
sensors

Article

mIoT: Metamorphic IoT Platform for On-Demand
Hardware Replacement in Large-Scaled
IoT Applications

Dongkyu Lee 1 , Hyeongyun Moon 1, Sejong Oh 2 and Daejin Park 1,*
1 School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea;

dklee1215@knu.ac.kr (D.L.); moonhg1209@gmail.com (H.M.)
2 Nvidia Corporation, Santa Clara, CA 95051, USA; Sejongo@nvidia.com
* Correspondence: boltanut@knu.ac.kr; Tel.: +82-53-950-5548

Received: 19 May 2020; Accepted: 10 June 2020; Published: 12 June 2020
����������
�������

Abstract: As the Internet of Things (IoT) is becoming more pervasive in our daily lives, the number of
devices that connect to IoT edges and data generated at the edges are rapidly increasing. On account
of the bottlenecks in servers, due to the increase in data, as well as security and privacy issues,
the IoT paradigm has shifted from cloud computing to edge computing. Pursuant to this trend,
embedded devices require complex computation capabilities. However, due to various constraints,
edge devices cannot equip enough hardware to process data, so the flexibility of operation is
reduced, because of the limitations of fixed hardware functions, relative to cloud computing.
Recently, as application fields and collected data types diversify, and, in particular, applications
requiring complex computation such as artificial intelligence (AI) and signal processing are applied
to edges, flexible processing and computation capabilities based on hardware acceleration are
required. In this paper, to meet these needs, we propose a new IoT platform, called a metamorphic
IoT (mIoT) platform, which can various hardware acceleration with limited hardware platform
resources, through on-demand transmission and reconfiguration of required hardware at edges
instead of via transference of sensing data to a server. The proposed platform reconfigures the edge’s
hardware with minimal overhead, based on a probabilistic value, known as callability. The mIoT
consists of reconfigurable edge devices based on RISC-V architecture and a server that manages
the reconfiguration of edge devices based on callability. Through various experimental results,
we confirmed that the callability-based mIoT platform can provide the hardware required by
the edge device in real time. In addition, by performing various functions with small hardware,
power consumption, which is a major constraint of IoT, can be reduced.

Keywords: fault safe; reconfigurable hardware; RISC-V; Internet of Things (IoT); edge computing

1. Introduction

Internet of Things (IoT) devices are connected electronic devices, vehicles, buildings, and various
social infrastructures that communicate with each other and process data in real time. As IoT becomes
more popular, the number of connected devices and sensors (we call these “edges”) are sharply
increasing, and data are also overflowing from these devices [1,2]. The types of devices are growing
more varied and computations to process the data are becoming complicated, according to diverse
applications in industry fields [3–5]. Thus, the complexity of IoT systems has increased.

Traditionally, these various edge devices have performed such operations as sensing data,
controlling target systems and environments, and communicating with servers of IoT systems. Recently,
edge devices have come to require the ability to process sensed data [1,6]. However, the edge

Sensors 2020, 20, 3337; doi:10.3390/s20123337 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1318-6276
https://orcid.org/0000-0002-5560-873X
http://dx.doi.org/10.3390/s20123337
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/12/3337?type=check_update&version=2


Sensors 2020, 20, 3337 2 of 22

environment cannot provide sufficient computing power, due to constraints of the edge environment,
such as insufficient power supply, unstable operating environments, and insufficient memory size:
the edge environment is also demanding in terms of maintenance, involving frequent device changes,
firmware updates, and physical access difficulties [7–9].

Cloud computing is proposed to resolve the slow performance of the edge, which derives
from various constraints [10]. Cloud computing can process various data successfully and
flexibly using the powerful hardware resources of a server. However, servers used in cloud
computing have two constraints: network bandwidth and server workload. As shown in Figure 1,
the more devices are connected and the more data is transmitted to the cloud server, the slower
the service processing speed due to these constraints, so real-time processing cannot be guaranteed.
Recently, with the development of wireless communication, represented by 5G and Bluetooth,
and wired communication, represented by optical fiber, the speed of the network has been increased,
and the network bottleneck has been significantly reduced. On the other hand, the workload problem
due to the limitation of the resources for a server is getting serious. In addition, the entire IoT system
is dependent on the network, making it vulnerable to network errors that can cause the entire system
to go offlnie [9,11,12].

(a) Bottlenecks in cloud computing (b) Solution using edge computing

Figure 1. Cloud platform’s bottleneck issues.

To reduce network dependency, edge computing, which processes data at a local computer,
was introduced. Edge computing processes data on the computer around the edge device,
resulting in low network dependency and the ability to use additional hardware accelerators to
expedite data processing. However, IoT systems operating in poor environments and small-scale IoT
systems cannot use local computers, so certain edge platforms require systems that can process data
on their own, such as MCU (Micro Controller Unit)-based platforms. These MCU-based devices
use hardware accelerators, which quickly perform complex tasks but have limited work to do,
to compensate for the slow processing speed. IoT edge devices require a stable edge system with
a flexible hardware accelerator that can perform various services required in various environments
in a small hardware space.

Recently released FPGAs (Field Programmable Gate Arrays) are better suited for edge computing,
which requires faster processing speeds and flexible accelerators, with small, low-power, low-cost
features. The ASIC-FPGA (Application-Specific Integrated Circuit-Field Programmable Gate Arrays)
co-design architecture was proposed to take advantage of the small size and low-power characteristics
of the ASIC (Application-Specific Integrated Circuit) and the flexibility of the FPGA [13–15].
The functional hardware blocks are partitioned into the ASIC and the FPGA; the entire software
application is operated and controlled at the ASIC, and the device-specific hardware is configured at
the FPGA. Although FPGAs offer some flexibility, they are difficult to apply to IoT devices because they
require physical access for reprogramming. Storing the synthesized hardware module in the device’s



Sensors 2020, 20, 3337 3 of 22

memory allows reprogramming without physical access, but it increases the memory size in a way that
also increases the power consumption. Due to the limited memory size, it is not possible to prepare
a large number of hardware modules, which makes it impossible to guarantee high flexibility.

Hardware-as-a-service (HaaS), which shares hardware in the cloud, has been studied to increase
flexibility for hardware at the IoT device [16]. HaaS is a system that allows remote hardware devices
distributed in various regions to be easily accessed through cloud middleware. Using HaaS, the edge
device does not require additional hardware for accelerator, providing unlimited kinds of hardware
services. However, to use remote hardware, data to be processed must be transmitted through
the cloud middleware as in the operation of cloud computing. It makes the response speed of
the system dependent on network latency. Also, because the hardware is attached to other devices,
only general hardware, not edge-specific hardware, can be used.

