
Vol.:(0123456789)1 3

Human Cell (2022) 35:1633–1639 
https://doi.org/10.1007/s13577-022-00785-3

REVIEW ARTICLE

Restoration of vascular endothelial integrity by mesenchymal stromal/
stem cells in debilitating virus diseases

Agieshkumar Balakrishna Pillai1  · Vignesh Mariappan1  · Aashika Raagavi JeanPierre1  · S. R. Rao2 

Received: 13 June 2022 / Accepted: 30 August 2022 / Published online: 6 September 2022 
© The Author(s) under exclusive licence to Japan Human Cell Society 2022

Abstract
Endothelial dysfunction is one of the key cornerstone complications of emerging and re-emerging viruses which lead to 
vascular leakage and a high mortality rate. The mechanism that regulates the origin of endothelial dysregulation is not com-
pletely elucidated. Currently, there are no potential pharmacological treatments and curable management for such diseases. 
In this sense, mesenchymal stromal/stem cells (MSCs) has been emerging to be a promising therapeutic strategy in restor-
ing endothelial barrier function in various lung disease, including ALI and ARDS. The mechanism of the role of MSCs 
in restoring endothelial integrity among single-strand RNA (ssRNA) viruses that target endothelial cells remains elusive. 
Thus, we have discussed the therapeutic role of MSCs in restoring vascular integrity by (i) inhibiting the metalloprotease 
activity thereby preventing the cleavage of tight junction proteins, which are essential for maintaining membrane integrity 
(ii) possessing antioxidant properties which neutralize the excessive ROS production due to virus infection and its associ-
ated hyper host immune response (iii) modulating micro RNAs that regulate the endothelial activation and its integrity by 
downregulating the inflammatory response during ssRNA infection.
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Abbreviations
SARS-CoV-2  Severe acute respiratory syndrome corona-

virus 2
DENV  Dengue virus
COVID-19  Coronavirus disease 19
ECs  Endothelial cells
ACE2  Angiotensin converting-enzyme 2
ssRNA  Single-strand RNA
ARDS  Acute respiratory distress syndrome

VHF  Viral hemorrhagic fever
MSCs  Mesenchymal stromal/stem cells
BM  Bone marrow
AD  Adipose
UC  Umbilical cord
MMPs  Matrix metalloproteinases
TJ  Tight junction
EPCs  Endothelial progenitor cells
MCAO  Middle cerebral artery occlusion
AMPK  AMP-activated protein kinase
BMVECs  Brain-microvascular endothelial cells

Introduction

The pathogenesis of many of the emerging and re-emerging 
viruses like severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), dengue virus (DENV) infection is still 
only partly understood. Endothelial dysfunction/damage is 
one of the clinical complications of both dengue and coro-
navirus disease-19 (COVID-19) which occurs due to hyper-
permeability of endothelial cells (ECs) caused by slacken-
ing of inter-endothelial junction [1]. Though the occurrence 
of viral particles in the ECs has been reported in autoptic 
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investigations [2], it is still not clear if the ECs are to be 
infected either directly via viral particles or indirectly by 
barrier-disruptive mediators released from infected ECs due 
to hyper-immune response [3]. In support of the latter, we 
have recently documented the role of two molecules released 
by activated ECs upon treatment with conditioned dengue-
positive serum in regulating vascular integrity [4]. In this 
notion, pulmonary endothelial dysfunction is considered an 
important contributor to lung injury in COVID-19 caused 
by severe SARS-CoV-2. Though COVID-19 is considered 
a systemic disease, it causes lung injury by affecting pul-
monary vascular ECs. This infection reflects the particular 
tropism of SAR-CoV-2 for angiotensin-converting enzyme-2 
(ACE-2), the host viral entry receptor for SAR-CoV-2 
expressed by type II pneumocytes [5], which are anatomi-
cally related to lung vascular endothelial network and are 
found to be elevated in the sample of patients infected with 
COVID-19 [6].

Pulmonary endothelium serves as a selective barrier 
between the plasma and interstitium. Any drastic change in 
the endothelium will affect barrier function which leads to 
lung injury and pulmonary edema. SARS-CoV-2 infection 
leads to the activation of pulmonary vascular ECs results in 
cellular damage, microhemorrhage, diffuse peripheral small 
vessel, apoptosis, and decreases the antithrombotic activity 
of normal endothelium. All these eventually lead to COVID-
19-associated respiratory failure/acute respiratory distress 
syndrome (ARDS) [7]. In addition, the increased inflam-
matory mediators trigger the expression of tissue factors on 
ECs, macrophages, and neutrophils, thereby contributing 
towards a coagulation cascade within the lungs. This in turn 
induces a hyper-coagulant state along with thrombosis in 
pulmonary microvessels. This element supports the hypoth-
esis of COVID-19-associated endothelial dysfunction or 
endotheliopathy [8]. Similar to SARS-CoV-2, plasma leak-
age due to endothelial dysfunction is considered a hallmark 
process in dengue [9], a lethal arbovirus infection.

