline recording after the
intervention (glucose/water load), and a PORH recording after the intervention (post-load
recording). The glucose/water intervention took place after blood flow had returned
to baseline values after the first PORH recording and remained stable for at least ten
minutes. Each PORH recording lasted for 15 min and consisted of a five-min baseline
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phase, a challenge phase in which a transient three-min occlusion of the brachial artery was
performed, and a recovery phase lasting an additional seven minutes. For each protocol,
perfusion was assessed simultaneously in two sites: the volar surface of the forearm (site 1)
and the middle finger pulp (site 2) of the left upper limb.

2.3. Instruments

Local blood flow was quantified by LDF using the Periflux 4001 Master/4002 Satellite
system (Perimed, Järfälla, Sweden) and expressed in arbitrary units (AU). The LDF probe
was attached to the cleaned skin with an adhesive strip. Simultaneously, skin temperature
was traced by a Peritemp device (Perimed, Järfälla, Sweden), blood pressure was non-
invasively measured at the digital artery of the right hand middle finger (Finapres, Ohmeda,
Englewood, USA). Blood glucose was measured by HemoCue Glucose201+ (HemoCue AB,
Ängelholm, Sweden) after the acclimatization period, 20 min after glucose/water load (i.e.,
before the LDF was assessed), and at the end of the protocol.

2.4. Analytical

Raw LDF signals (500 Hz sampling frequency) were imported to Matlab software
(Mathworks R015, Mathworks, USA), downsampled to 38 Hz and processed with a Morlet
wavelet transform (WT) toolbox [32]. As previously mentioned, a family of wavelets can be
obtained by stretching or dilating the length of a “mother” wavelet in time, as defined by:

ψa,b(t) =
1√
|a|
ψ

(
t− b

a

)
a, b ∈ R, a 6= 0 (1)

The parameter a is the scaling parameter or scale, and it measures the degree of
compression. The parameter b is the translation parameter which determines the time
location of the wavelet. If |a| < 1, then the wavelet in the above equation is the compressed
version (smaller support in time-domain) of the mother wavelet and corresponds mainly to
higher frequencies. On the other hand, when |a| > 1, then ψa,b(t) has a larger time-width
than ψ(t) and corresponds to lower frequencies. In other words, compressed wavelets are
able to extract high-frequency phenomena in the analyzed signal, whereas low-frequency
phenomena are extracted by dilated wavelets.

From the analysis of the raw LDF signals, frequency spectra were constructed for each
study group (glucose load, water load) and for each period (before load, after load). The
visual inspection of the spectra allowed the identification of the frequency intervals for
each LDF component, whose contribution to the overall signal was assessed in relative
terms as an amplitude ratio by dividing the area under the curve of each component by
the area under the curve of the entire spectrum, and expressed as percentage. Typical
three-dimensional and two-dimensional spectra obtained for a representative subject are
depicted in Figure 1a,b, respectively.

After being processed with the WT, the portions of the LDF signals lying outside
the “cone of influence” (i.e., a region outside of which the spectrum becomes distorted
due to edge effects) were not considered for statistical analysis. For the resting recording,
perfusion and the components’ amplitude ratios were calculated between 3 and 7 min. As
for the PORH recordings, the following three analysis periods were considered: baseline
from 3 to 5 min, hyperemia from 8 to 10 min (time to reach a stable perfusion after initiating
reactive hyperemia), and recovery from 11 to 13 min.

All variables were obtained by the time-average in each respective interval and pre-
sented as the median and the corresponding limits of the 95% confidence interval (due
to non-normal distribution). The Shapiro–Wilk test was used to assess the normality of
the statistical distribution of the samples. The data of blood glucose concentration were
found to be normally distributed, presented as mean and standard deviation (SD) and
were compared with the t-test for related samples. However, all LDF-related variables were
found to follow a non-normal statistical distribution, and therefore phase comparisons
within each protocol (baseline vs. PORH; baseline vs. recovery) were carried out with the
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Wilcoxon signed-rank test. For comparisons between protocols (glucose load vs. water
load for each phase) the Mann–Whitney U test for independent samples was used. p < 0.05
was defined as significant for all statistical tests. Statistical analyses were performed in
SPSS 22.0 (IBM, USA) and graphical representation of data was carried out with Matlab
and MS Excel 2010.

