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Abstract

1. Autonomous recording units are now routinely used to monitor birdsong, starting

to supplement and potentially replace human listening methods. However, to date
there has been very little systematic comparison of human and machine detection
ability.

We present an experiment based on broadcast calls of nocturnal New Zealand
birds in an area of natural forest. The soundscape was monitored by both novice
and experienced humans performing a call count, and autonomous recording

units.

. We match records of when calls were broadcast with detections by both humans

and machines, and construct a hierarchical generalized linear model of the binary
variable of correct detection or not, with a set of covariates about the call (dis-
tance, sound direction, relative altitude, and line of sight) and about the listener

(age, experience, and gender).

. The results show that machines and humans have similar listening ability. Humans

are more homogeneous in their recording of sounds, and this was not affected by
their individual experience or characteristics. Humans were affected by trial and
location, in particular one of the stations located in a small but deep valley. Despite
recorders being affected significantly more than people by distance, altitude, and
line of sight, their overall detection probability was higher. The specific location of
recorders seems to be the most important factor determining what they record,
and we suggest that for best results more than one recorder (or at least, micro-
phone) is needed at each station to ensure all bird sounds of interest are

captured.
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1 | INTRODUCTION

There is a need for effective bird monitoring methods to assess spe-
cies presence, abundance, evaluate the consequences of current
species management-for-conservation practices, and to provide an
indication of overall balance in a given biome (Dawson & Efford,
2009; Digby, Towsey, Bell, & Teal, 2013; Towsey, Planitz, Nantes,
Wimmer, & Roe, 2012; Vielliard, 2000). Birdsong is often used to de-
tect, monitor, and quantify species because it works even when the
individuals are out of sight. Humans are capable of identifying birds
aurally with reasonable accuracy: The average person can recognize
birdcalls in their backyard, while experts can identify hundreds of
bird species by their song alone. It is therefore not surprising that
birdcall surveys are a common method of assessing populations
of birds and conservation managers have turned to some of these
methods to monitor species for conservation purposes.

Surveys carried out by humans have been shown to have issues
arising from varying ability to detect and identify species (Alldredge,
Simons, & Pollock, 2007; Diefenbach, Brauning, & Mattice, 2003;
Emlen & Delong, 1992; Sauer, Peterjohn, & Link, 1994; Simons,
Alldredge, Pollock, & Wettroth, 2007), changes in behavior of birds due
to human presence (Bye, Robel, & Kemp, 2001; Hutto & Young, 2003;
McShea & Rappole, 1997), and misclassification of species (Farmer,
Leonard, & Horn, 2012; Sauer et al., 1994), to varying hearing ability of
observers (Ramsey & Scott, 1981). Additionally, human surveys can be
logistically challenging and costly. Furthermore, most of the methods
used for measuring bird populations are not well suited and/or are un-
affordable for species in low numbers (Sutherland, Newton, & Green,
2004).

Advances in technology have seen an increase in the use of
autonomous recording units (ARUs) for monitoring of bird popula-
tions. This technology has been recognized for having the potential
to overcome some of the human issues, and for having some extra
advantages. For example, ARUs are less likely to affect birds’ be-
havior, and their sampling can be scheduled in advance and carried
out at selected times of day and night over long periods (Telfer &
Farr, 1993; Hobson, Rempel, Greenwood, Turnbull, & Wilgenburg,
2002; Rempel, Francis, Robinson, & Campbell, 2013), allowing these
devices to be placed in remote locations and minimizing temporal
biases in sound recording. Further, ARUs produce archival records
that allow the listener to replay and verify identifications of species
(or ask other listeners to do so) and can be deployed by people with
limited bird knowledge.

Given that it is likely that ARU recordings will increasingly re-
place, or at least supplement, human listening, the key question is to
what extent the recordings are comparable to human hearing. This is
particularly important as one of the first steps to make this technol-
ogy useful to conservation and/or research is to develop protocols,
which requires knowledge of the strengths and limitations of the
ARUs for capturing sounds under a range of conditions. This knowl-
edge is also important for the development of methods of analysis of
the data collected via ARUs, and to judge the validity of abundance

estimates obtained from ARUs surveys.
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Since the beginning of the 2000s, a number of studies have
compared ARUs and humans during the common bird survey types
(Salamon et al., 2016; Table 1). Most of these studies use simulta-
neous recording by ARUs and observers in natural settings. The
challenge in analyzing these data is the lack of a gold standard:
The machine recording is compared to the paper annotation of the
human observers. Since the lack of human consistency is one of the
drivers for ARU adoption, this seems problematic at best. In addi-
tion, detection ranges differ between these survey methods. The
ability of humans to move their heads and therefore capture sounds
from several directions means that even if recorders and humans get
overall similar results in surveys, the way they achieve this would
be different. Therefore, the protocols to be used by each method
should be calibrated to achieve comparable results.

