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Gastric cancer is the second most common cause of cancer-
related death in the world. A growing body of evidence indi-
cates that inflammation is closely associated with the initia-
tion, progression, and metastasis of many tumors, including 
those of gastric cancer. In addition, approximately 60% of 
the world’s population is colonized by Helicobacter pylori, 
which accounts for more than 50% of gastric cancers. While 
the role of inflammation in intestinal and colonic cancers is 
relatively well defined, its role in stomach neoplasia is still 
unclear because of the limited access of pathogens to the 
acidic environment and the technical difficulties isolating and 
characterizing immune cells in the stomach, especially in 
animal models. In this review, we will provide recent updates 
addressing how inflammation is involved in gastric malignan-
cies, and what immune characteristics regulate the patho-
genesis of stomach cancer. Also, we will discuss potential 
therapeutics that target the immune system for the efficient 
treatment of gastric cancer. (Gut Liver 2014;8:131-139)
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INTRODUCTION

Gastric cancer is the fourth and fifth most frequent cancer in 
men and women, respectively, and the second most common 
cause of cancer-related death in the world.1 While the overall 
incidence of gastric cancer is declining in the United States and 
Western Europe, it is still relevant in many Asian nations, parts 
of South America, and Eastern Europe. These regional varia-
tions are likely due to differences in a variety of environmental 
factors and differences in the prevalence of Helicobacter pylori 
infection.
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Anatomically, there are two types of gastric cancer. The first, 
gastric cardia (proximal) cancer, occurs in the top portion of 
the stomach near the gastroesophageal junction, and the sec-
ond, noncardia cancer, may be found in all other areas of the 
stomach. These two cancer types have different risk factors and 
incidence patterns. For example, noncardia cancer is commonly 
associated with H. pylori infection, while gastric cardia cancer 
seems not to be affected by H. pylori.2 On the other hand, cardia 
gastric cancer, rare at one time, is now increasing in Western 
nations for reasons that are still unclear, and it accounts for 
about 50% of all stomach cancer in men in the United States. 
Gastric adenocarcinomas are classified into well-differentiated 
and undifferentiated types, with the undifferentiated type being 
characterized by a diffuse presentation, i.e., gastritis throughout 
the stomach but no atrophy, and the differentiated type is clas-
sified by intestinal-type tumors and corpus-dominated gastritis 
with gastric atrophy and intestinal metaplasia.

Recent insight into the tumor microenvironment has begun 
to uncover the close association between cancer and inflam-
mation, which bears similarities to wounds that fail to heal. 
Approximately 20% of cancer deaths worldwide are associated 
with unresolved infection or chronic inflammation, and the 
prolonged inflammation can lead to gastric cancer, colorectal 
cancer, inflammatory bowel disease, hepatocellular carcinoma, 
and chronic pancreatitis.3 Unresolved inflammation generates 
a microenvironment that facilitates cellular transformation and 
the propagation of invasive disease, with chronic tissue dam-
age triggering a repair response including growth and survival 
factors, tissue-remodeling enzymes, and immune regulatory 
cytokines. These examples of aberrant immunity foster tumors, 
but appropriate immune responses can suppress or eliminate 
tumors via a cancer immunosurveillance system.4 However, the 
contribution of immune cell populations to either the pathogen-
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esis or protection in the stomach environment has been difficult 
to elucidate. Here, we highlight recent progress in defining the 
roles of the immune system in cancer pathology with a focus on 
gastric adenocarcinoma. 

HELICOBACTER INFECTION, GASTRITIS, AND STOMACH 
CANCER

H. pylori is now regarded as the main cause of chronic gas-
tritis and is classified as a gastric carcinogen. Correa5,6 proposed 
that chronic gastritis progresses to intestinal-type gastric cancer 
through histological changes that include atrophy, metapla-
sia, and dysplasia. Indeed, research has demonstrated that the 
inflammatory response to H. pylori evokes diverse neoplastic 
changes of the gastric epithelium.7,8 Thus, eradiation of H. py-
lori infection leads to positive outcomes in regards to atrophy, 
metaplasia, and genomic instability, accompanied by reduced 
inflammation in the stomach.9,10 However, antibiotic therapy not 
only eradicates H. pylori, but also other microorganisms that 
can drive the inflammatory microenvironment in the stomach, 
raising the possibility that other pathogens may also be associ-
ated with gastric neoplasia. This idea was supported by a study 
using transgenic FVB/N insulin-gastrin mice that develop spon-
taneous gastritis and epithelial neoplasia with 80% prevalence 
after H. pylori infection.11 When the mice were colonized under 
germ-free conditions, gastric carcinoma development induced 
by H. pylori infection was substantially delayed compared to 
the mice maintained with conventional flora.12

While more than 50% of the world’s population is infected 
with H. pylori, only 10% to 15% of individuals infected with 
H. pylori develop peptic ulcers, and the risk of gastric cancer is 
estimated to be approximately 1% to 3%.1,13 This observation 
indicates that the disease progression of H. pylori-infected in-
dividuals depends on the presence of bacterial virulence factors 
and the types of host responses. The bacterial factors that allow 
H. pylori to colonize in the stomach and induce atrophic gastri-
tis have been studied through the use of isogenic mutants and 
genomic analyses of the bacteria, and the crucial factors that are 
required for persistence of the infected bacteria include urease 
and flagella. H. pylori secretes large amounts of urease to hy-
drolyze urea to ammonia and carbon dioxide, which neutralizes 
gastric acid, providing a local environment supporting bacterial 
survival.14 In addition, colonization of H. pylori on the mucus 
layer depends on the presence of flagella and the production of 
enzymes that break down the surfactant layer over the gastric 
epithelium.14 

Two genetic loci, cag and vacA, that link virulence factors 
to gastritis have been intensively studied. Infection with H. 
pylori strains that contain the cag locus, a 40 kb region known 
as the cag pathogenicity island (cag PAI), exhibit a higher risk 
for gastric cancer (especially intestinal-type adenocarcinoma) 
than infection with strains that do not contain the cag PAI.15 