This paper extended from our previous work. Our first research represented our initial concept
as a reconfigurable fault-safe processor platform [17]. Our second approach related to on-demand
software replacement represents the possibility for real-time on-demand hardware execution [18].
In this paper, by integrating two approaches, we propose the metamorphic IoT (mIoT) platform,
based on the flexible operation of cloud computing, with the powerful operation using hardware
accelerators and real-time processing through the network independence of edge computing, as shown
in Figure 2. Unlike previous research that sent data to be processed at the server, mIoT platform
receives a hardware configuration to accelerate data processing from the server. By generating
the hardware bitstream using the configuration parameter of the edge, the edge device can use
edge-specific hardware. The method of transmitting the necessary hardware accelerators allows
the edge device to enhance processing speed without network dependencies and gives the hardware
the flexibility to cope with many situations. In addition, since the functions of various hardware can be
executed in a small reconfigurable region, the overall chip size can be reduced, resulting in a significant
reduction in power consumption. When reconfiguring the hardware, only a part of the FPGA is
reconfigured, so the hardware reconfiguration and the program execution are processed simultaneously.
The callability-based hardware prediction system minimizes time overhead by pre-reconfiguring
the next required hardware, according to the program execution flow. Therefore, mIoT can rapidly
process various data by reconstructing, in real time, diverse hardware functions, required in different
environments on edge devices with limited hardware size.

IoT Network

FPGA

Code-level
BIT-level

Cache-level
M

ain
 se

rv
er

Ed
ge

 se
rv

er
Ed

ge
 de

vic
e

Re
co

nf
igu

ra
tio

n

Request

Predict & 
Synthesize

Figure 2. mIoT’s overall structure.



Sensors 2020, 20, 3337 4 of 22

2. Background

2.1. Dynamic Partial Reconfiguration

ASIC is a custom-designed integrated circuit chip, so its chip area is small, and the program
execution speed is fast, resulting in low power consumption. However, once manufactured,
ASIC cannot be changed, so it can only be used for single purpose. Recent IoT environments require
a lot of functions. To accelerate all the functions with ASIC, the chip size and power consumption are
increased, due to the hardware size of each function. We used a FPGA to provide various functions
required by the IoT environment. The FPGA, which consists of reconfigurable gates, allows the
user to reconstruct the circuit design by changing the connection of the gates using a hardware
configuration tool.

The program consists of the functions that are constantly used and functions that are used
at specific events. The edge must always have the hardware that accelerates the constantly used
functions; other hardware is only needed during execution. Reconfiguring the entire FPGA consumes
significant energy and time. To reduce unnecessary energy consumption and reconstruction time,
we adopted partial reconfiguration technology that reconstructs only the part of the circuit at the FPGA.
Dynamic partial reconfiguration (DPR) has also been developed, which can reconfigure in real time
without the FPGA tool of the host computer [19,20].

Figure 3 shows the blocks configured in the existing FPGA and FPGA using DPR. The FPGA
using DPR consists of a static region with fixed blocks and a dynamic region that can be reconfigured.
To construct a conventional FPGA, a bitstream for the entire circuit is generated. However,
using DPR, several bitstreams are created with a static module (SM), implemented at the static region,
and a reconfigurable module (RM), implemented at the dynamic region. The bitstreams of each RM
are implemented in the dynamic region according to the signal of the partial reconfiguration controller.
Even if the RM is reconfigured, the SM in the static region is neither initialized nor stopped from
executing. The DPR supports a variety of functions by reconfiguring the dynamic region as needed,
but it does not use much area, so the required FPGA size is small. Due to the small size of the added
FPGA, the area of the chip and the number of gates are reduced, thereby reducing power consumption.
In addition, DPR provides flexibility in the selection of algorithms and protocols, because real-time
circuit reconfiguration is enabled by configuring only a portion of the circuit.

Static block 1

Static block 2

Reconfigurable section

Static block 3Static block 3Dynamic block 1

Static block 1

Static block 2

Dynamic block 1

Dynamic block 2

Dynamic block 3

(a) Existing FPGA (b) FPGA using DPR

Figure 3. Blocks configured in existing FPGA and FPGA using dynamic partial reconfiguration (DPR).



Sensors 2020, 20, 3337 5 of 22

2.2. RISC-V Processor Design Based on Chisel

IoT devices with various constraints operate in a variety of application fields. To achieve optimal
performance in each environment, the device must be designed for each field. Designing the hardware
with a general hardware description language makes it harder to modify the design. As such,
IoT devices with a universal design currently operate inefficiently in various environments. To solve
this problem, we adopted building hardware in a constructing hardware in Scala-embedded
language (Chisel) and RISC-V architecture in this paper [21]. Chisel is an open-source hardware
construction language developed at UC Berkeley, which supports advanced hardware design,
using highly parameterized generators and layered domain-specific hardware language. RISC-V is
an open-source instruction set architecture (ISA) based on the reduced instruction set computing
principles. Using Chisel to design hardware by parameterizing the constructs, we can efficiently
configure the hardware to be optimized for a specific application, as shown in Figure 4.

Parameterize Custom RISC-V
Compile

Dcache: 4kB ➔

Core: tiny_core➔

UART: true ➔

Figure 4. Processor design through hardware block parameterization using Chisel.

2.3. Metamorphic IoT (mIoT) Platform

As IoT technology gradually develops, many functions are required at the edge and the functions
of each given device must be managed continuously. At the general edge device, the processing unit
is designed as an ASIC, and it performs simple operations and controls. When the edge demands to
execute complex processing, the edge requests processing at the cloud computing server. As more and
more devices are connected to the IoT system, requests to the server cause a bottleneck phenomenon
in executing the functions, making it difficult to guarantee real-time performance. It seems like
an attractive approach to adopt edge computing that affords the edge data processing capability to
resolving this problem. However, due to the rapid development of IoT technology, the functions inside
the edge also change quickly. Thus, the edge devices must insert only general-purpose hardware or
replace the hardware at a short cycle to support the latest functions. Old devices that are not constantly
maintained can become zombie devices, affecting the entire system. In this paper, we propose a mIoT
platform to support and manage the amount of functions easily.

The “metamorphic” of mIoT refers to the fact that the internal structure and form change according
to the external environments. The proposed mIoT is reconstructed with appropriate hardware,
according to the external environments in which the device operates and the state of the embedded
software. The mIoT consists of edge devices that execute applications and a server platform that
manages and reconfigures the edge devices efficiently. The edge device relies on an ASIC-FPGA
co-design architecture, which reconfigures hardware by receiving function blocks in real time from
the server, according to the surrounding environment and the state of embedded software. The server
uses a callability-based bitstream caching algorithm (BCA) to reduce the hardware reconfiguration
overhead of the edge. We adopted the concept of callability from spatial locality, a characteristics



Sensors 2020, 20, 3337 6 of 22

of cache behavior in a typical processor, as shown in Figure 5. Spatial locality refers to the fact that
if a particular memory space is referenced at a specific time, then the nearby memory space tends to
be referenced in the near future. Dynamic region of mIoT is reconstructed with the RM determined
by the operation of the processor, which is changed by the embedded application. As the application
operates according to the control flow of the program, it is possible to predict that the function has
the highest callability after a function is executed. Similarly, the RM can statistically predict the module
to be called next according to the control flow. In this context, callability refers to the probability of
which module may be called after the current operation. In this paper, we propose an ASIC-FPGA
co-designed system that provides better flexibility to process data in various environments than
a general processor and an accelerator system. It can reduce the program execution bottleneck
on the server and the communication overhead in the IoT system.

(a) Locality in cache

L2 Cache

Core

L1

Core

L1

Memory
(b) Callability in mIoT

L1

L2

Code 
storage

Bitstream 
storage

Figure 5. Similarity between callability and locality.