In this study, we compare humans and ARUs by presenting them
simultaneously with birdcalls broadcast at various distances and loca-
tions. We then look at (a) the effect of distance, sound direction, relative
altitude, and line of sight on the capacity of ARUs and people to record
bird sounds, and (b) the effect of age, experience, and gender on the
ability of observers to hear bird sounds. We used the calls of three of
New Zealand's nocturnal species: two kiwi species (Apteryx owenii, little
spotted and A. mantelli, brown) and an owl, the ruru (Ninox novaezelan-
diae). Kiwi is a flightless nocturnal ground insectivorous bird endemic
to New Zealand, while the ruru is a small forest owl from Australasia.

Based on sound theory (Forrest, 1994), we predicted that: (a)
Calls broadcasted from speakers in locations relatively lower than
listening stations would be captured by recorders and humans while
those broadcast from higher sites would not, as sound would travel
above the recorders/people; (b) speakers located in line of sight of
autonomous recorders/human observers would be heard better and
there would be less obstruction of the sound waves; (c) low-fre-
quency calls would be recorded more/better than high-frequency
calls as the latter attenuate more in the forest environment; and
(d) shorter distances between speaker and autonomous recorder/
human observer would result in better recordings.

2 | MATERIALS AND METHODS

2.1 | Experimental design

The experiment took place at Rawhiti, Northland, New Zealand
(35.2330°S, 174.2606°E). It consisted of broadcasting prerecorded
bird sounds from six broadcasting sites to be recorded by both human
observers and ARUs located at seven different listening stations
(Figure 1), allowing direct comparison between them. Each human
observer carried out the listening exercise at all seven listening sta-
tions, resulting in seven trials (Table 2). This enabled us to compare
the effects of location without the confounding factors of differ-
ences between human observers.

Human observers were initially deployed to their first listening sta-
tion. Each trial then followed the same format: Based on a sound signal
(a shotgun blast), a series of bird calls were played from six broad-
casting stations. At the end of the broadcast, another shotgun blast
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TABLE 1

Performance
measures

Location and
vegetation

Minuses

Pluses

Method

Observers

Equipment

References

In general, humans in the field could detect

1. Counts derived from both ARUs

Detection/non-detec-

Broadcast

Not stated

Alberta, Canada (10
road sites, 5

Song Meter

Yip etal. (
2017)

sounds at greater distances than an ARU
although detectability varied depending

on species song characteristics

and human observers were relatively
comparable

tion. Effect of

experiment

SM2, SM3,
RiverForks

distance and weather
conditions. Detection

for sounds of

comparing how

coniferous forests,
and 5b deciduous

forests).

several ARUs and

CZM, Zoom H1
handheld

human observers
detect sounds at

different amplitudes

recorders

various distances
and vegetation

types.
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informed human observers of the end of the trial. The observers then
had 10 min to move to their next listening station, and the next trial
commenced. A double shot was fired at the end of the experiment to

indicate the time to return to base.

2.2 | Broadcasts

The six broadcast sites were unknown to human observers, but the
observers visited the seven listening stations during the day, prior
to the experiment, to become familiar with their location along
the track (Figure 1). Experimenters, with their broadcast equip-
ment, were deployed to their locations before the human observers
started the experiment to prevent observers knowing the locations
of the broadcasts. Speakers were activated by experimenters at
fixed times after the start of each trial (gunshot signal). For practical
reasons, we used five different speaker combinations for broadcasts:
three FoxPro models (Wildfire, FX5, and Firestorm): two Marantz
660 recorders coupled to a Saul Mineroff Portable Field Speaker
(SME-AFS), and a Sony PCM-M10 recorder coupled with a SME-AFS.
However, prior to the experiment, all the speakers were adjusted to
generate the same sound pressure level for a given birdcall.

Broadcasts from different speakers were not supposed to over-
lap and we expected that observers in most cases could hear sound
from several of the speakers (i.e., if they were close to more than
one speaker). In practice, some experimenters started the speakers
slightly earlier or slightly late and thus some overlap of songs oc-
curred. Each speaker broadcast the calls of three nocturnal birds
known to the observers: two species of kiwi, which were not known
to exist in the area, and ruru, which exist in low density (Table 3).
For kiwi, we used one male and one female call for each of the two
species, and for ruru, we used a combination of trill and weow calls
(Brighten, 2015) resulting in five calls being broadcast (Figure 2).

Previous work indicated differences in transmission of bird
sounds between day and night (Priyadarshani, Castro, Marsland,
2018) and so the experiment was conducted between 21:00 and
23:30, which is in the time range where the selected species natu-
rally call. Calls were broadcast at natural volume (Section 2.4 below).
Each birdcall sequence was 88 s (1.47 min) long, and therefore, the
total amount of hearing time was 7.33 min for each sequence. Each
speaker played the songs in a different predefined random order to
prevent observers from predicting bird order (Table 3); this was par-
ticularly important because the calls remained the same for the en-
tire experiment. The order in which the speakers broadcast the calls
was also randomized (Table 4) to prevent observers from predicting
where sounds would come from. All speakers broadcast north and
were located on the ground facing upwards at 45 degrees to simu-
late a kiwi calling from the forest floor (. Castro, pers. obs.).