On the other hand, the cag PAI is unlikely to be responsible for 
the pathogenesis of diffused-type gastric carcinoma, although it 
is associated with H. pylori infection.15 The functional protein, 
CagA, is encoded by the cag PAI, and is an immunodominant 
protein produced by H. pylori. Infection with H. pylori trans-
locates CagA protein into the host epithelial cells by a type 
IV secretion system, which is also encoded by cag PAIs. Once 
injected into the gastric epithelium, CagA is phosphorylated by 
Src family kinases and then activates SHP2 and Erk, which re-
sult in actin-cytoskeletal rearrangements and cell scattering.14,16 
Moreover, gene products of cag PAIs can directly elicit inflam-
mation via production of the interleukin (IL)-8 chemokine and 
through nucleotide-binding oligomerization domain-1 (NOD1). 
IL-8 induction by H. pylori infection depends on the presence 
of specific cagA genes and is mediated by MAPK and nuclear 
factor κB (NF-κB) signaling pathways in a SHP2-independent 
manner.17,18 NOD1, a pattern recognition receptor for the innate 
immune response, detects H. pylori infection by sensing a pep-
tidoglycan produced by cag PAIs, and instructs the production 
of proinflammatory cytokines such as IL-1β, IL-8, and tumor 
necrosis factor-α (TNF-α).19 

One crucial virulence factor secreted for the pathogenesis of 
stomach dysplasia is the vacuolating cytotoxin (Vac) encoded 
by the vacA gene.20,21 In a Mongolian gerbil model, infection 
with an adapted H. pylori strain lacking VacA reduced the in-
cidence of gastric carcinoma.22,23 Interestingly, the loss of CagA 
was protective in cancer development by attenuating inflam-
mation in this model, while ablation of VacA did not affect 
inflammation.22 However, the secreted pore-forming VacA toxin 
can indirectly augment inflammatory responses. For example, 
human gastric epithelial cells are highly susceptible to VacA-
induced cell death, and this programmed necrotic pathway 
contributes to the pathogenesis of peptic ulceration and gastric 
cancer by enhancing mucosal inflammation.24,25 

In addition to the direct effect of the virulence factors on the 
gastric epithelium, inflammation induced by H. pylori infection 
results in altered patterns of host DNA modification, which is 
closely associated with cancer risk. Temporal analysis showed 
that levels of DNA methylation in gastric epithelial cells were 
increased by H. pylori infection, which was paralleled by the 
induction of inflammation-related genes encoding IL-1β, NOS2, 
and TNF-α.26 Suppressing inflammation with cyclosporine A 
treatment did not affect bacterial colonization, but treatment 
did attenuate the induction of DNA methylation, suggesting 
that the infection-induced inflammatory response, rather than H. 
pylori itself, is responsible for the genetic alteration of the gas-
tric epithelium. Despite the notion that H. pylori evokes a strong 
inflammatory response, the immune system is likely to be in-
sufficient to clear the infection due to the pathogen’s immune 
evasion strategies. The mechanisms for immune evasion include 
the induction of a strong, polarized immune response, modula-
tion of phagocytosis and neutrophil function, and inhibition of 
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lymphocyte proliferation.14 Thus, prolonged inflammation and 
direct action of bacterial factors may simultaneously lead to im-
paired gland function and eventually to carcinogenesis. 

HOST IMMUNE SYSTEM AND GASTRIC CANCER

A large body of evidence suggests pivotal roles for host fac-
tors in determining the progression of the gastric pathogenesis. 
The stroma of gastric tumors is frequently filled with a wide 
range of white blood cells, but whether these inflammatory 
cells are responsible for the initiation and/or the progression of 
gastric pathogenesis remains undetermined. Genetic studies of 
patients with gastric atrophy, hypochlorhydria, and carcinoma 
revealed an increased incidence of genetic alterations strongly 
associated with host immune responses. Bone marrow-derived 
populations that constitute the inflammatory microenvironment 
of the stomach include granulocytes, macrophages, myeloid-
derived suppressor cells (MDSCs), and dendritic cells, as well as 
adaptive immune cells such as T and B cells (Figs 1 and 2).

1. Innate immune response

1) Neutrophils
Neutrophils are the most abundant circulating granulocyte 

population and are recruited to the inflamed tissue immediately 
or early after infection or tissue damage. Pathogen-induced 
IL-8 expression from the stroma mobilizes neutrophils into the 
infected lesion and activates the cells to produce antimicrobial 
peptides and reactive oxygen species.27 Moreover, the activated 
neutrophil production of IL-8 is important for the initiation of 
adaptive immunity by recruiting T cells. Forced expression of 
human IL-8 in mice is sufficient to accelerate colonic and gas-
tric carcinogenesis induced chemically and by H. felis infection, 
respectively.28 Of note is that CD11b+ Gr1+ myeloid cell levels 
increase systemically and locally in IL-8 transgenic mice, and 
these cells contribute to tumor microenvironment remodeling. 
These studies suggest that targeting IL-8 may be a useful thera-
peutic for inflammation-associated carcinogenesis, although 
further characterization of the myeloid populations is needed.   

2) Tumor-associated macrophages
Tumor-associated macrophages (TAMs) are a heterogeneous 

population, and accumulation of these cells in the neoplastic 
area indicates a poor prognosis.29 In a gastric cancer model us-
ing K19-Wnt1 transgenic mice, macrophages accumulate in 
the dysplastic mucosa, accompanied by nuclear induction of 
β-catenin in the epithelium.30 Intriguingly, depletion of macro-
phages from APC (Δ716) mice mitigates intestinal tumor forma-
tion, suggesting that inflammation induced by macrophages 
contributes to the pathogenesis of the gastric mucosa via Wnt/
β-catenin signaling. An example of how macrophages directly 
affect the pathogenesis of the gastric epithelium is by the pro-
duction of nitric oxide (NO). Specifically, macrophages activated 
by H. pylori infection produce NO that causes methylation of 
genes associated with tumor suppression, such as Runx3, in the 
epithelial cells. Thus, treatment with an NO-specific inhibitor 

Fig. 1. Innate immune cells associated with gastric pathogenesis. 
NO, nitric oxide; MMP, matrix metalloproteinase; IL, interleukin; TIL, 
tissue infiltrating lymphocyte; MDSC, myeloid-derived suppressor 
cell; CAF, carcinoma-associated fibroblast.