3. Proposed Architecture

3.1. mIoT Edge Device

Figure 6 shows the structure of the edge device in the proposed mIoT platform. The edge device
is a co-design architecture that consists of an ASIC that acts as a processor, an FPGA that acts as
an accelerator, and an external flash memory that stores embedded applications. The ASIC is a RISC-V
architecture-based processor. The FPGA is divided into a dynamic region and a static region by
applying the DPR, so it reconfigures the dynamic region by requesting in real time at the server,
according to the operation of the application.

RISC-V
processor

int main() {
~~~

loop {

}
}

A
B

CD

E

RMs

Static module
(SM)

Partial 
bitstream
(RM_B.v)

0101110110
1010000001
1001011101
0111011001
1000110110
1101110000
0000010100Flash load

request RM_B

Control

Figure 6. mIoT edge device structure.

As mentioned above, ASIC is good, in terms of operating speed, power consumption and area,
but it cannot be modified once it is manufactured. To accelerate the program while maintaining
the advantages of the ASIC, it is important to separate the SM part from the RM part. In this case,



Sensors 2020, 20, 3337 7 of 22

study, the metamorphic fault monitor implemented on the FPGA observes the RISC-V processor
implemented on the ASIC. To observe various points of the ASIC processor, the metamorphic fault
monitor was reconfigured in real time. In this paper, we adopted the Freedom E300 platform, which is
an open-source hardware based on RISC-V architecture and managed by SiFive, as an ASIC processor.
The Freedom chip platform is designed using Chisel. Chisel parameterizes each hardware component
and compiles each module into Verilog description language. The criteria for adopting the processor
of the mIoT platform are as follows.

3.1.1. Easy to Re-Design

As the IoT trend changes, hardware must be changed for devices optimized for various
environments and operations. If the processor is designed only for a specific operation,
power consumption increases, due to unnecessary hardware modules required when operating
in different environments. Chisel makes it easy to modify the entire design to generate efficient
hardware for various environments by objectifying the hardware with high-level descriptions and
parameterizing the specifications of the hardware modules.

3.1.2. Ownership of Design

Even if the processor is modified as required by the designer, it cannot claim to own the design.
Such companies as SiFive (Freedom), Cadence (Tensilica), and Synopsys (ARC) have their architecture
and they commercialize platforms that can create hardware designs based on their respective
architecture. However, this method can only use the hardware provided by the company, but cannot be
customized by the user. For copyright reasons, we used the RISC-V architecture of the open-source ISA.

3.1.3. SW/HW Integrated Platform

To create a program that can be executed on a custom processor, we required processor-specific
software build tools, such as a compiler, a linker, and a locater. The Freedom platform makes it easy
to create hardware-optimized software, because it builds the processor-optimized build tools when
building the processor.

3.2. mIoT Server

The mIoT platform has the advantage of being able to reconfigure the edge device in real time
upon request. However, to guarantee real-time program execution at the edge, it is necessary to
manage the time required for hardware reconfiguration. Therefore, the mIoT server must be managed
to minimize the overhead of transmitting and reconfiguring hardware required for multiple edges.

Figure 7 shows the overall operation of mIoT platform. The mIoT server consists of edge
servers that connect a group of IoT devices and the main server that connects edge servers. The task
allocator receives the reconfiguration requests, sent by the IoT device, and assigns it to the queue of
each reconfiguration processing engine (RPE). The RPE consists of a Vivado programming engine
that can implement hardware into the edge’s FPGA, a BCA unit that manages the hardware to be
reconstructed using callability-based prediction, and a decoder that interprets the request. While the
embedded program is running, the edge’s hardware is pre-programmed based on callability. When the
pre-programmed hardware is hit, that is expressed by edge-hit, and the MCU of the edge can use
the accelerator directly, so the time overhead required for hardware is not required.

If the pre-programmed hardware is not hit, that is expressed by edge-miss, and the edge device
asks the edge server to reconfigure the desired hardware. The transmitted reconfiguration request
is allocated to the idle queue by the task allocator. The decoder fetches the queued request and
decodes the necessary hardware information and the identification of the edge node. The BCA uses
the decoded information to determine which hardware to reconstruct. If the bitstream of hardware
being reconfigured is in the edge server’s bit storage, as denoted by server-hit, the IoT device is
immediately reconfigured using the Vivado programming engine.



Sensors 2020, 20, 3337 8 of 22

Ed
ge

 n
et

w
or

k (
no

de
s)

Ta
sk

 al
lo

ca
to

r

Co
m

m
un

ica
tio

n 
lay

er

Vivado
synthesis

engine

Q0

Q1

Qn

Request
decoder BCA

Bit
storageVivado programmer

Server-miss

Request
decoder BCA

Bit
storageVivado programmer

Request
decoder BCA

Bit
storageVivado programmer

Callability based 
edge server

Reconfiguration processing engine (RPE)

Figure 7. mIoT server structure.

If the required bitstream is not in its storage, the edge server requests the required hardware from
the main server, and the main server synthesizes the required hardware and transmits the bitstream.
While the bitstream is implemented and executed at the edge device, the main server predicts
the hardware to be used next, based on callability, and generates bitstreams and stores them in the edge
server’s storage. In the mIoT platform, edge devices have very little space to store hardware bitstreams.
The edge server has more storage than the edge device, and the main server has more storage than
the edge server. To allow access to multiple bitstreams at the edge device with the least amount of
time overhead, the mIoT platform uses a cache replacement algorithm, least recently used.

The Algorithm 1 represents the operation of the edge server according to the operation of
the device. When the execution of RMprog is finished, the edge server programs BITnext, which is
a predicted bitstream, to RM. If the pre-programmed RMprog is not the desired hardware, the edge
server requests the desired hardware with Erecon signal. If the desired hardware, as denoted by BITreq,
is in the edge server’s storage, program the BITreq in the RM. In the absence of BITreq, the edge server
requests hardware synthesis from the main server and programs BITreq in RM. While the programmed
RMprog is running at the edge, the edge server updates BITnext and BITstored.

Bitstream generation flow is shown in the Algorithm 2. On the main server, programs that are
independent of the properties of the edge device are pre-synthesized. If the requested hardware is
in the set of pre-synthesized code, the program is transmitted to the edge server and immediately
programmed at the edge. To generate the bitstream optimized for the edge, the optimized Verilog code
is synthesized and implemented. The generated code is transmitted to the edge server, programmed at
the edge, and the main server predicts the next bitstream to be executed according to the caching