Figure 1. Wavelet transform of the laser Doppler flow (LDF) signal of a representative subject (resting period before the
glucose load) in the time-frequency domain (three-dimensional) (a), and time-averaged (two-dimensional) (b). The typical
frequencies of each component are shown as peaks in the time-frequency. Frequency is represented as the wavelet period
on the time-frequency spectrum (a).

3. Results

In all subjects, OGL induced a significant increase in blood glucose concentration
that persisted at least 50 min after ingestion, corresponding to the end of the protocol
(Figure 2), but the water load did not (data not shown). During either glucose or water
load, no significant changes in blood pressure and skin temperature were observed (data
not shown). Similarly, blood pressure remained stable during both PORH challenges.
Therefore, these variables are not expected to have affected vascular conductance and
lessened the meaning of the absolute values of the LDF signal, justifying our further
analysis of the flow (rather than conductance) data.

Figure 2. Blood glucose concentration after the OGL challenge at three different measurement points
(t = 0 min, corresponding to the fasting state; t = 20 min; t = 50 min). Data are presented as the mean
and SD; N = 16. Statistical comparisons with the baseline (t = 0 min) are presented (t-test for the
paired samples; ** p < 0.01).
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3.1. Resting Blood Flow Recordings

The effects of glucose and water load on the resting blood flow recordings are pre-
sented in Table 1 and in Figure 3. In the forearm, neither glucose nor water load produced
any significant changes in the LDF signal or in any of its components. Similarly, no signifi-
cant differences were observed between the glucose or water groups, either in the pre-load
or post-load periods.

Table 1. Laser Doppler flowmetry (LDF) signal of the resting recording, obtained at the forearm and the finger pulp. LDF
signal (expressed in arbitrary units) is presented as the median and the limits of the 95% confidence interval (CI). Variables
are presented for pre-load and post-load periods, for glucose (G, test) and water (W, control). Statistical comparisons are
presented (Wilcoxon signed-rank test for related samples for the before load vs. after load comparisons; Mann–Whitney U
test for independent samples for the glucose vs. water comparisons; ** p < 0.01).

Site Group Pre-Load Post-Load p Value
(Post-Load vs. Pre-Load)

Forearm

Glucose (test)
Median 5.6 6.0

0.66095% CI
Upper 9.4 9.9
Lower 4.6 5.3

Water
(control)

Median 7.1 7.5
0.17395% CI

Upper 8.8 9.2
Lower 6.3 6.5

p value (G vs. W) 0.138 0.254 -

Finger pulp

Glucose (test)
Median 260.1 221.9

0.004 **95% CI
Upper 351.8 287.5
Lower 221.0 160.4

Water
(control)

Median 312.1 238.6
0.001 **95% CI

Upper 328.1 264.1
Lower 244.3 159.4

p value (G vs. W) 0.616 0.985 -

However, in the finger pulp, the glucose load produced a significant decrease in the
LDF signal (p = 0.004), and a decrease in the relative contribution of the cardiac (p = 0.004)
and respiratory (p = 0.008) components to the whole LDF spectrum. However, it signifi-
cantly increased the relative contribution of the sympathetic component (p = 0.034). Water
load also decreased the LDF signal in the finger pulp significantly (p = 0.001), together
with the cardiac (p = 0.018) and respiratory (p = 0.034) components, whereas the myogenic
component increased significantly (p = 0.017). No significant differences were observed
between the glucose and water groups either in the pre-load or post-load periods.

3.2. PORH Profile Recordings
3.2.1. Forearm

The effects of glucose and water load on the PORH profile of the forearm skin are
presented in Table 2 and in Figure 4. Before glucose load, a significant increase in the
LDF signal after cuff release was observed (p = 0.001), the well-known reactive hyperemia
phenomenon, which was accompanied by a significant decrease in the cardiac, respiratory
and myogenic components (p < 0.001 for all) and by a significant increase in the NOd
component (p < 0.001). The sympathetic component did not change significantly during
hyperemia. During the recovery phase, the LDF signal remained significantly higher
than baseline (p = 0.027), whereas the sympathetic component remained significantly
lower (p = 0.001). No significant changes were detected for the remaining components
during recovery.