Fig. 2. Helper T cell subsets and gas-
tric neoplasia. 
IL, interleukin; TGF, transforming 
growth factor; IFN, interferon.
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can reverse H. pylori-induced methylation of the gut epithelium, 
providing a mechanism by which H. pylori causes epigenetic 
changes associated with gastric malignancy through inflamma-
tion.

Depending on the cytokine expression profiles, there are two 
distinct types of macrophages.31 M1 macrophages are activated 
by interferon-γ (IFN-γ) and microbial components such as lipo-
polysaccharides (LPS), they express high level of class II major 
histocompatibility complex (MHC) molecules, and they produce 
proinflammatory cytokines including IFN-γ and TNF-α. Alter-
natively, M2 macrophages are activated by IL-4, have reduced 
antigen presentation characteristics and tumoricidal activity, 
and produce the immunosuppressive cytokine, IL-10. Accord-
ingly, in the area of solid tumors, accumulation of M2 macro-
phages, which are involved in wound healing and tissue remod-
eling in normal physiology, is associated with a poor prognosis, 
whereas tumor infiltration of M1 macrophages could elicit a 
protective immune responses against the tumor.31,32 However, 
it is hard to distinguish between M1 and M2 TAMs in gastric 
tumors because they partially share cytokine profiles that are 
unlikely to be observed in vitro. 

3) IL-1β and MDSCs 
Polymorphisms of a gene encoding IL-1β are well known 

to be high risk factors for intestinal disorders such as Crohn 
disease.33,34 IL-1β inhibits acid secretion in the stomach, and 
genetic variations in the IL-1β locus that includes IL-1β and 
IL-1RN, a soluble IL-1 receptor antagonist, are also associated 
with gastric atrophy and adenocarcinoma.35 The functional role 
of IL-1β in gastric inflammation and cancer was reported us-
ing a transgenic mouse expressing human IL-1β specifically 
in the stomach.36 These transgenic mice developed spontane-
ous inflammation and gastric tumors that correlated with early 
recruitment and activation of MDSCs, a population having the 
capacity to inhibit inflammatory T cell responses.37 Interestingly, 
administration of neutralizing antibody against the IL-1 recep-
tor attenuated the gastric dysplasia, which was accompanied 
by a marked decrease in MDSC infiltration to the stomach. This 
study proposed an immune evasion mechanism for gastric tu-
mors with sustained chronic inflammation, and suggested that 
the proinflammatory cytokine, IL-1β, can elicit immunosup-
pressive function by recruiting MDSCs. In addition, MDSCs can 
directly induce tumor progression and metastasis by producing 
matrix metalloproteinases that facilitate tumor invasion.38 In ad-
dition, the conditional deletion of p120 catenin in mice leads to 
esophageal squamous cancer accompanied by the recruitment 
of MDSCs to the dysplastic epithelium.39 These results support 
the finding that mobilization of MDSCs to the gastric epithe-
lium provides a microenvironment to promote inflammation-
associated dysplasia.

4) Toll-like receptor
Toll-like receptors (TLRs) sense pathogen-associated molecular 

patterns to mediate an immediate-early host response to the in-
fectious microorganisms. Specifically, TLR4 recognizes the LPS 
of gram-negative bacteria and induces expression of proinflam-
matory cytokines such as IL-1β, TNF-α, and IL-8.40 LPS from H. 
pylori upregulates TLR4 expression in gastric cancer cells and 
then induces proliferation of the cells.41 The TLR4 A896G poly-
morphism is linked to an impaired response to LPS, and genetic 
analysis of patients with hypochlorhydria and gastric atrophy 
revealed that this genetic variation is positively correlated with 
the severity of gastric atrophy and inflammation.40,42 Although 
it was not associated with gastric acid output in the absence of H. 
pylori infection, this genetic alteration is a strong risk factor for 
noncardia gastric carcinoma induced by the host’s innate im-
mune response in H. pylori infection. Distinct from TLR4, TLR2 
is involved in a wide array of microbial molecules that include 
peptidoglycans, lipoteichoic acid, lipoproteins, and zymosan.40 
Through TLR2 signaling, Listeria monocytogenes stimulates 
proliferation of tumor cells by increasing production of NO and 
IL-6, without affecting infiltration of MDSCs or regulatory T 
cells.43 The effects of H. pylori infection in gastric tumor cells is 
shared with those of Listeria, such that silencing TLR2 expres-
sion abrogates the bacteria-induced tumor cell proliferation. 

5) INF-γ receptor 1
Another polymorphism of inflammation-related genes associ-

ated with the risk of gastric cancer was found in a gene encod-
ing the INF-γ receptor 1 (Ifngr1). Individuals having polymor-
phisms in Ifgnr1 are more susceptible to H. pylori infection, and 
a case-control study revealed a strong correlation between the 
onset of gastric cancer and a specific genotype (C-56T) in the If-
ngr1 promoter region.44 This genetic variation is a relevant host 
factor that predicts early development of gastric cancer. Using 
a transgenic mouse model, the potential role of this cytokine in 
gastric tumorigenesis was evaluated. Under the control of the 
stomach-specific H+/K+ ATPase promoter, transgenic expression 
of IFN-γ resulted in proliferation of undifferentiated and meta-
plastic epithelial cells along with elevated expression of proin-
flammatory cytokines that include IL-6, IL-1β, and TNF-α.45 The 
mice exhibited dysplasia at as early as 3 months of age, and 
some mice developed antral polyps, suggesting IFN-γ as a cru-
cial inflammatory factor that drives preneoplastic progression in 
the stomach. Nonetheless, IFN-γ involved in the type 1 helper T-
cell response may have a protective role in gastric pathogenesis, 
will be discussed later.