algorithm, and synthesizes it to update the BITstored of the edge server.



Sensors 2020, 20, 3337 9 of 22

Algorithm 1: Edge bitstream caching algorithm.

1 Goal : Update RMprog

2 BITreq : Partial bitstream requested from the edge
3 BITnext : Pre-programmed partial bitstream
4 BITstored : A set of bitstreams in the repository
5 Erecon : Reconfiguration event at the edge
6 RMprog : Programed RM in FPGAs
7 I : Information of the requested edge

8 if Erecon then
9 if BITreq ∈ BITstored then

10 RMprog ← BITreq

11 Predict BITnext

12 else
13 BITreq = mIoTS(BITreq, I)
14 RMprog ← BITreq

15 Update BITstored
16 Predict BITnext

17 else if RMprog finish then
18 RMprog ← BITnext

19 Predict BITnext

Algorithm 2: Generation flow of partial bitstream

1 Goal : Generate and transmit BITreq

2 BITreq : Partial bitstream requested from the edge
3 BITpre−gen : A set of pre-generated bitstreams
4 I : Information of the requested edge

5 % mIoTS(BITreq, I)
6 if BITreq ∈ BITpre−gen then
7 Transmit BITreq

8 else
9 Read the parameter table to generate Verilog

10 Select the skeleton code
11 Generate the Verilog code with I
12 Synthesize the hardware
13 Generate and transmit BITreq

14 Update BITpre−gen

Figure 8 shows the overall execution scenario of each case that can occur in the proposed mIoT
platform. Figure 8a shows an example of callability from the perspective of tasks requiring hardware
reconfiguration. When task B is executed, the callability of tasks D, E, and F being called are 75%, 5%,
and 20%, respectively. After task D is called, the callability that task I and J will be selected next to task
H are 95% and 5%, respectively. Each path has a different callability. Figure 8b shows the operation
scenarios of the server, according to given example.

Case A shows the example of edge-hit with pre-programmed hardware based on callability.
When the application starts to execute, the RM A stored on the edge server is reconfigured on the FPGA.
The edge server requests and generates the RM D with the highest callability from the main



Sensors 2020, 20, 3337 10 of 22

server. When task A ends, the edge server pre-programs the prepared RM D into the FPGA.
If the processor calls pre-programmed task D after task B, an edge-hit occurs and the edge device
executes the application without time overhead due to reconfiguration.

E_P : Processor in edge
E_F : FPGA in edge
S_A : Communication task in server
S_B : Pre-generate the bitstream in server
S_C : Reconfiguration task in server

A

B C

D E F G

K

JI

H
75% 5% 20%

A

D E F

JI

H

95% 5%

A

D E F

JI

H

80% 20%

A

D E F

JI

H

10% 90%

A

A B

D

D

D H

I

I

I

I

E_P

E_F

S_A

S_B

S_C DA

Edge-hit Edge-hit

A

A B

D

F

F

J

E_P

E_F

S_A

S_B

S_C FA

Edge-miss, Server-hit

D

D

pause

A

A B

D

F

F

F

E_P

E_F

S_A

S_B

S_C FA

Edge-miss, Server-miss

D

D

J

pause

< case A >

< case B > < case C >

case A : Edge hit

case B : Edge miss, 
Server hit

case C : Edge miss, 
Server miss

(a)

(b) No pause

Figure 8. Case-by-case operating scenario of the proposed server system with a single RM.
(a) Callability scenario from task perspective. (b) System operation flow by case.

In case B, edge-miss occurs because the pre-programmed RM D does not match, but server-hit
occurs because the requested RM F exists in the storage of the edge server. If edge-miss occurs after
task B is finished, the edge server searches the requested hardware at the storage and the FPGA is
immediately reconfigured. In case of server-hit, the processor pauses due to the time overhead of
partially reconfiguring the FPGA during application execution.

In case C, the bitstream that was previously generated by the edge server was also not hit,
as expressed by server-miss. When server-miss occurs, the edge server requests hardware generation
from the main server and receives it to reconfigure the FPGA. The main server generates bitstreams by
synthesizing and implementing Verilog code. Then the processor takes a long overhead, because the
requested hardware must be generated from Verilog code and wait to be reconfigured in the FPGA.
After the FPGA is reconfigured, the edge server and main server update the bitstream set in the storage,
according to the callability.

The mIoT server can perform synthesis and reconfiguration in parallel, in response to multiple
requests. The bandwidth of tasks that can be executed in parallel depends on the server’s specification.
If the number of requests exceeds the bandwidth, each request is managed by the task queue.
Also, as shown in Equation (1), the server-miss reconfiguration overhead occurs for each device
at the beginning of the operation, and consequently, the reconfiguration overhead converges to
the edge-miss overhead. The edge-miss frequency can be reduced if the edge-hit frequency is increased
which requires increasing the observation depth for determining callability. By combining the above
operations, it is possible to ensure real-time performance by reducing the overhead required to
reconfigure edge devices and effectively manage multiple IoT edge devices.



Sensors 2020, 20, 3337 11 of 22

TAVR = lim
n→∞

TServer−MISS + nTEdge−MISS

n
= TEdge−MISS (1)

where:
n = Number of executions
TAVR = Average overhead for reconfiguration
TServer−MISS = Reconfiguration overhead according to server-miss
TEdge−MISS = Reconfiguration overhead according to edge-miss

4. Case Study

4.1. Signal Processing (AI, DSP)

The first application that can apply mIoT is signal processing, such as artificial intelligence (AI)
and digital signal processing (DSP). In signal processing, there are many operations to process the data
that are received from the server, and to process such complex instructions as matrix multiplication
and fast Fourier transform (FFT); the edge’s data are mainly transmitted to the cloud server for
processing. However, the edge must be able to handle complex operations according to the demands of
distributed processing such as edge computing. According to this trend, the edge addresses its lack of
computational power by using a hardware accelerator, but it is not sufficient to perform all necessary
operations at the edge. In addition, the accelerator of the edge has a fixed function and cannot be
changed when it is designed as an ASIC; when it is designed as an FPGA, it is difficult to guarantee
real-time performance, due to the overhead involved with reconfiguring the hardware. The mIoT
predicts the next accelerator based on callability, and partially reconstructs the hardware in the FPGA.
An edge device with mIoT can accelerate various functions in real time as if it has multiple accelerators
and a small network dependency, compared to cloud computing.

4.2. Fault Monitoring

The second application that can apply mIoT is fault monitoring in IoT. IoT devices perform
a variety of tasks in unsuitable environments and are exposed to many risks [22]. In addition, given
the generalization of IoT, connected devices are rapidly increasing and connectivity is complicated,
so the time in which a fault occurring in one node propagates to the entire system is accelerated.
Therefore, it is important that each IoT device maintains stability [23,24]. To maintain the stability of
the edge, a redundancy circuit is added at the critical part of the device; alternatively, the monitoring
circuit watches periodically. The critical part is changed according to the surrounding environment
and operation of the IoT device, so the monitoring object should be continuously changed to enhance