Biology 2021, 10, 953 7 of 17

Figure 3. Relative contribution of the laser Doppler flow (LDF) signal components (i.e., amplitude ratio, expressed in
percentage of the total LDF spectrum) before and after glucose and water load for the forearm (a and b, respectively) and the
finger pulp (c and d, respectively) between 3 and 7 min of the 10-min resting recording; N = 16. Statistical comparisons are
presented (Wilcoxon signed-rank test for related samples for the pre-load vs. post-load comparisons; * p < 0.05; ** p < 0.01).

However, after glucose load, the PORH profile changed slightly compared to before
glucose load, especially in the recovery phase. Significant hyperemia was observed once
again (p < 0.001), accompanied by a significant decrease in the relative contribution of the
cardiac (p = 0.001), respiratory (p < 0.001), and myogenic (p = 0.001) components, and by a
significant increase in the endothelial NOd component (p = 0.001), whereas the sympathetic
component did not change significantly during this phase. However, during recovery,
there was no significant difference either in the LDF signal or in any of the components
compared to baseline.

After water load, the hyperemia (p < 0.001) was accompanied by a significant decrease
in the cardiac (p < 0.001), respiratory (p < 0.001), and myogenic (p = 0.001) components.
However, a significant increase in the sympathetic (p = 0.010) and NOd (p = 0.004) compo-
nents was noted. During recovery, perfusion remained significantly higher than baseline
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(p = 0.005), while no significant change was observed for all components. No significant
differences in the LDF signal were found between the glucose and water groups in the
pre-load period for either phase of the PORH challenge. However, in the post-load period,
the LDF signal was significantly lower during hyperemia in the glucose load than in the
water load (p = 0.021). On the other hand, no differences were noted in the LDF signal for
the baseline and recovery phases of PORH between glucose and water loads.

Figure 4. Relative contribution of the laser Doppler flow (LDF) signal components (i.e., amplitude ratio, expressed as
a percentage of the total LDF spectrum) before and after glucose (a and b, respectively) and the water load (c and d,
respectively) for the forearm in the different phases (3 to 5 min for the baseline; 8 to 10 min for hyperemia; 11 to 13 min for
recovery) of the PORH protocol; N = 16. Statistical comparisons are presented (Wilcoxon signed-rank test for the related
samples for the pre-load vs. post-load comparisons; ** p < 0.01).
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Table 2. Laser Doppler flowmetry (LDF) signal during the post-occlusive reactive hyperemia (PORH) on the forearm and finger pulp before and after the glucose/water loads. The median
and the 95% confidence interval (CI) limits of the LDF signal (expressed as arbitrary units) in three PORH phases (baseline, hyperemia, recovery) before and after the glucose (test) and
water (control) loads are presented. Statistical comparisons are presented (Wilcoxon signed-rank test for the related samples for the hyperemia vs. the baseline and recovery vs. the
baseline comparisons; Mann Whitney U test for the independent samples for the glucose vs. water comparisons; * p < 0.05; ** p < 0.01).

Before Load After Load

Site Group Parameter Bas. Hyper. Rec. p Value (Hyper.
vs. Bas.)

p Value (Rec.
vs. Bas.) Bas. Hyper. Rec. p Value (Hyper.

vs. Bas.)
p Value (Rec.

vs. Bas.)

Forearm

glucose
(test)

median 6.0 12.8 6.2
0.001 ** 0.027 *

6.2 11.0 6.7
< 0.001 ** 0.24495% CI

upper 8.3 17.3 8.2 9.5 8.9 9.7
lower 5.1 11.5 5.5 5.4 15.9 5.6

water
(control)

median 7.5 11.5 7.9
0.004 ** 0.001 **

7.4 19.3 8.3
< 0.001 ** 0.005 **95% CI

upper 9.0 18.8 10.7 9.3 24.4 10.0
lower 6.1 9.3 6.7 6.3 14.7 6.8

p value (G vs. W) 0.287 0.468 0.094 - - 0.468 0.021 * 0.224 - -

Finger
pulp

glucose
(test)

median 249.2 288.7 228.8
0.013 * 0.056

203.8 249.1 198.5
0.020 * 0.32695% CI

upper 333.3 373.7 321.1 281.6 303.0 281.3
lower 215.0 245.2 202.5 141.1 216.7 145.9

water
(control)

median 313.8 325.8 306.8
0.006 ** 0.408

257.4 295.6 269.2
0.004 ** 0.30195% CI

upper 332.4 354.6 317.7 266.4 320.3 279.5
lower 223.7 266.8 214.2 155.9 242.6 178.4

p value (G vs. W) 0.539 0.468 0.468 - - 0.642 0.287 0.361 - -
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3.2.2. Finger Pulp