6) Carcinoma-associated fibroblasts  
Carcinoma-associated fibroblasts (CAFs) that express α-smooth 

muscle actin function like a tissue-resident immune cell and 
contribute to cancer progression. Quante and colleagues46 found 
that some (about 20%) of the CAFs originate in bone marrow 
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and increased markedly during cancer progression. In response 
to transforming growth factor β (TGF-β) and stromal cell-
derived factor-1α, CAFs are generated and recruited to the dys-
plastic tumor, suggesting a role for this bone marrow-derived 
cell in sustaining tumor progression. This suggested role was 
supported by a report showing that in response to H. pylori in-
fection, bone marrow populations mobilized to the stomach and 
differentiated into a fibroblast lineage that participated in the 
gastric neoplasia.47 Chimeric mice transplanted with bone pro-
genitor cells expressing GFP develop gastric dysplasia when in-
fected with H. pylori, in addition to chronic inflammation. More 
than 20% of the dysplastic lesions were composed of glands 
that contained epithelial bone marrow-derived cells.

7) IL-6 family  
Intracellular signaling mechanisms that specify tissue-specific 

responses to the IL-6 family of cytokines are emerging to be 
crucial for inflammation-induced neoplasia. Knocking-in a 
GP130 mutation, a shared subunit of receptors for IL-6 family 
cytokines, resulted in gastric adenomas by 3 months of age, and 
the adenoma displayed many of the characteristics of human 
intestinal-type gastric cancer.48 Loss of a STAT3 or IL-6 allele 
in the mutant GP130 mice resulted in a reduced frequency and 
rate of tumor development due to the inhibition of proliferation-
induced glandular hyperplasia.49,50 The mice exhibited a reduc-
tion in the recruitment of inflammatory cells such as macro-
phages and neutrophils, cytokine expression, angiogenesis, and 
metalloproteinase expression, which was similarly observed in 
the mice treated with an antimicrobial agent. These results sup-
port the notion that IL-6-induced STAT3 activation plays a cru-
cial role in inflammation-induced gastric cancer development. 
Moreover, another group reported an unexpected correlation 
between TLR2 and STAT3, in which STAT3 upregulated TLR2 
expression in the gastric epithelium.51 Genetic and therapeutic 
targeting of TLR2 in the gastric cancer mouse model inhibited 
gastric tumorigenesis, but not inflammation. Furthermore, in-
creased activation of STAT3 and TLR2 were inversely correlated 
with gastric cancer patient survival.51 Collectively, in addition 
to the impact on immune function, STAT3-dependent TLR2 
activation has an oncogenic function in a gastric epithelial cell-
intrinsic manner. 

2. Adaptive immune response

1) Effector versus regulatory T cells  
Appropriate T cell responses are important for the clearance 

of chronic bacterial infection, while it is still unclear how H. py-
lori infection evokes adaptive immunity and how this pathogen 
evades immune surveillance to survive in specialized organs. 
For proper infection clearance, naïve T cells differentiate into 
effector T cell subsets that include type 1 helper T (Th1) cells for 
intracellular viruses and tumors, type 2 (Th2) cells for helmin-
thic worms, and type 17 (Th17) cells for extracellular bacteria, 

especially in the intestine.52 On the other hand, regulatory T 
cells (Treg cells) that express the FoxP3 transcription factor and 
anti-inflammatory cytokine, IL-10, are important for peripheral 
tolerance, and balance between effector T cells and Treg cells is 
crucial for the resolution of chronic inflammation. Recent stud-
ies focus on tumor-infiltrating lymphocyte (TIL) populations 
that are associated with disease outcomes in various human 
cancers.53,54 However, the prognostic role of TILs in patients with 
gastric cancer still remains to be determined. 

Flow cytometry analysis of human subjects with or without 
H. pylori infection indicated that the bacteria-induced immune 
response includes both Th1 and Th2 subsets with high levels 
of anti-inflammatory Treg cells.55 Intriguingly, individuals 
with peptic ulcers exhibited reduced IL-10+ Treg responses but 
increased Th1 and Th2 responses compared to those without 
ulcers. These results indicate a modulatory mechanism of Treg 
cells in the H. pylori-induced inflammatory environment, but 
otherwise, gastritis occurs when this regulatory response is 
inadequate. Other example that H. pylori infection can induce 
systemic Treg cells has been shown in a murine asthma model. H. 
pylori infection efficiently protected mice from airway hyper-
sensitiveness, tissue inflammation, and goblet cell metaplasia, 
which are hallmarks of asthma.56 The accumulation of highly 
suppressive Treg cells in the lungs was associated with asthma 
protection, and this Treg accumulation was accompanied by a 
reduction in allergen-induced lung infiltration of eosinophils, 
Th2 cells, and Th17 cells, a response that was abolished with 
antibiotic eradication of H. pylori or systemic Treg depletion. 
These results provide experimental evidence for a competitive 
effect of H. pylori colonization on the development of allergen-
induced asthma.

2) TGF-β signaling
TGF-β-deficient mice spontaneously develop gastritis, which 

is associated with an exaggerated Th1 response, character-
ized by IFN-γ production and reduced induction of Treg cells.57 
Analysis of patient samples infected with H. pylori infection re-
vealed defective TGF-β1-induced Smad3 phosphorylation in the 
H. pylori-infected whole biopsy specimens and isolated mucosal 
cells.58 Although activated TGF-β1 was abundant in the mucus, 
H. pylori infection results in increased expression of Smad7, 
which inhibits Smad3 functions. Antisense treatment for Smad7 
is sufficient for restoring TGF-β1-induced Smad3 phosphory-
lation in the biopsy specimens, which is followed by reduced 
expression of the Th1 subset markers IFN-γ and T-bet.58 These 
data suggest that the downregulation of TGF-β1 signaling by 
H. pylori infection promotes the ongoing tissue-damaging Th1 
response. 