stability. The existing fault tolerance circuit, made of ASIC, cannot change its hardware function, so it
uses software to monitor flexibly. The monitoring software is executed by the processor, which affects
the operation speed of the main application and cannot detect faults that occur below the clock level.
Fault monitoring using mIoT increases the stability of the IoT system, because the monitoring object
can be changed by reconfiguring a part of the hardware, according to the operation of the device.

5. Implementation

Metamorphic Fault-Safe Processor (mFSP)

IoT devices that construct a large-scale IoT system have heterogeneous characteristics and are
irregularly connected, which means that a malfunction in a single edge can affect the entire system.
Moreover, IoT devices are exposed to various risks in a variety of environments, resulting in less
stability. Technology research to maintain IoT has been conducted in many fields; for example,
such research mainly uses techniques that compare processing results, using the duplicate and



Sensors 2020, 20, 3337 12 of 22

comparison technique for critical areas of hardware, and add redundancy circuits through voting
techniques that maintain reliability [25–27]. In addition to the technology that uses hardware,
the technology that uses software has developed as well. However, hardware technologies require
an area cost, due to additional redundancy circuits, and software technologies cannot find clock-level
faults. As shown in Figure 9, the normal fault monitor can only see pre-specified points, so it cannot
find numerous faults of the edge occurring in various environments. To increase the stability of
the device under these constraints, it is necessary to be able to flexibly detect various points, at a small
additional area cost, using a metamorphic monitor.

Fault monitor System 
is safe!

RISC-V processor

Normal
monitor

Fault monitor

Reconfigurable bitstream

Fault is 
detected!

RISC-V processorMetamorphic
monitor

Figure 9. The need for metamorphic monitoring.

In this paper, we present the metamorphic fault-safe processor (mFSP) platform
(Hynix/Magnachip, Icheon, South Korea) as a case study of the mIoT platform. We designed a chip
optimized for each IoT edge with a Chisel-based RISC-V processor. The proposed FPGA prototype was
implemented and verified on the ASIC chip. The ASIC was implemented with a Hynix/Magnachip
350 nm complementary metal-oxide semiconductor (CMOS) process. The chip layout is shown
in Figure 10: the die size is 5 mm × 4 mm; the operating frequency is 25 MHz; and the number of logic
gates excluding memory is about 110,000.

(a) mFSP‘s layout (b) mFSP‘s die (5mm x 4mm)

Figure 10. mFSP layout.

Figure 11 shows the structure of mFSP based on Freedom E300 platform, managed by SiFive
with RV32IMAC ISA, 4KiB instruction cache, and 4KiB tightly integrated data memory. The mFSP
structure includes UART hardware blocks for external communication and a controller for quad
serial peripheral interface (SPI) flash, called code memory. It also consists of a mask ROM to execute
the boot sequence, a power management unit (PMU), a joint test action group (JTAG) debug module
to debug the operation and upload software, and a monitoring circuit controller to select signals from



Sensors 2020, 20, 3337 13 of 22

the processor and export the selected signals outside the processor. The user can debug the processor
and download the software to the SPI-flash memory using GNU debugger (GDB) and openOCD.

sk_i2c.c
sk_spi.c

sk_uart.c
sk_data.c

sk_pc.c

i2c_A i2c_B i2c_C
spi_C spi_D
uart_A uart_B uart_C
uart_D
data_A data_B pc_A
pc_B pc_C pc_D

Parameters Skeleton code

N(parameters) = N(RM type)

pc_n.v i2c_n.v data_n.v

4KiB data RAM

4KiB ICache

Core

MaskROM

UART

SPI-Flash controller

PMU

ALU
MUL / DIV

BPU
IBUF

JTAG debug module

Quad 
SPI 

flash

Data bus

Host 
PC

GDB

Op
en

OC
D

TileLink bus protocol

Monitoring 
circuit 

controller 

Program counter

Instruction bus

RMs

Static logic

On-
board

FPGA

RM controller

Figure 11. mFSP’s structure.

The FPGA consists of a static area and a reconfigurable area. The Verilog code, which is created
by combining application-specific parameters and skeleton code on the server, is implemented
in the reconfigurable area of the FPGA at the request of the processor. The mFSP reconfigures
circuits that monitor different sections in real time to flexibly change critical sections, according to
the operation of the processor, to maintain the stability of the device and the entire system. In addition,
only parts necessary for program execution are used, because the hardware reconfiguration requires
that the power consumption be reduced to execute the program, as shown in Figure 12.

P

P

PP

P

: Static logic
: Reconfigurable logic
: power consumption

FSP’s 
operation 

state

S0

S1

S2S3

S4

Figure 12. Power consumption optimization through real-time reconfiguration.

6. Experiment

To verify the mIoT platform proposed in this paper, we combined the RISC-V processor
implemented by a Hynix/Magnachip 350nm process and the Xilinx Arty-7 35T FPGA (AVNET,
Tokyo, Japan), which can be partially reconfigured in real time to construct the mFSP edge device
presented in the case study. As shown in Figure 13, The main server and the edge server for managing
the reconfiguration of the edge device were constructed by the Windows Vivado environment. In the
proposed platform architecture, the edge device and the server are connected wirelessly to manage
the reconfiguration operation. Several studies have been published on wireless configuration of
FPGA [28,29]; therefore, in the actual commercialization stage, we adopted the wireless configuration
proposed in other studies and used JTAG configuration in this experiment.



Sensors 2020, 20, 3337 14 of 22

Edge server

Edge device

Main server

RISC-V 
processor

FPGA

Figure 13. Experiment environment.

The control flow of the software application to determine the operation of the processor is shown
in Figure 14. The white circles in the figure are function blocks that operate software without the help of
hardware, and the gray circles are function blocks that require additional hardware operation. When a
gray block is executed, the processor requests the hardware to reconfigure the FPGA to the server,
and the processor waits until the requested hardware is implemented. Each block that requires
hardware has a certain level of callability, and caching operations for efficient hardware reconfiguration
operate based on this callability. We designed the monitoring application to observe various parts of
the FSP and presented difficult cases, in which hardware is called excessively, and enough cases that
require one hardware call per execution.

1

2 3

4

5 6

7

9 A8

T

B C D E F G

H I J K

L M N O P Q

R S

0
: Function requiring reconfiguration

1

2 3

4

5 6

7

9 A8

T

B C D E F G

H I J K

L M N O P Q

R S

0

(a) Application’s control flow, hard case (b) Application’s control flow, enough case

Figure 14. Application’s control flow.

The callability of the application used in the experiment was determined by repeating an execution
1000 times, and the result is shown in Figure 15. The blocks that need hardware reconfiguration are B,
C, E, F, G, L, M, N, P, and Q, and block 5 and 6 affect the callability of blocks that require hardware
reconfiguration. Figure 15a shows the callability with an observation depth of 1, in which past execution
does not affect current execution. Figure 15b shows the callability of a case with an observation depth of