The effects of glucose and water load on the PORH profile in the finger pulp are
presented in Table 2 and in Figure 5. Before glucose load, reactive hyperemia (p = 0.013)
was accompanied by a significant decrease in the myogenic component (p = 0.002) and by
a significant increase in the NOd (p = 0.015) component. During recovery, no significant
change regarding baseline was observed for blood flow or LDF components. After glucose
load, the reactive hyperemia (p = 0.020) was accompanied by a significant decrease in the
myogenic component (p = 0.007) and by a significant increase in the NOd (p = 0.007) com-
ponents. During recovery, neither blood flow nor the components changed significantly.
Before water load, the reactive hyperemia (p = 0.006) was accompanied by a significant de-
crease in the cardiac component (p = 0.014) and by a significant increase in NOd (p = 0.049).
After water load, the reactive hyperemia (p = 0.004) was also accompanied by a significant
decrease in the myogenic component (p = 0.008) but without other significant changes.
Finally, no significant differences in the LDF signal were found between the glucose and
water loads for either phase of the pre-load or post load period of the PORH challenge.

Figure 5. Relative contribution of the laser Doppler flow (LDF) signal components (i.e., amplitude ratio, expressed as a
percentage of the total LDF spectrum) before and after the glucose (a and b, respectively) and water (c and d, respectively)
loads for finger pulp in the different phases (3 to 5 min for the baseline; 8 to 10 min for hyperemia; 11 to 13 min for recovery)
of the PORH protocol; N = 16. Statistical comparisons are presented (Wilcoxon signed-rank test for the related samples for
the pre-load vs. post-load comparisons; * p < 0.05; ** p < 0.01).
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The impact of the glucose and water loads on the PORH challenge was quantified as a
variation (LDF value in the post-load period minus LDF value in the pre-load period). This
variation was statistically compared between the glucose and water groups, as shown in
Table 3. In the forearm, statistical differences between glucose and water groups were ob-
served in the hyperemia and recovery phases. The LDF signal during hyperemia increased
between pre-load and post-load periods with water (median 4.7 AU), whereas it decreased
with glucose (median −1.7 AU), a change that exhibited a significant difference (p = 0.001).
During recovery, despite no changes in the LDF signal being found, the cardiac compo-
nent decreased between pre-load and post-load periods with glucose (median −1.1 AU),
whereas it increased with water (median 0.6 AU), which revealed statistical significance
(p = 0.001).

Table 3. Laser Doppler flow (LDF) differences and differences in the corresponding LDF components before and after the
glucose (and water) load. The median and limits of the 95% confidence interval (CI) of variation (after load – before load)
on the forearm and finger pulp in the different phases (baseline, hyperemia, recovery) of the PORH protocol are presented.
Statistical comparisons are shown (Mann Whitney U test for the independent samples for the glucose vs. water comparisons;
** p < 0.01).

LDF Signal/LDF
Components

LDF Signal Variation (Post-Load–Pre-Load)