3) IFN-γ
Although chronic infection with H. pylori upregulates the 

proinflammatory Th1 response, the effect of the Th1 cytokine 
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IFN-γ on inflammation-associated gastric carcinogenesis is 
debatable. In contrast to the expected proinflammatory ef-
fect, targeted expression of IFN-γ in a transgenic mouse under 
the control of the H+/K+-ATPase failed to induce gastritis, and 
instead, inhibited gastric carcinogenesis driven by IL-1β and/
or H. pylori infection.59 Expression of IFN-γ inhibited Th1 and 
Th17 immune responses through Fas induction and apoptosis 
of CD4 T cells, and evoked autophagy in gastric epithelial cells 
by increasing Beclin-1. These results were far different than the 
results observed in the above-described IFN-γ transgenic mice 
that spontaneously develop spasmolytic polypeptide expressing 
metaplasia and dysplasia.45 This discrepancy might be explained 
by differences in the amount of IFN-γ produced and the cyto-
kine milieu in the mutant mouse lines. Thus, overexpression of 
IFN-γ in concert with proinflammatory cytokines such as IL-6 
can promote gastritis and dysplasia, while moderate expression 
of IFN-γ can elicit a coordinated function that eliminates the 
infection and modulates chronic inflammation by inducing an 
autophagic program.

4) Th17 cells
While Th17 cells are essential for the homeostasis of and 

protection against intestinal bacterium, implications of this 
helper T-cell subset in the stomach are unclear. Several lines of 
experimental evidence recently suggested a potential role for 
the Th17 cytokine, IL-17, in gastric carcinogenesis. Stimula-
tion of human gastric cancer cell lines, including AGS, with IL-
17A induces NF-κB activation and IL-8 production, which is 
abrogated by inhibition of IL-17 receptors using siRNAs.60 In 
addition, a genetic polymorphism of the IL-17 gene in gastric 
carcinogenesis has been reported.61 The study showed that the 
197A polymorphism of the IL-17A gene was significantly corre-
lated with both the inflammation score and the risk of develop-
ing gastric mucosal atrophy, especially in intestinal-type cancer 
compared to diffuse-type cancer. Furthermore, the Iida group62 
analyzed human gastric tumors by immunohistochemistry, and 
they observed infiltration of CD4+ IL-17+ cells and upregulation 
of mRNA of the Th17-associated cytokines IL-17, IL-21, and 
IL-23 in the tumor tissues compared to normal tissues. It was 
intriguing that the number of vascular endothelial cells and 
neutrophils were markedly increased in tumors expressing high 
level of IL-17 compared those expressing a low IL-17 levels. 
Overall, these studies suggest a pivotal role for the Th17 subset 
in the persistence of inflammation and gastric neoplasia. 

In the presence of TGF-β, IL-6, and IL-23-naive CD4 T cells 
differentiate into the Th17 subset, and these factors might be en-
riched in the tumor microenvironment.63 Gastric myofibrobalsts 
(GMFs) express high levels of class II MHC and are thought to 
act as antigen-presenting cells in the gastric mucosa. When CD4 
T cells differentiate under the Th17-polarizing conditions, GMFs 
isolated from patients with gastric cancer or infected with H. 
pylori substantially enhanced Th17 induction compared to the 

cells from normal tissues.64 This study provides a mechanism by 
which Th17 cells are enriched in the inflammatory milieu of the 
gastric stroma and provide a link between inflammation and 
carcinogenesis.

In contrast, the Kennedy group65 claimed that Th17 responses 
are not directly associated with the pathogenesis of gastric tu-
mors. Knock-in mice with the pp130(F/F) allele spontaneously 
develop gastric inflammation-associated tumors akin to human 
intestinal-type gastric cancer. This mutation leads to hyper-
activation of STAT3 via the stimulation of IL-6 family cyto-
kines.50 In these mice, generation of Th17 cells and the gastric 
expression of Th17-related factors such as IL-17a, Rorγt, and IL-
23 were augmented. However, genetic ablation of IL-17A did 
not suppress the initiation and growth of gastric tumors in the 
gp130(F/F) background. Moreover, IL-17A and Rorγt expression 
was strongly increased in patients with gastritis but not gastric 
cancer, suggesting that increased expression of Th17-related 
factors does not correlate with the progression of gastric tumor-
igenesis. In other reports, however, flow cytometric analysis of 
peripheral blood from patients with gastric cancer showed that 
circulating Th17 cells are positively correlated with the stage of 
gastric cancer,66 implying that Th17 cells contribute to the gas-
tric tumor.

5) B cells and Th2 cells
Although H. pylori-induced chronic atrophic gastritis is 

characterized by marked infiltration of Th1 and Th17 cells, the 
majority of the inflamed gastric mucosa also contains focal 
lymphoid aggregates with germinal centers.67 Autoantibodies 
against tumor-associated antigens are very attractive biomark-
ers for the development of serological tests for early cancer 
detection. Recently, phage display-based serological analyses 
have identified a representative set of antigens eliciting hu-
moral responses in patients with gastric cancer,68 although it is 
unknown whether these B-cell responses are sufficient to cause 
gastric pathology. Typical H. pylori-induced chronic gastritis in 
children, which is called follicular gastritis, is characterized by 
B-cell follicles in the gastric mucosa.69 Thus, B-cell activation 
and cognate Th2 cell’s help can be composed in the pathogen-
induced inflammatory responses. Kido and his colleagues69 
found that H. pylori directly induced production of thymic 
stromal lymphopoietin (TSLP) from the epithelial cells in human 
follicular gastritis and that TSLP-mediated dendritic cell activa-
tion is involved in the Th2 response to activate B cells in the 
pathogen-driven gastritis. 