2, in which only the immediately preceding execution affects the current execution. Finally, Figure 15c



Sensors 2020, 20, 3337 15 of 22

shows the callability with an observation depth of 3, observing up to two previous stages. Based on
the callability shown in the above table, the BCA predicts the next hardware.

Depth 1
Function

Callability
Stage 1 

B 0.43
C 0.03
E 0.17
F 0.22
G 0.14
L 0.05
M 0.3
N 0.65
P 0.69
Q 0.31

Depth 2
Function

Callability
Stage 1 Stage 2

5 B 0.53
C 0
E 0.14
F 0.18
G 0.10

6 B 0.27
C 0.06
E 0.18
F 0.22
G 0.16

B L 0
M 0.3
N 0.7

Depth 2
Function

Callability
Stage 1 Stage 2

C L 0.67
M 0.33
N 0

E P 0.44
Q 0.56

F P 0.85
Q 0.15

G P 0.77
Q 0.23

(a) (b)

Depth 3
Function

Callability
Stage 1 Stage 2 Stage 3

5 B L 0
M 0.37
N 0.63

C L 0
M 0
N 0

E P 1.00
Q 0

F P 1.00
Q 0

G P 1.00
Q 0

Depth 3
Function

Callability
Stage 1 Stage 2 Stage 3

6 B L 0
M 0.15
N 0.85

C L 0.67
M 0.33
N 0

E P 0
Q 1.00

F P 0.73
Q 0.27

G P 0.63
Q 0.38

(c)

Figure 15. Callability extracted through iterative execution.

As shown in Figure 16a, the average time required for hardware reconfiguration after edge-miss is
6.5 s. However, the actual time used to reconstruct the hardware is C, which is, on average, about 0.8 s.
A and B represent the time required to start the platform, so these can be ignored in the context of long
program execution. When server-miss occurs, as shown in Figure 16b, the server takes, on average,
57.4 s to generate, synthesize, place, and route (PNR) the Verilog code to generate bitstream. F is a step
that consists of combining SM and RM, and if the module has previously been made, the D and E steps
that create the module are not executed.



Sensors 2020, 20, 3337 16 of 22

A: Launching Vivado (ignorable)
B: Open HW server (ignorable)
C: Reconfigure the FPGA
D: Verilog generation
E: RM synthesis
F: Linking RM and SM
G: Place and route
H: Generate partial bitstream

D E F G H
0.9s 14.9s

17.4s

34.4s 57.4s

0s

(b) Server-miss overhead 

A B C
0s 4.9s

5.7s

6.5s

(a) Edge-miss (Server-hit) overhead 

Figure 16. Overhead composition for each case.

Figure 17a shows the edge-hit ratio, according to the observation depth that determines
the callability of the platform. The edge-hit is the most important factor, because it eliminates the time
overhead involved in hardware configuration. We measured the edge-hit ratio at depths of 0, 1, 2,
and 3, according to the number of executions of the program. The meaning of callability not being
applied is that the caching algorithm arbitrarily determines the next hardware, considering only
the operation sequence. For example, after B or C is executed, the callabilities of L, M, and N are
33%. Figure 17a indicates that the higher the observation depth, the higher the edge-hit ratio that
can be obtained. Figure 17b shows the ratio of server-hit, according to the depth of observation.
The server-hit occurs when the requested hardware is in the server’s bitstream storage. When the
number of program executions is small, the server-hit ratio increases as the depth increases. However,
if the program execution continues, the server-hit ratio becomes saturated, resulting in a similar value,
regardless of depth.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

L1
-h

it
 r

a
ti

o
 (%

)

Number of executions

Without callability Depth 1 Depth 2 Depth 3

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

L2
-h

it
 r

a
ti

o
 (%

)

Number of executions

Without callability Depth 1 Depth 2 Depth 3

(a) Edge-hit ratio (b) Server-hit ratio

Ed
ge

-h
it

ra
tio

(%
)

Se
rv

er
-h

it
ra

tio
(%

)

Figure 17. Hit ratio according to number of executions and observation depth.

Figure 18 shows the edge-hit ratio, according to the applied caching algorithm and the observation
depth, as well as the time overhead when the hardware is reconstructed 18 times. This experiment was
based on the assumption that the application has been sufficiently executed, so that server-miss does
not occur. If edge caching was not applied, server-hit overhead was required for all reconfiguration
operations, thereby requiring the largest reconfiguration overhead (13.34 s). When the caching
algorithm was applied without callability, the edge-hit ratio was 16.67% and the reconfiguration
overhead was 10.64 s. With an observation depth of 1, the edge-hit ratio was 27.78% and the overhead
was 9.93 s. When the depth was 2 and 3, the edge-hit ratios were, respectively, 55.56% and 66.67%,
and the overheads were, respectively, 6.04 s and 5.12 s. Therefore, the average overhead to reconfigure
the hardware 18 times with an edge-hit ratio of 66.7% was 0.28 s.



Sensors 2020, 20, 3337 17 of 22

13.34

10.64
9.93

6.04
5.12

0

2

4

6

8

10

12

14

16

Only server
prediction

No callability Depth1 Depth2 Depth3

0

10

20

30

40

50

60

70

80

0

2

4

6

8

10

12

14

16

Ed
ge

-m
iss

 ov
er

he
ad

 (s
ec

)
Edge-hit ratio (%)

Figure 18. Overhead due to edge-miss according to the situation and edge-hit ratio.

The frequency of occurrence of edge-miss and server-miss, according to the number of executions
and the reconfiguration overhead, are shown in Figure 19: the red graph represents the instantaneous
reconfiguration overhead; the black dotted line represents the accumulated server-miss overhead; and
the solid black line represents the accumulated total overhead. The black dotted line shows that all
instances of server-miss appear at the beginning of the run and no longer occur after the generation of
all partial bitstreams. Therefore, we only must observe how frequently edge-miss occurs. We confirmed
that more edge-miss overhead is required when edge caching and callability are not applied, as per
Figure 19a, than when callability and edge caching are applied, as per Figure 19b. Also, when the
observation depth is high, we confirmed a reduction in edge-miss overhead, according to Figure 19b.

(a) Randomly caching without callability (b) Caching with callability in depth 3

Server-miss overhead

Edge-miss overhead

Server-miss

Edge-miss

Figure 19. Instantaneous and accumulative reconfiguration overhead.

We conclude that a reconfiguration overhead of approximately 0.28 s per reconfiguration is
required to achieve a 70% hit ratio, according to the results in Figure 18. However, this result can
be seen as a reasonable reconfiguration overhead at a single-device level, but it is not reasonable
for large-scale IoT systems. For example, edge-misses occur every cycle at 30% of the total nodes.
For a system with 100 nodes, reconfiguration requests of 30 nodes are sent at one time to the edge
server and the latency rapidly increases. Therefore, it is necessary to increase the hit ratio to apply
the platform to large-scale IoT systems. Some ways to increase the hit ratio are as follows: observing
more historical hardware call flows to accurately extract callability, and fetching multiple candidate RM
modules to the edge device. In the previous experiment, we confirmed that the hit ratio is proportional
to the depth of observation. In this experiment, we implemented two dynamic regions in the FPGA
with a control block to increase the edge-hit ratio, as shown in Figure 20b. Both dynamic regions are
reconstructed when edge-miss occurs. When one of the two reconstructed RMs is selected to start,



Sensors 2020, 20, 3337 18 of 22

the other region is reconstructed according to the new callability. In the structure with double RMs,
we can apply Figure 14b, which is an enough-case application, in which reconfiguration occurs once