Forearm Finger Pulp

Baseline Hyperemia Recovery Baseline Hyperemia Recovery

Raw LDF
signal

Glucose
median 0.2 −1.7 0.5 −52.7 −33.2 −31.7

95% CI
upper 2.5 0.6 1.9 −24.2 −92.5 −0.8
lower −1.1 −4.7 −0.4 −101.5 −6.8 −95.7

Water
median 0.4 4.7 0.6 −38.8 −39.3 −38.8

95% CI
upper 1.0 9.7 1.0 −21.8 −3.2 6.8
lower −0.6 1.2 −1.6 −122.6 −55.2 −81.0

p value (G vs. W) 0.752 0.001 ** 0.539 0.780 0.780 1.000

Card

Glucose
median −0.4 0.5 −1.1 −0.3 0.1 −0.6

95% CI
upper 0.4 0.7 −0.3 0.1 0.2 −0.1
lower −1.3 −0.2 −1.8 −1.0 −0.5 −1.5

Water
median −1.0 0.4 0.6 −0.1 −0.1 −0.2

95% CI
upper 1.6 1.2 2.1 0.5 0.3 0.6
lower −2.1 −0.5 0.2 −0.6 −0.4 −1.3

p value (G vs. W) 0.564 0.515 0.001 ** 0.468 0.838 0.224

Resp

Glucose
median 0.6 0.3 0.5 −0.3 0.4 −0.4

95% CI
upper 1.4 1.3 −0.1 1.7 1.2 1.8
lower −1.4 −0.1 −1.1 −1.6 −0.5 0.1

Water
median −0.3 0.5 1.3 0.3 0.1 −0.1

95% CI
upper 0.7 0.7 1.1 1.2 0.8 0.9
lower −0.5 −0.3 −2.1 −0.2 −0.3 −0.8

p value (G vs. W) 0.445 0.838 0.138 0.381 0.956 0.160

Myo

Glucose
median 3.6 1.5 2.9 2.4 2.9 2.6

95% CI
upper 5.5 5.6 5.9 6.2 4.7 5.1
lower 0.7 −0.3 −2.4 −1.6 1.5 −1.0

Water
median −1.6 3.0 8.0 4.9 3.1 3.3

95% CI
upper 4.8 6.1 10.7 9.2 6.2 7.7
lower −5.1 −1.2 2.3 1.6 −0.2 −1.0

p value (G vs. W) 0.160 0.724 0.094 0.224 0.752 0.696
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Table 3. Cont.

LDF Signal/LDF
Components

LDF Signal Variation (Post-Load–Pre-Load)

Forearm Finger Pulp

Baseline Hyperemia Recovery Baseline Hyperemia Recovery

Symp

Glucose
median 2.7 −4.3 5.9 3.2 1.2 3.7

95% CI
upper 3.7 0.9 8.2 9.8 3.1 7.5
lower −1.6 −9.9 1.6 0.9 −2.4 −0.5

Water
median 0.0 −3.4 1.9 −3.7 −0.3 0.6

95% CI
upper 3.9 4.6 6.8 0.2 4.5 2.7
lower −3.5 −6.1 −1.0 −6.6 −4.4 −5.5

p value (G vs. W) 0.305 0.564 0.110 0.003 ** 0.724 0.080

NOd

Glucose
median −6.4 −1.8 −6.8 −7.3 −4.4 −2.7

95% CI
upper 0.1 4.5 −0.7 −0.7 0.3 0.8
lower −7.6 −6.4 −9.7 −13.8 −7.4 −9.2

Water
median 2.5 0.2 −11.8 −3.5 −3.6 −1.3

95% CI
upper 6.4 5.6 −4.1 3.0 3.6 3.6
lower −6.1 −10.4 −18.9 −8.3 −10.1 −6.9

p value (G vs. W) 0.119 0.780 0.110 0.171 0.539 0.669

In the finger pulp, the LDF signal did not differ significantly between the pre-load
and post-load periods with either glucose or water. However, the relative contribution
of the sympathetic component to the whole LDF spectrum increased with glucose (me-
dian 3.7 AU) whereas it decreased with water (median −3.7 AU), a difference exhibiting
statistical significance (p = 0.003).

4. Discussion

Our results have shown that a standard OGL induces short-term effects on cutaneous
microcirculation, which was revealed during a PORH challenge. Specifically, during
hyperemia the LDF signal was significantly lower with glucose than with water in the
post-load period. Moreover, the LDF signal exhibited opposite profiles between the pre-
load and post-load periods, having decreased with glucose and increased with water. In
contrast, a glucose load-mediated effect was not evident from the resting LDF recordings.
This highlights the need to employ challenge tests such as the PORH challenge to increase
the sensitivity of the LDF technique for microvascular assessment [28]. By applying the
WT we have shown for the first time that acute OGL induces changes in the spectral
components of the LDF signal implying a modulation of the sympathetic influence on
microvascular regulation.