DIAGNOSIS AND THERAPEUTIC TARGETING IMMUNITY

A high density of cytotoxic CD8 T cells and memory T cells 
are usually associated with better outcomes in gastric cancer, 
indicating the crucial role of adaptive immunity in the tumor 
immunosurveillance system.70 On the other hand, the prevalence 
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of suppressor cells may prove to be a decisive factor for poor 
outcomes because MDSC and Treg cells restrain the antitumor 
activity of cytotoxic T cells. Indeed, analysis of patients with 
hepatocarcinoma revealed that a high ratio of cytotoxic T cells 
to Treg cells was linked to increased survival, whereas a low 
ratio was associated with tumor vascular invasion and inferior 
survival.71 In this context, the type, density, and intratumoral 
location of the leukocyte infiltrate has been shown to be a more 
informative biomarker than the TNM or Duke’s classification.72 

Programmed death-1 (PD1) is a negative regulator of effector 
T cell function.73 Signaling through PD1 is triggered by engage-
ment of the ligands PD-L1 or PD-L2, and intriguingly, some tu-
mors upregulate expression of PD-L1, resulting in a dampened 
cytotoxic T-cell response. Actually, patients with pancreatic ad-
enocarcinoma exhibit high levels of intratumoral PD-L1, which 
is accompanied by decreased T-cell infiltration and poor surviv-
al, suggesting an immune-evasion mechanism.74 One promising 
therapy is antibody blockade of the interaction between PD1 
and PD-L1, which is undergoing clinical trials. Another promis-
ing target for cancer therapy involves cytotoxic T cell antigen-4 
(CTLA-4). Treatment with monoclonal antibodies against CTLA-
4 augments the antitumor activity of effector T cells and results 
in improved patient survival in advanced melanoma.75 Evalua-
tion of this antibody therapy is ongoing in the adjuvant setting 
for gastric cancer.

CONCLUDING REMARKS

While bacterial virulence factors are crucial determinants of 
disease outcomes, the host defense system also plays a role by 
eliciting an immune response to clear H. pylori infection, which 
results in a robust gastritis followed by a series of pathologi-
cal changes that progress to cancer. Antibiotic intervention 
to eradicate H. pylori early in this pathological process might 
be protective against more severe disease. However, it is still 
unclear whether patients with advanced, premalignant lesions 
can benefit from antibiotic treatment. Alternatively, mediators 
of chronic inflammation could serve as potential therapeutic 
targets to suppress the gastric pathogenesis. For example, in the 
setting of achlorhydria, sustained tissue damage in the stomach 
due to chronic inflammation leads to cancer in part by affect-
ing recruitment of immune cell populations, thereby altering 
the tumor microenvironment. Thus, we should translate our 
knowledge of the tumor microenvironment into clinical trials, 
such as those that combine drugs targeting inflammation with 
conventional chemotherapies.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was 
reported.

ACKNOWLEDGEMENTS

This study was supported by a faculty research grant of Yon-
sei University College of Medicine for 2013 (6-2013-0061), a 
new faculty research seed money grant of Yonsei University 
College of Medicine for 2013 (2013-32-0031), and the Brain 
Korea 21 PLUS Project for Medical Science of Yonsei University 
to K.T.N.

REFERENCES

1. Parkin DM. The global health burden of infection-associated can-

cers in the year 2002. Int J Cancer 2006;118:3030-3044. 

2. Yuasa Y. Control of gut differentiation and intestinal-type gastric 

carcinogenesis. Nat Rev Cancer 2003;3:592-600. 

3. Balkwill F, Mantovani A. Inflammation and cancer: back to Vir-

chow? Lancet 2001;357:539-545. 

4. Koebel CM, Vermi W, Swann JB, et al. Adaptive immunity main-

tains occult cancer in an equilibrium state. Nature 2007;450:903-

907. 

5. Correa P. Human gastric carcinogenesis: a multistep and multi-

factorial process. First American Cancer Society Award Lecture on 

Cancer Epidemiology and Prevention. Cancer Res 1992;52:6735-

6740. 

6. Correa P. Helicobacter pylori and gastric carcinogenesis. Am J 

Surg Pathol 1995;19 Suppl 1:S37-S43. 

7. Peek RM Jr, Blaser MJ. Helicobacter pylori and gastrointestinal 

tract adenocarcinomas. Nat Rev Cancer 2002;2:28-37. 

8. Huang JQ, Sridhar S, Chen Y, Hunt RH. Meta-analysis of the re-

lationship between Helicobacter pylori seropositivity and gastric 

cancer. Gastroenterology 1998;114:1169-1179. 

9. Cai X, Carlson J, Stoicov C, Li H, Wang TC, Houghton J. Helico-

bacter felis eradication restores normal architecture and inhibits 

gastric cancer progression in C57BL/6 mice. Gastroenterology 

2005;128:1937-1952.

10. Nardone G, Staibano S, Rocco A, et al. Effect of Helicobacter py-

lori infection and its eradication on cell proliferation, DNA status, 

and oncogene expression in patients with chronic gastritis. Gut 

1999;44:789-799.

11. Wang TC, Dangler CA, Chen D, et al. Synergistic interaction be-

tween hypergastrinemia and Helicobacter infection in a mouse 

model of gastric cancer. Gastroenterology 2000;118:36-47. 

12. Lofgren JL, Whary MT, Ge Z, et al. Lack of commensal flora in 

Helicobacter pylori-infected INS-GAS mice reduces gastritis and 

delays intraepithelial neoplasia. Gastroenterology 2011;140:210-

220. 

13. Parsonnet J, Friedman GD, Vandersteen DP, et al. Helicobacter 

pylori infection and the risk of gastric carcinoma. N Engl J Med 

1991;325:1127-1131. 

14. Salama NR, Hartung ML, Muller A. Life in the human stomach: 

persistence strategies of the bacterial pathogen Helicobacter pylori. 

Nat Rev Microbiol 2013;11:385-399. 



138  Gut and Liver, Vol. 8, No. 2, March 2014

15. Parsonnet J, Friedman GD, Orentreich N, Vogelman H. Risk for 

gastric cancer in people with CagA positive or CagA negative He-

licobacter pylori infection. Gut 1997;40:297-301.

16. Tsutsumi R, Higashi H, Higuchi M, Okada M, Hatakeyama M. 

Attenuation of Helicobacter pylori CagA x SHP-2 signaling by 

interaction between CagA and C-terminal Src kinase. J Biol Chem 

2003;278:3664-3670.

17. Crabtree JE, Xiang Z, Lindley IJ, Tompkins DS, Rappuoli R, Co-

vacci A. Induction of interleukin-8 secretion from gastric epithelial 

cells by a cagA negative isogenic mutant of Helicobacter pylori. J 

Clin Pathol 1995;48:967-969. 