2.3 | Human observers

Two observers with different level of expertise were located
2-4 m apart at each of the seven listening stations (Figure 1). The
two observers were out of sight of each other to prevent them
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Rawhiti

Google Earth

FIGURE 1 Overview of the location of the experimental site in New Zealand showing the Rawhiti settlement, and the listening stations
(blue markers) and broadcasting sites (red markers). Listening stations 3 and 6 were located in valleys; 1, 4, and 7 on hill tops; and 5 and 2
half way up a hill. Broadcasting sites 1 and 3 were located in valleys, 6 and 4 on hill tops, and 2 and 5 on the side of a hill

TABLE 2 Observer details and order in which s/he visited the stations to record broadcasted sounds

Expertise
Observer rank (1-4) 5mbc (yr) KCS (yr) Other Survey Age (yr) Gender Station order

1 2 0 10 3 66 Female 1 3 5 7 6 4 2
2 4 0 0 0 28 Male 1 3 5 7 6 4 2
3 3 0 3 1 61 Female 2 1 3 5 7 6 4
4 2 2 4 0 42 Male 3 5 7 6 4 2 1
5 1 1 7 0 73 Female 3 5 7 6 4 2 1
7 0 0 0 0 47 Female 4 2 1 8 5 7 6
6 3 0 4 0 74 Male 4 2 1 3 5 7 6
8 3 0 0 3 54 Female 5 7 6 4 2 1 3
9 0 0 0 1 40 Female 5 7 6 4 2 1 3
10 4 0 0 0 25 Male 6 4 2 1 3 5 7
11 1 0 1 3 45 Male 7 6 4 2 1 3 5
12 2 0 0 0 30 Female 7 6 4 2 1 3 5
13 3 0 0 0 37 Female 6 4 2 1 3 5 7

Note. Expertise rank was self-assessed using the following categories: 1 = knows most NZ species sounds well; 2 = knows most NZ forest species
sounds well including rare birds; 3 = knows a variety of common NZ species sounds well; 4 = knows only a few common species sounds well. 5mbc:
Five-minute bird counts; KCS: kiwi call survey.
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TABLE 3 Species and call sequences
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edinth R Acousc periment | ol Sedres Seawes | Sem Semn Senune
BK female BK female LSK female BK male BK male LSK female
LSK female Ruru BK female BK female LSK female Ruru
LSK male BK male LSK male Ruru BK female BK male
Ruru LSK male Ruru LSK male Ruru BK female
BK male LSK female BK male LSK female LSK male LSK male

Note. BK: brown kiwi: Apteryx mantelli; LSK: little spotted kiwi; Apteryx owenii; ruru/morepork, Ninox

novaeseelandiae.

from copying from each other, and to ensure that they were inde-
pendent in their listening. Each recording station had an autono-
mous acoustic recorder mounted on a tree at head height above
the human observer. The 14 ARUs were units created by the
Department of Conservation Electronics Laboratory, Wellington
(electronics@doc.govt.nz) recording at 32 kHz. These omnidirec-
tional recorders using 4 x wméla electret microphones in parallel
with a foam “pop filter” and custom-made low noise pre-amplifier
with a DSP anti-aliasing filter, =35 dB +4 dB sensitivity, and 50 Hz

to 16 kHz frequency response. The ARUs were programmed to
record between 20:30 and 00:00 hours and were on site before
the human observers arrived at their stations. Human observers
were asked to perform a call survey using data sheets (Appendix 1)
similar to those used for kiwi call surveys in New Zealand, which
requests details of the species, time of calling, direction (meas-
ured using a compass), and distance (estimated by observer from
experience). Prior to the experiment commencing, each observer

completed a small survey to gather information about their

Frequency

FIGURE 2 Spectrograms of calls used
in this experiment. From top to bottom:

brown kiwi male, brown kiwi female,
little spotted kiwi male, little spotted kiwi
female, and ruru

00:02 00:04 00:06

00:08 00:10 00:12 00:14 00:16
Time
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TABLE 4 Orderin which speakers broadcasted song during the
Rawhiti Acoustic Experiment

Trial 1 Trial2  Trial3  Trial4 Trial5 Trial6  Trial 7

wWw U N D~ O

6 5
2 4
4 2
3 1
5 6
1 3

N A OO W
w ok~ N
N O, AW
B W N A U o

Note. Trials were separated by a 10-min period, while observers moved
from one station to another.

competence, and personal variables that could affect their perfor-
mance in the experiment (Appendix 2). They were also encouraged
to listen to recordings of the species they were going to survey as

a training exercise.