per a single program execution cycle.

RM RM2RM1

Control

SMSM

(a) a single RM (b) double RMs

FPGA FPGA

Figure 20. Experimental cases according to the number of RMs.

Figure 21 shows the result of applying the double RM’s structure to a single device, as in previous
experiments. In this experiment, we observed a long-term view, which consists of 1000 execution cycles
after the program has been executed for a long time. As a result, the hit ratio with the single-RM case is
76%, and the hit ratio with the double-RM case is 99%. The results of a large-scale experiment, using 100
edge devices with 99% hit ratio and three RPEs, are shown in Figure 22. One device was implemented
as an actual mIoT edge device, which consists of a RISC-V processor and FPGA, and the other devices
were edge devices emulated by allocating applications in the edge server. Each device had zero to four
reconfigurations during 200 executions, and the average reconfiguration overhead time was between
0.1 and 0.35 s. The reconfiguration overhead times for a given number of RPEs and a given number
of edge devices are shown in Figure 23. The gray boxes indicate overhead results of less than 0.3 s.
The number of RPEs and the number of edge devices connected to the edge network is determined
differently, depending on the application.

(a) Long term operation flow with a single RM

Edge-hit rate: 76%

(b) Long term operation flow with double RMs

Edge-hit rate: 99%

Figure 21. Long-term executions with Figure 14 flow.



Sensors 2020, 20, 3337 19 of 22

: 0.1 ~ 0.2 (s)
: 0.2 ~ 0.25 (s)

: 0.25 ~ 0.3 (s)
: 0.3 ~ 0.35 (s)

Edge-hit rate: 99%

Figure 22. Large-scale simulation results with reconfiguration overheads.

50 100 150 200 250 300 350 400 450 500

1 0.44 2.54 4.21 6.19 7.8 9.58 11.5 13.3 15.02 16.86

2 0.13 0.63 1.71 2.9 3.77 4.83 5.84 7.04 8.1 9.16

3 0.11 0.22 0.48 1.32 1.76 2.93 3.64 4.35 5.07 5.85

4 0.09 0.13 0.26 0.63 1.12 1.72 2.32 2.95 3.43 3.94

5 0.09 0.12 0.18 0.33 0.64 1.06 1.56 2.04 2.51 3.04

6 0.09 0.1 0.14 0.21 0.36 0.65 0.99 1.41 1.77 1.72

7 0.08 0.09 0.11 0.14 0.2 0.3 0.47 0.71 0.99 1.27

8 0.08 0.08 0.1 0.12 0.15 0.21 0.3 0.43 0.66 0.89

9 0.07 0.08 0.09 0.11 0.13 0.17 0.24 0.32 0.45 0.64

(a) Reconfiguration time-overhead according to #RPEs and #nodes

#RPEs
#Nodes

(b) Reconfiguration time-overhead per a reconfiguration request table (sec)

Figure 23. Reconfiguration overheads according to the number of reconfiguration engines and nodes.

Based on the above experimental results, it was possible to confirm that the proposed platform
and the callability concept can manage the operation of each device with a reasonable reconfiguration
overhead. Also, as the callability becomes more accurate, the correct RM candidate module is
pre-programmed in the edge device, reducing the overall reconfiguration overheads of the IoT system.

7. Discussion

Real-time means that a program executing in a certain system guarantees a response
within a specific time constraint. As a result of the experiment, the time required for hardware
reconstruction using DPR is about 0.8 s, and the reconstruction overhead of mIoT using callability
is 0.28 s and 0.2 s, respectively, when using single RM and using double RM. Because the proposed
mIoT system requires some time for hardware reconfiguration, it is difficult to guarantee real-time
performance in a delay-intolerant system. This paper reduces time overhead by increasing edge-hit by
applying advanced callability algorithm and double-RM technology. This ensures real-time processing
in areas such as intelligent home IoT, health care and wearable devices that are less sensitive to delays.

The mIoT in the intelligent home IoT field can speed up the processing of the edge IoT by learning
the user’s life pattern with callability and pre-configuring the required hardware. Real-time in home
IoT is based on human interaction, so the time overhead of 0.3 s is reasonable. In health care and
wearable devices, data is pre-calculated at the edge and only necessary information is transmitted to
the server, because personal data security is important. The mIoT edge improves computation speed



Sensors 2020, 20, 3337 20 of 22

by transmitting accelerators required for data computation. In this case, overall execution time is
reduced even with the time overhead due to hardware reconfiguration.

8. Conclusions

In this paper, we proposed a metamorphic IoT platform that combines the following components
and concepts to enhance stability in the diverse IoT operation environments and the processing
capability at the edge: an ASIC-FPGA co-design-based edge device, able to provide various hardware
with limited resources, a server system to manage a large number of edge devices connected to
a network, and a callability to reconfigure edge devices with minimal time overhead. The IoT
edge device is optimized for the operating environment, based on the Chisel language and RISC-V
architecture, and the FPGA is partially reconstructed in real time, according to the operation of
the processor. The server predicts the next hardware to be used in the edge, based on the callability,
greatly reducing the time required to reconfigure the edge device. The proposed platform broadens
the range of hardware that one edge device can use, and facilitates the management and update of
reconfigurable hardware, thereby extending the operating life of a given edge device. In addition,
it processes data using hardware accelerators at the edge, so the data transfer time is less than that
of the existing platform, which makes the operation speed fast and allows for the resolution of
the bottleneck of the server. With the experiment, which used actual devices and an interworking
server, we confirmed that the overhead required for reconfiguration is reasonable and that the proposed
callability-based reconfiguration system is efficient. Using the proposed platform, we can construct
an IoT system that can guarantee flexible operation in real time in a complicated IoT environment.

This paper achieved real-time reconstruction of various accelerator in limited hardware size to
increase the processing speed and reduce power consumption of the edge device. The mIoT platform
has several security issues, such as man-in-the-middle attack and hardware Trojan, while transmitting
hardware information for reconfiguration over the network. In the future, this study will be expanded
to apply encryption for hiding bitstream from attackers.

Author Contributions: D.L. wrote entire manuscript and performed the numerical analysis; H.M. designed core
architecture and performed the software/hardware implementation; S.O. assisted the technical issues about
the code generation algorithm; D.P. devoted his role as principle investigator and the corresponding author.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2019R1A2C2005099), and Ministry
of Education (NRF-2018R1A6A1A03025109), and BK21 Plus project funded by the Ministry of Education,
Korea (21A20131600011), and the EDA tool was supported by the IC Design Education Center(IDEC), Korea.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design of
the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision
to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

MCU Micro Controller Unit
FPGA Field Programmable Gate Arrays
ASIC Application-Specific Integrated Circuit
BCA Bitstream Caching Algorithm
RPE Reconfiguration Processing Engine
UART Universal Asynchronous Receiver Transmitter



Sensors 2020, 20, 3337 21 of 22

References