18. Brandt S, Kwok T, Hartig R, Konig W, Backert S. NF-kappaB 

activation and potentiation of proinflammatory responses by 

the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A 

2005;102:9300-9305.

19. Viala J, Chaput C, Boneca IG, et al. Nod1 responds to peptidogly-

can delivered by the Helicobacter pylori cag pathogenicity island. 

Nat Immunol 2004;5:1166-1174.

20. Yu J, Leung WK, Go MY, et al. Relationship between Helicobacter 

pylori babA2 status with gastric epithelial cell turnover and pre-

malignant gastric lesions. Gut 2002;51:480-484. 

21. Prinz C, Schoniger M, Rad R, et al. Key importance of the He-

licobacter pylori adherence factor blood group antigen bind-

ing adhesin during chronic gastric inflammation. Cancer Res 

2001;61:1903-1909. 

22. Franco AT, Johnston E, Krishna U, et al. Regulation of gastric 

carcinogenesis by Helicobacter pylori virulence factors. Cancer Res 

2008;68:379-387.

23. Ogura K, Maeda S, Nakao M, et al. Virulence factors of Helico-

bacter pylori responsible for gastric diseases in Mongolian gerbil. J 

Exp Med 2000;192:1601-1610.

24. Radin JN, Gonzalez-Rivera C, Ivie SE, McClain MS, Cover TL. 

Helicobacter pylori VacA induces programmed necrosis in gastric 

epithelial cells. Infect Immun 2011;79:2535-2543. 

25. Yamasaki E, Wada A, Kumatori A, et al. Helicobacter pylori vacu-

olating cytotoxin induces activation of the proapoptotic proteins 

Bax and Bak, leading to cytochrome c release and cell death, in-

dependent of vacuolation. J Biol Chem 2006;281:11250-11259.

26. Niwa T, Tsukamoto T, Toyoda T, et al. Inflammatory processes 

triggered by Helicobacter pylori infection cause aberrant DNA 

methylation in gastric epithelial cells. Cancer Res 2010;70:1430-

1440. 

27. Fischer W, Prassl S, Haas R. Virulence mechanisms and persistence 

strategies of the human gastric pathogen Helicobacter pylori. Curr 

Top Microbiol Immunol 2009;337:129-171.

28. Asfaha S, Dubeykovskiy AN, Tomita H, et al. Mice that express 

human interleukin-8 have increased mobilization of immature 

myeloid cells, which exacerbates inflammation and accelerates 

colon carcinogenesis. Gastroenterology 2013;144:155-166.

29. Pollard JW. Tumour-educated macrophages promote tumour pro-

gression and metastasis. Nat Rev Cancer 2004;4:71-78. 

30. Oguma K, Oshima H, Aoki M, et al. Activated macrophages pro-

mote Wnt signalling through tumour necrosis factor-alpha in 

gastric tumour cells. EMBO J 2008;27:1671-1681.

31. Biswas SK, Mantovani A. Macrophage plasticity and interaction 

with lymphocyte subsets: cancer as a paradigm. Nat Immunol 

2010;11:889-896. 

32. Fehlings M, Drobbe L, Moos V, et al. Comparative analysis of the 

interaction of Helicobacter pylori with human dendritic cells, mac-

rophages, and monocytes. Infect Immun 2012;80:2724-2734. 

33. El-Omar EM, Carrington M, Chow WH, et al. The role of interleu-

kin-1 polymorphisms in the pathogenesis of gastric cancer. Nature 

2001;412:99. 

34. Figueiredo C, Machado JC, Pharoah P, et al. Helicobacter py-

lori and interleukin 1 genotyping: an opportunity to identify 

high-risk individuals for gastric carcinoma. J Natl Cancer Inst 

2002;94:1680-1687.

35. Fox JG, Wang TC. Inflammation, atrophy, and gastric cancer. J 

Clin Invest 2007;117:60-69.

36. Tu S, Bhagat G, Cui G, et al. Overexpression of interleukin-1beta 

induces gastric inflammation and cancer and mobilizes myeloid-

derived suppressor cells in mice. Cancer Cell 2008;14:408-419.

37. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as 

regulators of the immune system. Nat Rev Immunol 2009;9:162-

174. 

38. Taketo MM. Role of bone marrow-derived cells in colon cancer: 

lessons from mouse model studies. J Gastroenterol 2009;44:93-

102.

39. Stairs DB, Bayne LJ, Rhoades B, et al. Deletion of p120-catenin 

results in a tumor microenvironment with inflammation and 

cancer that establishes it as a tumor suppressor gene. Cancer Cell 

2011;19:470-483.

40. El-Omar EM, Ng MT, Hold GL. Polymorphisms in Toll-like recep-

tor genes and risk of cancer. Oncogene 2008;27:244-252.

41. Yokota S, Okabayashi T, Rehli M, Fujii N, Amano K. Helicobacter 

pylori lipopolysaccharides upregulate toll-like receptor 4 expres-

sion and proliferation of gastric epithelial cells via the MEK1/2-

ERK1/2 mitogen-activated protein kinase pathway. Infect Immun 

2010;78:468-476.

42. Hold GL, Rabkin CS, Chow WH, et al. A functional polymorphism 

of toll-like receptor 4 gene increases risk of gastric carcinoma and 

its precursors. Gastroenterology 2007;132:905-912.

43. Huang B, Zhao J, Shen S, et al. Listeria monocytogenes promotes 

tumor growth via tumor cell toll-like receptor 2 signaling. Cancer 

Res 2007;67:4346-4352. 

44. Canedo P, Corso G, Pereira F, et al. The interferon gamma recep-

tor 1 (IFNGR1) -56C/T gene polymorphism is associated with in-

creased risk of early gastric carcinoma. Gut 2008;57:1504-1508. 

45. Syu LJ, El-Zaatari M, Eaton KA, et al. Transgenic expression of 

interferon-γ in mouse stomach leads to inflammation, metaplasia, 

and dysplasia. Am J Pathol 2012;181:2114-2125. 

46. Quante M, Tu SP, Tomita H, et al. Bone marrow-derived myofibro-

blasts contribute to the mesenchymal stem cell niche and promote 

tumor growth. Cancer Cell 2011;19:257-272.