2.4 | Processing of song for broadcast

Each bird call was chosen from high-quality recordings of the species
(Figure 2). The files were denoised using wavelets (Priyadarshani,
Marsland, Castro, & Punchihewa, 2016). The selected birdcalls were
listened to by IC who is experienced in working with the chosen spe-
cies in the field. Each song was broadcast to IC who indicated when
the volume of the song sounded as if the bird was calling next to
her. Once these levels were decided, the songs were concatenated
using Praat (http://www.fon.hum.uva.nl/praat/) and a tone marker
was added at the beginning of the sequence. This way all songs in
the recording were at the estimated correct volume when compared
to each other.

The broadcasting volume from each speaker was adjusted based
on the volume of the initial tone until it was the same for all speakers.
One speaker was used to broadcast the song, and all other speakers
were calibrated using a sound meter (Digitech QM1592 Professional
Sound Level Meter) following manufacturer instructions: The sound
meter was placed 20 cm from the ground on a tripod and 1.5 m from

the speaker looking directly toward the speaker. Using this method,

the volume for the tone ranged between 61 and 63 dB; for brown
kiwi female between 75 and 79 dB; brown kiwi male between 79 and
87 dB; little spotted kiwi male between 77 and 81 dB; little spotted
kiwi female between 76 and 82 dB; and ruru between 77 and 79 dB
(Table 5).

2.5 | Analyses

2.5.1 | Data from the recorders

Sound recordings were stored as wav-files with a 32 kHz sampling
rate and 16 bit data depth. We used AviaNZ version 1.0 for the visu-
alization and analyses of sounds (AviaNZ team, Massey University,
2017) using a 256-sample Hann window. As a first step, a record-
ing from one of the stations was scanned in AviaNZ for the shotgun
sounds that defined the beginning and end of broadcast trials. All
sounds were annotated for the whole experiment for a single re-
corder (with the help of other recorders when the calls were not
registered or faded). Then, this was used as a template to annotate
the rest of the recordings from other stations. For each broadcast
call, we then recorded its presence to compare this to human re-
corded data. Three of the recorders NE3, NE4, and Ex2 did not work,
despite previous testing, and so data from these recorders was not
available for analyses. We replicated the data from recorders Ex3,
Ex4, and NE2 to match detection with people at those stations who
were under the recorders that did not work (i.e., NE3, NE4, and Ex2).

2.5.2 | Data from human observers

Data were initially matched with the expected sequences broad-
casted using the identification, direction, distance, and time recorded
by observers, where this was provided. Despite the instructions,
some observers did not write any information about time, distance,
or direction. In these cases, we used the ruru and brown kiwi calls to
decide at what point in the sequence each call went, together with
data from the other person at the station and the annotated data
from the autonomous recorders. This last one was only used as a last

resort as a guide to decide whether a sound may have been heard.

TABLE 5 Average + standard deviation (SD) broadcast decibels for each sound used

Recorder number (Db)

5 6 3 4 1

Sound Av. SD Av. SD Av. SD Av. SD Av. SD
Tone 61.96 7.37 63.38 7.38 62.71 714 63.61 6.36 63.08 7.34
BKF 75.83 443 75.99 4.50 78.14 6.05 79.72 6.86 78.73 5.91
BKM 79.69 5.95 80.64 6.66 82.62 7.09 89.21 9.64 87.78 11.39
LSKF 76.53 4.87 78.03 497 81.51 7.61 82.12 7.90 82.14 7.38
LSKM 77.31 4.10 78.85 4.65 81.95 5.93 77.40 4.29 79.96 5.20
Ruru 77.93 8.33 7711 8.39 77.95 8.27 7749 8.23 79.93 8.96

Note. BKF: brown kiwi female; BKM: brown kiwi male; LSKF: little spotted kiwi female; LSKM: little spotted kiwi male. Db: decibels.
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Recorders

1le-03

8e-04 -

6e-04
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Probability of detection
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Posterior probability density

FIGURE 3 Theindividual influence of each ARU or human observer on detection probability of broadcast sounds at the Rawhiti
Experiment. Each person and each recorder corresponds to a different color line in the plots. This posterior probability density plot
represents the distribution of the individual contribution covariate after the MCMC runs (most of their prior distributions were modeled as
normally distributed with zero mean and very small precision). The vertical line, placed on 0, is there to help visualize the proportion of each
covariate's posterior that is above or below this point. Covariates with posterior distributions completely above or below zero have more

consistent effects on the detection probability

Data were scored as binary variables based on whether individual
observers detected or failed to detect individual broadcast calls and
whether they successfully identified the species. One of the human
observers’ information was not used in the analyses because this in-
dividual did not follow any of the instructions, and his data were not
comparable to that of the other human observers.