From the analysis of the raw LDF signal, the blunted hyperemia response after OGL
was only observed in the forearm, but not in the finger pulp. This suggests that the mi-
crovascular effect of a glucose load is site-specific. The anatomical differences and the
differences in the regulation of microvascular flow in terms of sympathetic innervation, and
the contribution of endothelial factors seem to partly explain our observation. The forearm
has been described to show lower reproducibility than the finger pulp with regard to the
PORH response, which has been attributed to considerable anatomical variability [28]. In
fact, the finger pulp contains more arteriovenous anastomoses, which also implies a richer
innervation by post-ganglionic sympathetic fibers that are important for thermoregula-
tion responses [18,19,33]. Considering the fact that both ingested solutions (glucose and
water) were kept at room temperature, being quite lower than the core temperature, it
is admissible that thermoregulation mechanisms may have been evoked. Specifically, as
both glucose and water induced a similar decrease in the resting LDF signal and exhibited
an overall similarity of PORH in the pulp (but not in the forearm), a thermoregulation-
mediated sympathetic activation may have occurred and induced a redistribution of blood
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flow from the skeletal muscle and skin vascular beds towards the celiac and mesenteric
circulations [34], which is likely to be more evident in the sympathetically rich finger pulp.
Besides this thermoregulatory response, it is possible that increased blood concentration of
insulin might have contributed to increased sympathetic drive, as previously observed in
humans [35].

To the best of our knowledge, this is the first study that decomposed LDF signals
by the WT to gain insight into the physiological mechanisms underlying the effect of
an OGL on cutaneous microcirculation. All LDF spectra revealed five main frequency
components [36]—cardiac [33], respiratory [37], myogenic (i.e., vasomotion) [38], sympa-
thetic [39], and endothelial activity, the latter being subdivided into NOd and NOi [36].
These components showed no significant frequency shifts (i.e., no shifts of the frequency
corresponding to the maximal amplitude; data not shown) with either glucose or water load
in either pre-load or post-load periods. However, the time length of our LDF signals was
not extensive enough to allow a clear identification of the NOi component (0.095–0.005 Hz),
which may have prevented gaining a full insight into the currently discussed physiological
mechanisms. In previously published studies the contribution of each component of the
LDF signal has been expressed either in terms of absolute [8,9] or relative values [11]. To
minimize the impact of inter-subject variability in terms of raw LDF signals and the corre-
sponding frequency spectra, we believe that expressing the contribution of each component
in relative values is more appropriate.

Our results obtained by applying the WT highlight differences in the spectra obtained
in different anatomical sites during resting and PORH recordings. In the resting recordings,
glucose and water load significantly affected the finger pulp but not the forearm skin, the
opposite of what was observed for PORH. Glucose and water load increased the relative
contribution of the myogenic and sympathetic components, but only significantly for the
former. The relative increase in these low-frequency components seems to explain the sig-
nificant decrease in the relative contributions of the high-frequency cardiac and respiratory
components. An increase in peripheral sympathetic drive has already been demonstrated
to occur after both oral glucose [40] and water [41] loads, yet by applying tests different
than WT. This parallel increase in the sympathetic and myogenic components might derive
from the fact that the sympathetic drive also potentiates the myogenic activity [42]. The
NOd component, in contrast, was little affected by either glucose or water load. This result
was not expected given that an increase in blood glucose concentration increases the secre-
tion of insulin, which has been implicated to potentially affect the release of endothelial
vasodilators, namely NO [43], whose contribution to the regulation of vascular tone is also
site dependent [44]. Furthermore, glucose also displays a negative effect on NO synthase
activity through a mechanism involving activation of protein kinase C [45]. Considering
the existence of a cross-talk between different local microvascular components [46], the dif-
ferent extent to which insulin might act on the cutaneous microvasculature in each subject
also seems to have contributed to different impact on microcirculation in different sites.

Even though the analysis of the raw LDF signals showed a blunted PORH response
with glucose in the forearm but not in the finger pulp, the WT analysis revealed that several
LDF components were affected in both sites (Tables 2 and 3), and differently compared
to the resting conditions. This is in line with the concept of PORH that has been used to
challenge microcirculation and evaluate its function in clinical practice, particularly the
endothelium-dependent vasodilation [44].

The decrease in the myogenic component in the forearm during the pre-load glucose
period suggests a reduction in vasomotion amplitude resulting from vessel dilation during
rapid refilling following occlusion release [47]. The increase in NOd could be attributed to
a compensatory increase of endothelial NO release in response to decreased oxygen partial
pressure in the tissues [47,48] and to increased shear stress during hyperemia after release
of the occlusion. In fact, both myogenic and endothelial responses are thought to constitute
the main mechanisms underlying PORH [47]. The decrease in the high-frequency cardiac
and respiratory components reflects a decreased transmission of cardiac and ventilation-
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derived pulses to the peripheral vasculature. During recovery, the LDF signal was still
significantly higher than baseline, again due to the myogenic response, which increased
towards the baseline (Figure 4) [49]. In addition, a decrease in the sympathetic component
was observed, also favoring an increase in the LDF signal, a mechanism probably related
to the relieving of pain perception during occlusion release.