Lee K, et al: Immune Cells Modulate Gastric Pathogenesis  139

47. Varon C, Dubus P, Mazurier F, et al. Helicobacter pylori infection 

recruits bone marrow-derived cells that participate in gastric pre-

neoplasia in mice. Gastroenterology 2012;142:281-291.

48. Judd LM, Alderman BM, Howlett M, et al. Gastric cancer develop-

ment in mice lacking the SHP2 binding site on the IL-6 family co-

receptor gp130. Gastroenterology 2004;126:196-207. 

49. Howlett M, Judd LM, Jenkins B, et al. Differential regulation of 

gastric tumor growth by cytokines that signal exclusively through 

the coreceptor gp130. Gastroenterology 2005;129:1005-1018. 

50. Jenkins BJ, Grail D, Nheu T, et al. Hyperactivation of Stat3 in 

gp130 mutant mice promotes gastric hyperproliferation and de-

sensitizes TGF-beta signaling. Nat Med 2005;11:845-852. 

51. Tye H, Kennedy CL, Najdovska M, et al. STAT3-driven upregula-

tion of TLR2 promotes gastric tumorigenesis independent of tumor 

inflammation. Cancer Cell 2012;22:466-478.

52. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell 

populations (*). Annu Rev Immunol 2010;28:445-489.

53. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The 

prognostic influence of tumour-infiltrating lymphocytes in cancer: 

a systematic review with meta-analysis. Br J Cancer 2011;105:93-

103.

54. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune 

cells in the tumor microenvironment. Nat Immunol 2013;14:1014-

1022.

55. Robinson K, Kenefeck R, Pidgeon EL, et al. Helicobacter pylori-

induced peptic ulcer disease is associated with inadequate regula-

tory T cell responses. Gut 2008;57:1375-1385.

56. Arnold IC, Dehzad N, Reuter S, et al. Helicobacter pylori infection 

prevents allergic asthma in mouse models through the induction 

of regulatory T cells. J Clin Invest 2011;121:3088-3093.

57. Hahm KB, Lee KM, Kim YB, et al. Conditional loss of TGF-beta 

signalling leads to increased susceptibility to gastrointestinal carci-

nogenesis in mice. Aliment Pharmacol Ther 2002;16 Suppl 2:115-

127. 

58. Monteleone G, Del Vecchio Blanco G, Palmieri G, et al. Induction 

and regulation of Smad7 in the gastric mucosa of patients with 

Helicobacter pylori infection. Gastroenterology 2004;126:674-682. 

59. Tu SP, Quante M, Bhagat G, et al. IFN-gamma inhibits gastric 

carcinogenesis by inducing epithelial cell autophagy and T-cell 

apoptosis. Cancer Res 2011;71:4247-4259.

60. Zhou Y, Toh ML, Zrioual S, Miossec P. IL-17A versus IL-17F in-

duced intracellular signal transduction pathways and modulation 

by IL-17RA and IL-17RC RNA interference in AGS gastric adeno-

carcinoma cells. Cytokine 2007;38:157-164.

61. Shibata T, Tahara T, Hirata I, Arisawa T. Genetic polymorphism 

of interleukin-17A and -17F genes in gastric carcinogenesis. Hum 

Immunol 2009;70:547-551. 

62. Iida T, Iwahashi M, Katsuda M, et al. Tumor-infiltrating CD4+ 

Th17 cells produce IL-17 in tumor microenvironment and pro-

mote tumor progression in human gastric cancer. Oncol Rep 

2011;25:1271-1277.

63. Wilke CM, Bishop K, Fox D, Zou W. Deciphering the role of Th17 

cells in human disease. Trends Immunol 2011;32:603-611. 

64. Pinchuk IV, Morris KT, Nofchissey RA, et al. Stromal cells induce 

Th17 during Helicobacter pylori infection and in the gastric tumor 

microenvironment. PLoS One 2013;8:e53798.

65. Kennedy CL, Najdovska M, Jones GW, et al. The molecular patho-

genesis of STAT3-driven gastric tumourigenesis in mice is inde-

pendent of IL-17. J Pathol 2011;225:255-264. 

66. Liu T, Peng L, Yu P, et al. Increased circulating Th22 and Th17 

cells are associated with tumor progression and patient survival in 

human gastric cancer. J Clin Immunol 2012;32:1332-1339.

67. Shimatani T, Inoue M, Iwamoto K, et al. Gastric acidity in pa-

tients with follicular gastritis is significantly reduced, but can be 

normalized after eradication for Helicobacter pylori. Helicobacter 

2005;10:256-265.

68. Zayakin P, Ancans G, Siliņa K, et al. Tumor-associated autoanti-

body signature for the early detection of gastric cancer. Int J Can-

cer 2013;132:137-147.

69. Kido M, Tanaka J, Aoki N, et al. Helicobacter pylori promotes the 

production of thymic stromal lymphopoietin by gastric epithelial 

cells and induces dendritic cell-mediated inflammatory Th2 re-

sponses. Infect Immun 2010;78:108-114. 

70. Sangiolo D. Cytokine induced killer cells as promising immuno-

therapy for solid tumors. J Cancer 2011;2:363-368.

71. Gao Q, Qiu SJ, Fan J, et al. Intratumoral balance of regulatory and 

cytotoxic T cells is associated with prognosis of hepatocellular 

carcinoma after resection. J Clin Oncol 2007;25:2586-2593. 

72. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and lo-

cation of immune cells within human colorectal tumors predict 

clinical outcome. Science 2006;313:1960-1964. 

73. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. 

Annu Rev Immunol 2005;23:515-548. 

74. Nomi T, Sho M, Akahori T, et al. Clinical significance and thera-

peutic potential of the programmed death-1 ligand/programmed 

death-1 pathway in human pancreatic cancer. Clin Cancer Res 

2007;13:2151-2157.

75. Wolchok JD, Hodi FS, Weber JS, et al. Development of ipilim-

umab: a novel immunotherapeutic approach for the treatment of 

advanced melanoma. Ann N Y Acad Sci 2013;1291:1-13.