2.5.3 | Distances between the stations and speakers

GPS coordinates taken on site using a Garmin Rino and cali-
brated against map features were used to compute distance
and direction using the calculator at http://www.movable-type.
co.uk/scripts/latlong.html; this uses the Haversine formula to
calculate the shortest distance over the earth's surface between

points, giving an as-the-crow-flies distance between the points:

a=sin? (Ap/2) +cos @, -cos @, -sin? (A4/2).

c=2-atan2 <\/E, m)

Haversine formula:d =R - c.
where ¢ is latitude, 1 is longitude, and R is earth's radius (mean
radius = 6,371 km).

2.5.4 | Altitude

We used the Google Earth Pro “show elevation profile” feature to
obtain the altitude of each listening station and broadcasting site,
and calculated the relative altitude or altitude difference between
the recorder and the speaker (recorder altitude-speaker altitude).
Line of sight was deemed to have occurred when the broadcasting
site was in direct line from the listening station without any geo-

graphical feature separating them.

2.5.5 | Broadcast direction in relation to
listening station

The direction of the calls broadcasted in relation to the listening sta-
tions was calculated by measuring the angle between the two on a map
in degrees, and giving a location (cardinal point) for the listening sta-
tions in relation to the broadcasting site (North, East, West, or South).

2.6 | Statistical analyses

We considered each individual bird call broadcast as a trial and
treated the data as a series of Bernoulli trials, with the success (1) or
failure (0) of detection of that call as the binary variable. For human
data, we used the presence of a bird in their survey sheet as a suc-
cess and the lack of a bird as a failure. For the ARUs, we reviewed
the recording both visually as a spectrogram in AviaNZ, and aurally
through headphones, because some recorded calls were audible but
not visible, to establish the success or failure of detection.

We then constructed a hierarchical generalized linear model by as-
sembling the sequence of success (=1)/failure (=0) observations y; into a
data vector. Each y, was represented by a random variable with a Bernoulli
distribution p, (Equation 1) based on a sigmoid function (Equation 2),

where esp; is a linear expression of covariate factors that we aimed to fit:

yidbern (p;) (1)
o1
pi P (2)

esp; Nt + A + B+ disi+ B x iy + BT, + B +e (B)
The majority of the terms in esp; (Equation 3) were hierarchically
modeled as normally distributed with zero mean and very small pre-

cision. The exceptions were the terms for the individual ARU/human
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FIGURE 4 Influence of line of sight
(LOS), out of sight (OQS), altitude (AL),
and distance (DIS) covariates on the
detection probability of ARUs and human

observers to broadcast calls during the
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6e—04
4e-04
2e-04
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Rawhiti Experiment. Each person and
each recorder corresponds to a different
color line in the plots. These posterior
probability density plots represent the
distribution of each of the covariates
after the MCMC runs (most of their prior
distributions were modeled as normally
distributed with zero mean and very small
precision). The vertical line, placed on O,
is there to help visualize the proportion of

QQ QQ 000 0

<>° ®
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Posterior probability density

observers. This covariate, for the human observers (ﬂ;-m)’ was hier-
archically modeled with its own linear model that accounts for previ-
ous experience, age and gender:

ﬂ\;le{1:13}dn0rm (M,’,O-OOO].) @

WD+ +AE 4B + 0 I P wage g
i

Each person's individual contribution covariate was modeled as
normally distributed around their y; (4).

QQQ QQ OQQQQQQ
PP A APATLP

each covariate's posterior that is above or
below this point. Covariates with posterior
distributions completely above or below
zero have more consistent effects on the
detection probability

The terms in Equation (5) are as follows:
ﬁ“/’gfe represents each person's self-assessment of previous

fmc

knowledge. The Brine . covariates account for previous experi-
ence in “five-minute bird counts.” The ﬁ"jccss covariates represent
how many “kiwi call surveys” the person has attended. The ﬂgss
covariates represent how many other surveys the person has
previously attended (Table 2). All of these factors are proxies
for experience, and hence, significant proportional differences
within each group would be interpreted as the contribution of

the person's experience to her/his ability in detecting a bird call.
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FIGURE 5

Influence of trial on the detection probability of ARUs and people to broadcast calls during the Rawhiti Experiment. Each

person and each recorder corresponds to a different color line in the plots. This posterior probability density plot represents the distribution
of the trial covariate after the MCMC runs (most of their prior distributions were modeled as normally distributed with zero mean and very
small precision). The vertical line, placed on O, is there to help visualize the proportion of each covariate's posterior that is above or below
this point. Covariates with posterior distributions completely above or below zero have more consistent effects on the detection probability

The p&" group is composed of only two classes and represents
the observer's gender; a significant difference between the female
and male covariate would be interpreted as a gender specific con-
tribution to the person's ability in detecting a call. Finally, the p2&¢
represents the influence of age on the ability of detecting calls. It is
multiplied by the standardized (z= ’%) age of each observer (Table 2).

For the ARU terms, g’

14:24
without its own linear model, since there were no known individ-

was still hierarchically modeled, but

ual differences that we were testing between the recording units.