The raw LDF signal showed a slightly blunted PORH response after the glucose
load. Our WT analysis helped to clarify potential mechanisms responsible for these slight
differences (Figure 4). During hyperemia, the NOd component showed a significant in-
crease compared to baseline, whereas the cardiac and respiratory components decreased
significantly. However, the myogenic component did not change during this phase, which
contrasts with the pre-load period. Furthermore, during recovery the sympathetic compo-
nent showed no difference compared to baseline. These results suggest that OGL affected
the PORH response due to a combined modification of the sympathetic and myogenic
components. In contrast, the hyperemic response observed after water load was identical
for both pre-load and post-load periods. The main difference was that in the post-load
period no significant differences were found between recovery and baseline. Our results
seem to suggest that the PORH profiles obtained after glucose and water are significantly
different, either in the pre-load or post-load periods, apparently undermining our analysis.
However, when the differences between each component between the pre-load and post-
load periods were compared, an opposite profile for the cardiac component was observed
during recovery (i.e., an increase with glucose and a decrease with water). Considering
that the cardiac component reflects mainly the transmission of the arterial pulse to the
microvascular bed, this observation is in line with the profile previously observed for the
raw LDF signal during hyperemia.

Mechanisms underlying the PORH response in the finger pulp appear to be different
to the ones regarding the forearm (Figure 5), suggesting that glucose produced no changes
in microvascular reactivity at this site. Again, slight differences in the pre-load period were
found between glucose and water. Overall, these results again suggest a low reproducibility
of the PORH challenge test, especially when making direct comparisons between variables.

For this reason, the differences between the pre-load and post-load periods were
compared, revealing significant differences between glucose and water in the sympathetic
component (i.e., a decrease with water and an increase with glucose) during baseline
(Table 3). This opposite tendency highlights that an increase in the sympathetic drive,
either due to thermoregulation or to insulin secretion, might have been induced by OGL in
this anatomical site, which is also in line with the baseline recordings obtained after OGL.

Taken together, our results seem to suggest that OGL affects cutaneous perfusion in
healthy subjects to a slight degree, and differently so in distinct anatomical sites. In the
present experimental conditions, a potential impact of an acute glucose load on microcir-
culation, even though discrete, seems to have been detected by the WT, highlighting the
usefulness of this analytical tool for flowmotion analysis. Nevertheless, the interpretation
of data obtained by the WT is still far from understood and warrants further studies as well
as analytical improvements. Effectively, the existence of a cross-talk between different com-
ponents of microcirculation cannot be ignored, and their implications in the interpretation
of WT spectra are yet to be clarified.

5. Limitations

The relatively small sample size and asymmetrical distribution of male and female
subjects constitute a limitation. All subjects performed the protocol in the same order,
starting with the glucose load challenge, and the LDF signals were consistently acquired
in the left upper limb. This lack of randomization in terms of the order of the challenge
and in terms of limb choice also constitute potential limitations. The raw LDF signals and
corresponding WT spectra showed, as expected, considerable inter-subject variability. This
prevented the assessment of the components’ activity in terms of absolute values, which the
authors regard as a limitation. In order to decrease this variability, the activity of the LDF
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components was consistently expressed in terms of relative values. Finally, we were not
able to assess the relative contribution of the NOi component to microvascular reactivity
since our time series were much too short. This limitation prevents the corroboration of
more thorough mechanisms of microvascular regulation.

6. Conclusions

This study is the first to combine cutaneous perfusion quantification assessed by LDF
with spectral decomposition performed by WT to more sensitively assess the microvascular
response to an OGL. Our results suggest that acute OGL affects the overall PORH profile
by altering the WT spectra of the LDF signals. Minor alterations in various spectral compo-
nents of the LDF signal were found, suggesting that OGL impacts microvascular reactivity
in a subtle way, potentially contributing to microvascular dysfunction. Differences in the
behavior of the LDF spectra between the finger pulp and the forearm after glucose (and
water) load expose different control mechanisms in these very sites and different reactivity
after OGL. Additional studies should further explore the role of the sympathetic nervous
system as well as a potential role of insulin in acute microvascular effects of an OGL in
healthy subjects.
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