1. Zhu, C.; Leung, V.C.M.; Shu, L.; Ngai, E.C. Green Internet of Things for Smart World. IEEE Access 2015,
3, 2151–2162. [CrossRef]

2. Wen, Z.; Yang, R.; Garraghan, P.; Lin, T.; Xu, J.; Rovatsos, M. Fog Orchestration for Internet of Things Services.
IEEE Internet Comput. 2017, 21, 16–24. [CrossRef]

3. Perera, C.; Liu, C.H.; Jayawardena, S.; Chen, M. A Survey on Internet of Things From Industrial Market
Perspective. IEEE Access 2014, 2, 1660–1679. [CrossRef]

4. Baker, S.B.; Xiang, W.; Atkinson, I. Internet of Things for Smart Healthcare: Technologies, Challenges, and
Opportunities. IEEE Access 2017, 5, 26521–26544. [CrossRef]

5. Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The Future of Industrial Communication: Automation Networks
in the Era of the Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [CrossRef]

6. Chernyshev, M.; Baig, Z.; Bello, O.; Zeadally, S. Internet of Things (IoT): Research, Simulators, and Testbeds.
IEEE Internet Things J. 2018, 5, 1637–1647. [CrossRef]

7. Vogler, M.; Schleicher, J.M.; Inzinger, C.; Dustdar, S. Optimizing Elastic IoT Application Deployments.
IEEE Trans. Serv. Comput. 2018, 11, 879–892. [CrossRef]

8. Liu, J.; Luo, K.; Zhou, Z.; Chen, X. ERP: Edge Resource Pooling for Data Stream Mobile Computing.
IEEE Internet Things J. 2019, 6, 4355–4368. [CrossRef]

9. Yousefpour, A.; Ishigaki, G.; Gour, R.; Jue, J.P. On Reducing IoT Service Delay via Fog Offloading.
IEEE Internet Things J. 2018, 5, 998–1010. [CrossRef]

10. Botta, A.; de Donato, W.; Persico, V.; Pescapé, A. Integration of Cloud computing and Internet of Things:
A survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [CrossRef]

11. Singh, S. Optimize cloud computations using edge computing. In Proceedings of the 2017 International Conference
on Big Data, IoT and Data Science (BID), Pune, India, 20–22 December 2017. [CrossRef]

12. Linthicum, D.S. Connecting Fog and Cloud Computing. IEEE Cloud Comput. 2017, 4, 18–20. [CrossRef]
13. Jridi, M.; Chapel, T.; Dorez, V.; Le Bougeant, G.; Le Botlan, A. SoC-Based Edge Computing Gateway

in the Context of the Internet of Multimedia Things: Experimental Platform. J. Low Power Electron. Appl.
2018, 8, 1. [CrossRef]

14. Caulfield, A.M.; Chung, E.S.; Putnam, A.; Angepat, H.; Fowers, J.; Haselman, M.; Heil, S.; Humphrey, M.;
Kaur, P.; Kim, J.; et al. A cloud-scale acceleration architecture. In Proceedings of the 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, 15–19 October 2016.
[CrossRef]

15. Rihani, M.A.; Prevotet, J.; Nouvel, F.; Mroue, M.; Mohanna, Y. ARM-FPGA based platform for automated
adaptive wireless communication systems using partial reconfiguration technique. In Proceedings of
the 2016 Conference on Design and Architectures for Signal and Image Processing (DASIP), Rennes, France,
12–14 October 2016. [CrossRef]

16. Stanik, A.; Hovestadt, M.; Kao, O. Hardware as a Service (HaaS): Physical and virtual hardware on demand.
In Proceedings of the 4th IEEE International Conference on Cloud Computing Technology and Science,
Taipei, Taiwan, 3–6 December 2012.

17. Moon, H.; Cho, J.; Park, D. Reconfigurable Fault-Safe Processor Platform Based on RISC-V for Large-Scaled
IoT-Driven Applications. In Proceedings of the 2019 IEEE International Conference on Dependable,
Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing,
International Conference on Cloud and Big Data Computing, International Conference on Cyber Science
and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, Japan, 5–8 August 2019.

18. Lee, D.; Cho, J.; Park, D. Efficient Partitioning of On-Cloud Remote Executable Code and On-Chip Software
for Complex-Connected IoT. In Proceedings of the 2019 IEEE International Conference on Big Data and
Smart Computing (BigComp), Kyoto, Japan, 27 February–2 March 2019.

19. Wang, L.; Wu, F. Dynamic Partial Reconfiguration in FPGAs. In Proccedings of the 2009 Third International
Symposium on Intelligent Information Technology Application, NanChang, China, 21–22 November 2009.
[CrossRef]

20. Vipin, K.; Fahmy, S.A. ZyCAP: Efficient Partial Reconfiguration Management on the Xilinx Zynq. IEEE Embed.
Syst. Lett. 2014, 6, 41–44. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2015.2497312
http://dx.doi.org/10.1109/MIC.2017.36
http://dx.doi.org/10.1109/ACCESS.2015.2389854
http://dx.doi.org/10.1109/ACCESS.2017.2775180
http://dx.doi.org/10.1109/MIE.2017.2649104
http://dx.doi.org/10.1109/JIOT.2017.2786639
http://dx.doi.org/10.1109/TSC.2016.2617327
http://dx.doi.org/10.1109/JIOT.2018.2882588
http://dx.doi.org/10.1109/JIOT.2017.2788802
http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1109/BID.2017.8336572
http://dx.doi.org/10.1109/MCC.2017.37
http://dx.doi.org/10.3390/jlpea8010001
http://dx.doi.org/10.1109/MICRO.2016.7783710
http://dx.doi.org/10.1109/DASIP.2016.7853806
http://dx.doi.org/10.1109/IITA.2009.334.
http://dx.doi.org/10.1109/LES.2014.2314390


Sensors 2020, 20, 3337 22 of 22

21. Bachrach, J.; Vo, H.; Richards, B.; Lee, Y.; Waterman, A.; Avižienis, R.; Wawrzynek, J.; Asanović, K.
Chisel: Constructing hardware in a Scala embedded language. In Proceedings of the 49th DAC Design
Automation Conference 2012, San Francisco, CA, USA, 3–7 June 2012. [CrossRef]

22. Esposito, C.; Castiglione, A.; Pop, F.; Choo, K.R. Challenges of Connecting Edge and Cloud Computing:
A Security and Forensic Perspective. IEEE Cloud Comput. 2017, 4, 13–17. [CrossRef]

23. Diaz, M.; Martin, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of
things and cloud computing. J. Netw. Comput. Appl. 2016, 67, 99–117. [CrossRef]

24. Roman, R.; Najera, P.; Lopez, J. Securing the Internet of Things. Computer 2011, 44, 51–58. [CrossRef]
25. Thati, V.B.; Vankeirsbilck, J.; Boydens, J. Comparative study on data error detection techniques in embedded

systems. In Proceedings of the 2016 XXV International Scientific Conference Electronics (ET), Sozopol,
Bulgaria, 12–14 September 2016. [CrossRef]

26. Ostanin, S.; Matrosova, A.; Butorina, N.; Lavrov, V. A fault-tolerant sequential circuit design for soft errors
based on fault-secure circuit. In Proceedings of the 2016 IEEE East-West Design Test Symposium (EWDTS),
Yerevan, Armenia, 14–17 October 2016. [CrossRef]

27. Veljkovi, F.; Riesgo, T.; de la Torre, E. Adaptive reconfigurable voting for enhanced reliability in medium-grained
fault tolerant architectures. In Proceedings of the 2015 NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), Montreal, QC, Canada, 15–18 June 2015. [CrossRef]

28. Adly, I.; Ragai, H.; Shehata, K.; Al-Henawy, A. Wireless Configuration Controller Design for FPGAs
in Software Defined Radios. Online J. Electron. Electr. Eng. OJEEE 2010, 2, 293–297.

29. Gao, T.; Xu, X.; Zhang, H.; Yang, H. A highly-integrated wireless configuration circuit for FPGA
chip. In Proceedings of the 2014 International Symposium on Integrated Circuits (ISIC), Singapore,
10–12 December 2014. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1109/MCC.2017.30
http://dx.doi.org/10.1016/j.jnca.2016.01.010
http://dx.doi.org/10.1109/MC.2011.291
http://dx.doi.org/10.1109/ET.2016.7753517
http://dx.doi.org/10.1109/EWDTS.2016.7807676
http://dx.doi.org/10.1109/AHS.2015.7231165
http://dx.doi.org/10.1109/ISICIR.2014.7029451
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Dynamic Partial Reconfiguration
	RISC-V Processor Design Based on Chisel
	Metamorphic IoT (mIoT) Platform

	Proposed Architecture
	mIoT Edge Device
	Easy to Re-Design
	Ownership of Design
	SW/HW Integrated Platform

	mIoT Server

	Case Study
	Signal Processing (AI, DSP)
	Fault Monitoring

	Implementation
	Experiment
	Discussion
	Conclusions
	References