Thus, the <ﬁ54_24) were normally distributed with a normally dis-

tributed sample mean and very small precision. The sample mean

in turn had a mean equal to zero and a very small precision.

In the full model:

The station covariates matrix, ﬁf_tstv, represents the effect of the
different stations on the persons’ de‘técting probability. They are in-
cluded for completeness, since the ARUs are stationary, fixed at a
station, these covariates are set to O.

The trials covariates matrix, ﬂf}t_, represent the possible influence
of time on people and ARUs (eithé;' people getting better with prac-
tice, or getting bored), or ARUs losing battery or failing, being com-
posed of seven classes, one for each trial.

The ﬂr’idis covariates represent the effect of the physical dis-
tance between the human observer/ARU and the broadcasting

speaker; they are multiplied by the standardized (z= XTT”) distance
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of each detection event. Similarly, the ﬁ:, intended to account for
the effect of altitude difference on each person/ARU and are mul-
tiplied for the standardized (z= ’%) altitude differences. The ﬁl],i
covariates represent the effect of being in/out of line of sight with
the source of the broadcast call on each human observer/ARU.
They are an array of pairs of mutually exclusive covariates at each
detection event.

The ﬁf_f;ir_ matrix of covariates is intended to account for the ef-
fect of a éaI’I coming from a certain direction on each person/ARU

detection probability. It is structured in a sectorial fashion, with 8

QQ QQO QQ 0 Q Q()Qq_) 000

the Rawhiti Experiment. Each human
observer corresponds to a different color
line in the plots. This posterior probability
density plot represents the distribution

of the station covariate after the MCMC
runs (most of their prior distributions
were modeled as normally distributed
with zero mean and very small precision).
The vertical line, placed on 0, is there

to help visualize the proportion of each
covariate's posterior that is above or
below this point. Covariates with posterior
distributions completely above or below
zero have more consistent effects on the
detection probability

N
AT

covariates covering the 360 possible degrees from whence a call
could be coming, 45° at a time (e.g., a call coming from the E-NE sec-
tor ~70° would be in the second class, whereas one coming from the
S-SW sector ~200° would be in the fifth one); a significant (positively
or negatively) value on any of these covariates would be interpreted
as a person/ARU being more/less able to detect a call that comes
from a certain direction. Because the broadcast were all toward the
North, calls coming from the South would be in direct line with the
ARUs/human observers and our expectation is that this direction

would have a higher detection probability.
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FIGURE 7 Influence of species-call
broadcast on the detection probability

of ARUs and people to those calls during
the Rawhiti Experiment. BKF: brown kiwi
female; BKM: brown kiwi male; LSKF: little
spotted kiwi female; LSKM: little spotted
kiwi male; RR: ruru. Each person and

each recorder corresponds to a different
color line in the plots. These posterior
probability density plots represent the
distribution of each species-call covariate
after the MCMC runs (most of their prior
distributions were modeled as normally
distributed with zero mean and very small
precision). The vertical line, placed on O,
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Influence of broadcast direction on the detection probability of ARUs and human observers to broadcast calls during the Rawhiti

Experiment. Axis labels are demonstrated in the top plots. All calls were broadcast to the North. The plots show probability of detection by
human observers and recorders located at the encircled positions in relation to the broadcast. Each person and each recorder corresponds

to a different color line in the plots. These posterior probability density plots represent the distribution of each direction covariate after the
MCMC runs (most of their prior distributions were modeled as normally distributed with zero mean and very small precision). The vertical line,
placed on 0, is there to help visualize the proportion of each covariate's posterior that is above or below this point. Covariates with posterior
distributions completely above or below zero have more consistent effects on the detection probability. E: East; N: North; S: South; W: West

The ﬁfigai matrix of covariates represents the effect of each of the
five different calls broadcasted on the detection probability of each
human observer/ARU.

Lastly, the ¢; covariates are overdispersion parameters, intended
to account for unaccounted variability; significant values for this pa-
rameter would mean poor representation of the data variability by
the other covariates.

After 70,000 burn-in iterations, seven independent chains ran
through JAGS (Plummer, 2016) in the R environment (R core team,
2018) using the coda.samples() command for 200,000 Markov chain
Monte Carlo (MCMC) iterations with a thinning interval of 20 (i.e.,
retaining one value every twenty simulated steps for each variable)
for a total of 70,000 assumed independent observations.

We ran the effectiveSize() command from the coda package to
check the actual number of independent samples from the poste-
rior probability densities. Subsequently, we randomized a matrix of
indexes with 10 columns by 10% of the dataset size (4,860 observa-
tion = 486) rows, and sequentially removed 10% of the data points

at a time to cross-validate the model by checking the percentage

of data points that were correctly estimated when the entry was
deleted.

3 | RESULTS

After the posterior sampling, the chain mixing was visually in-
spected and overall showed good mixing. The model described the
data well; tenfold cross-validation showed that the methods cor-
rectly accounted for 82.366% of the data points. Although at least
one variable had an extremely small effective sampling size, mean-
ing a high level of autocorrelation for some variables, most showed
independent sampling (Minimum = 28.21; 1st Quantile = 60,195.35;
Median = 67,734.89; Mean = 60,562.09; 3rd Quantile = 70,000.00;
Maximum = 73,613.36). Since most of the covariates were modeled
as being zero mean with very small precision, we can consider those
with high-density intervals (posterior probability density between
the 1st and 5th quantile) completely above or below zero as signifi-
cantly affecting the detection probability throughout the analysis.
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and broadcast and altitudinal differences Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 Speaker 6
between stations and broadcast Station Distance
(=recorder altitude-speaker altitude; 1 84.6 136.7 267.5 30.4 167.9 264.4
e ™2 me i awe  ws  w
recorder and vice versa) 3 61.5 78.2 209.1 80.2 95.9 191.5
4 113.5 57.3 154.1 149.7 25.3 116.7
5 172.5 51 90.8 176.9 41.7 93.5
6 235.8 112.8 36.1 237.8 98.7 76.2
7 260.6 158.2 83.8 283.5 124.7 43
Relative altitude
1 22 -2 3 -2 -4 1
2 5 -19 -14 -19 =21 -16
3 16 -8 =3 -8 -10 -5
4 25 1 6 1 -1 4
5 30 6 11 6 4
6 17 -7 -2 -7 -9 -4
7 27 8 8 3 1 6

There was inter- and intravariation in overall detection probabil-
ity between people and ARUs as illustrated in Figures 3-8. The varia-
tion was larger among ARUs than people. ARUs however performed
significantly better than human observers, recording 1,631 (60%; of
those, 1,546 (57%) were visible on the spectrograms, the others were
detected by listening) of the 2,731 broadcast calls versus 1,434 (53%)
for humans. When we look at the effect of each ARU and human indi-
vidual contribution on detection probability (Figure 3), ARUs had over-
all significantly more variable individual contribution, probably due to
their position. The high level of variation in the effect of distance and
altitude on the ARUs supports this proposition. For humans, the indi-
vidual contribution contained the information about experience, and
as expected, this did not influence their ability to hear and record a
sound. The next step is to find out if their experience affected their
ability in distinguishing the calls of each species when broadcast under
the different circumstances of the experiment (in preparation).

Overall, altitude, line of sight, and distance had a much stronger
effect on ARUs than people (Figure 4). The relative altitude between
stations and speakers varied from -21 to 30 m (Table 6). Differences
in altitude between the source of the call and the human observer/
ARU had a much stronger effect on the detection probabilities of
ARUs than human observers, with sounds broadcast from speakers at
similar altitude to ARUs having better detection probability. Distances
from speaker to stations varied from 25 to 314.4 m and affected both
ARUs and humans. The greater the distance between speaker and
ARU or human observer, the lower the detection probability (Figure 4).

There was higher degree of variation in detection probability for
humans than ARUs during the various trials (Figure 5). Generalizing,
human observers varied in their performance much more markedly
than ARUs. For both human and ARUs, the specific location or individ-
ual differences had an effect on detection. For example, all human ob-
servers had significantly lower detection probability when at station
6 (Figure 6); in trial 7 (Figure 5), one of the ARUs at station 6 (recorder

a; represented by the red line) had high detection of sounds, while the
other (recorder b; represented by the yellow line) had low detection.

Station had a major influence on the detection probability of
human observers (but not ARUs, which did not move during the ex-
periment) with human observers having significantly lower detec-
tion probability when listening at station 6, and relatively higher at
stations 1, 2, and 4 (Figure 6).

There was a bias in the ARUs detection probability of some of the
broadcast calls together with high variation in detection probability
between ARUs (Figure 7). In general, ARUs had significantly lower
detection probability for brown kiwi female (BKF) calls, and a higher
detection probability for brown kiwi male (BKM) calls (Figure 7).
Ruru calls were also less likely to be recorded by ARUs. People had
similar detection probabilities for all calls (Figure 7).

Direction of the broadcast was not expected to have a clear effect
on the detection probability; however, it demonstrated a big influence,
as illustrated in the variety of detection probabilities in Figure 8. We
could have expected some particular directions to have an effect on the
ARUs detection probability (since they are fixed in a location), but from
the figure it seems that differences between individual recorders and
people are more important than the direction of the broadcast. Note
that human observers (and ARUs, but these were stationary) were bet-
ter at hearing calls coming from specific directions. For example, human
observers 1 and 2 had difficulties hearing sounds coming from the W-

SW regardless of the station they were listening from.

4 | DISCUSSION

Overall, we found that human observers and recorders were similar
in the detection of sounds supporting some of the non-experimental
studies (Table 1), although the variables we measured affected them
differently. These differences may account for disagreements between
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studies. Human observers were relatively homogeneous in their detec-
tion probability, with very little variability between individuals; this is
despite wide differences in age and experience between human ob-
servers. In contrast, ARUs had more variability in detection probabil-
ity, with some ARUs having detection probabilities significantly higher
than any of the human observers in the study and some significantly
lower. The individual contribution of each human observer to detec-
tion probability was also less variable than that of recorders. It is pos-
sible that less homogeneity of the ARUs resulted from the fact that the
ARUs are highly susceptible to the surrounding objects in the environ-
ment, for example, different forest densities and obstacles.

Distance affected ARUs detection probability more than hu-
mans, with calls broadcast farther away generally having a lower
detection probability, as we hypothesized. ARUs have been found
to have a smaller hearing radius than humans do (Yip, Leston, Bayne,
Solymos, & Grover, 2017), and this probably explains the greater ef-
fect of distance on ARUs found in this study. Other differences and
inconsistencies in this relationship are probably due to (a) the loca-
tion of the station in relation to the speaker as is suggested by the
strong influence of station on human observers’ detection probabil-
ity; (b) the exact location of the ARU, as ARUs in the same area but
a small distance apart had significantly different detection probabili-
ties; and (c) human's directional filtering ability, which allows them to
move their head in the direction of the sound.

To our knowledge, no other study has examined the effect of
relative altitude between bird and recorder, and within the land-
scape (valley vs. hilltop) in the detection probability of humans
and ARUs. In New Zealand, this is of special importance, as survey
stations aimed at detecting kiwi are located at hilltops, assuming
that this improves detection. Our results suggest that generally
speaking, birds calling from hillsides and those relatively higher or
lower from recording sites are less likely to be detected by ARUs,
and to a lesser extent by human observers, than those at a similar
altitude to listening stations. ARUs had better detection proba-
bility if broadcast was line of sight of the location of the ARU.
These differences between ARUs and humans are probably due
to the immobility of the ARUs and human's directional filtering
ability. As well as being able to move their heads, humans locate
sound sources (above, below, front, and back) using different stim-
ulus cues, such as interaural level difference, interaural time dif-
ference, and spectral cues, something ARUS cannot do. Humans
were strongly affected by Trial, but this seems to be the result
of the strong influence of station 6 on human observers’ detec-
tion probability. Station 6 was located in a deep valley close to
a small stream. Both humans and ARUs had difficulties detecting
calls from this station. The sound of the stream was not enough to
prevent ARUs and humans from recording the broadcast calls, so
the depth of the valley was probably the feature that prevented
sound reaching ARUs/humans. Overall, we conclude that listening
stations would have better detection probability if located like sta-
tion 4, in a hill overlooking and central to an area to be surveyed.

ARUs exhibited a recording frequency bias: Relatively lower fre-
quency female brown kiwi and ruru trill and weow calls had lower

detection probabilities. Yip et al. (2017) also found differences between
the frequencies recorders detected when comparing a range of ARUs;
some recorders were more attuned to higher frequencies and vice versa.
These authors argue that differences in detectability due to sound's fre-
quencies will affect the distance at which recorders can detect sounds
and of course comparability between human and ARU surveys. Our re-
sults support these conclusions and indicate that any calibrations will
have to be not only ARU brand specific but also consider individual
ARUs. Further, differences between ARUs at the same stations sug-
gest that the exact location of the device is important in terms of what
they can record, and that consideration should be given to this when
selecting the recorder location and also having more than one device
per listening station or more than one microphone per ARU. While some
commercially available ARUs have two microphones, many have a single
omnidirectional microphone. Having more than one microphone could
also be used to enable the estimation of location/direction of the sounds
by the ARUs, one of the most important criticisms of ARUs (Table 1).

In this experiment, we measured the overall detection probability,
the individual contribution of each human observer and ARU to detec-
tion probability, and compared the effect of distance, relative altitude,
location, species call, and trial on the detection probability of ARUs and
humans. We found that human detection probability is more uniform
between observers (despite big differences in age and experience of
observers) than ARUs', but ARUs can have higher detection probabili-
ties if positioned properly. The variables measured acted differently on
ARUs and human observers. We think that the next step is to measure
the effect of these variables on human identification capability as well
as their effect on the data quality of ARUs, particular with respect to
precise location of ARUs. This information is needed to understand
human errors in surveys as well as to allow proper calibration between
human surveys and ARU surveys, and to inform software production

for the automatic identification of species.
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APPENDIX 2
Survey sheet completed by human observers in the Rawhiti
Experiment to give an indication of their level of expertise.

Experimental site:

Observer'sname: _______________

Expertise (circle one answer) knows:

1. Most New Zealand species song well

2. Most forest birds’ song including rare species, i.e., kiwi hihi, tieke

3. A variety of common species song, i.e., riroriro, fantail, silvereye,
tui, ruru

4. Only common species
Have you participated in?

1. 5SMBC—number of years

2. Kiwi call surveys—number of years

3. Other types of birds surveys—number of years