Single‑strand RNA viruses and endothelial 
dysfunction

Most single-strand RNA (ssRNA) virus infection results in 
endothelial dysfunction [10]. To date, the mechanism behind 
the origin of endothelial dysregulation in COVID-19, den-
gue or other viral hemorrhagic fevers (VHF) is still to be 
defined. However, growing evidence indicates the presence 
of SARS-CoV-2 virus in ECs [11], suggesting endothelium 
arteries and veins are highly sensitive to SARS-CoV-2 infec-
tion due to the expression of ACE2, a direct target of SARS-
CoV-2 [12]. Interestingly, a study reported the presence of 
intracellular SARS-CoV-2 viral particles in kidney endothe-
lial cells. Also, they observed the presence of virus-like 

vesicles in the extracellular region of lungs, renal, and heart 
tissue [13]. Consistently, destruction of ECs, disruption 
of tight junction, and inflammation were also noted in the 
vascular wall of various organs due to defined mechanisms 
like apoptosis, necrosis, or pyroptosis [11]. Though these 
mechanisms have been proposed to occur in COVID-19 
patients, the majority of EC injury observed was very similar 
to pyroptosis or necrosis rather than apoptosis [14]. In the 
case of dengue though the precise mechanism that hampers 
endothelial integrity is not completely understood, DENV 
NS1, a viral glycoprotein alone has been demonstrated to 
shed heparan sulphate proteoglycans, which leads to disrup-
tion of endothelial glycocalyx layer [15].

Apart from direct infection, endothelial damage could 
also occur by other host-induced factors like complement 
activation, IFN production, generation of cytokine (cytokine 
storm), and bradykinin storm [16]. For example, soluble 
NS1 protein of DENV indirectly damages the ECs by the 
activation of the complement system and numerous immune 
cell via TLR4, leading to hyper-inflammatory response and 
increased dengue disease severity [17]. In the case of res-
piratory virus, hyper-inflammation and excessive infiltration 
of cells in response to immune dysfunction were strongly 
associated with severe lung injury and risk of vascular 
hyper-permeability, and multi-organ failure which eventually 
leads to death [18]. Based on the available reports it may be 
suggested that ceaseless inflammatory response could dis-
rupt vascular homeostasis and increase platelet activity, ECs 
damage, and thrombus formation. Thus, the upregulation 
of pro-thrombotic factors, as well as inhibition of fibrino-
lytic activity due to coagulation activation and EC dysfunc-
tion, might be a possible explanation for disease severity in 
COVID-19 patients [19–22].

Interestingly, various inflammatory lipid molecules 
(platelet activating factors, phospholipase A2, lipopoly-
saccharides, sphingosine-1-phosphate, leukotrienes) and 
inflammatory mediators (TNFα, VEGF, angiopoietin-1 and 
2) has been described as contributing factors for vascular 
leakage in dengue [9].

On the other hand, evidence also suggests that plate-
lets and micro-particles derived from platelets are shown 
to be involved in endothelial dysfunction by the activa-
tion of NLRP3 inflammasomes and also by triggering the 
production of inflammatory cytokines [23]. Recently, we 
have described the role of platelets in endothelial dysfunc-
tion during flaviviral infection [24]. Thus, studies in terms 
of endothelial dysregulation, hyper-inflammation, and 
thrombosis could provide a better understanding of disease 
pathogenesis.
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Therapeutic strategy to combat endothelial 
dysfunction

Some of the therapeutic strategies to restore endothelial 
function include the usage of (i) monoclonal antibodies 
against the β-chain of the neutrophil adhesion glycoprotein 
to protect vascular endothelium [25] (ii) TGFβ1 has also 
been shown to enhance endothelial-dependent vasodila-
tion and preventing endothelial activation [26] (iii) DNA 
vaccination expressing a plasmid against VEGFR2 result-
ing in endothelium repair [27] (iv) endothelial progenitor 
cell (EPC) treatment aiding vascular repair and improves 
vascularization in patients with peripheral vascular disease 
[28] (v) mobilizing mononuclear cells at the site of vas-
cular injury using stimulating cytokines and chemokines 
such as VEGF is another intriguing treatment strategy for 
endothelial dysfunction [29]. Besides, some of the cardio-
vascular drugs and chemically derived small molecules 
have been demonstrated to have pleiotropic effects that 
can improve vascular damage and its function [30–33].

At present, there is no proven potential curable man-
agement for the infection caused by ssRNA viruses [34]. 
Nevertheless, developments in the treatment against RNA 
viral infections are intriguing. Recently, the clinical inves-
tigation in terms of cell-based therapy is increasing rapidly 
[35]. Equally, the contribution towards the development of 
vaccines against ssRNA viruses is extensively increased. 
In this perspective, studies have proposed mesenchymal 
stromal/stem cell (MSC) therapy for the treatment and 
triage of patients with viral disease causing endothelial 
damage [36–40]. MSCs are considered superior over other 
cell-based therapies as they are easily accessible, have ease 
of isolation and expansion, are able to differentiate into 
multiple lineages in a short period of time, are capable of 
producing potent paracrine effects, can be stored for point-
of-care delivery with no loss of activity, and importantly, 
have no severe responses to allogeneic versus autologous 
MSC transplants were recorded in clinical trials with 
MSCs [41, 42].

Mesenchymal stromal/stem cells (MSCs) are a compo-
nent of bone marrow (BM) stromal tissue, adipose tissue 
(AD), umbilical cord (UC) tissue, placental tissue, and 
exfoliated deciduous teeth [43–45]. Though MSCs are 
capable of self-renewal capacity, the ability to differen-
tiate into tissue-specific cells makes them an excellent 
therapeutic efficacy for the treatment of various diseases. 
They are known to possess tissue repair and regeneration 
and can suppress overactive immune responses, besides 
the pleiotropic factors produced by MSCs are reported to 
appear in circulation under pathological conditions and 
exhibit barrier-protective effects on human pulmonary 
cells [46]. Thus, MSCs are currently being researched in 

many laboratories in treating acute lung injury including 
COVID-19 [47–49]. For instance, the therapeutic effect 
of MSCs has been evaluated in various lung diseases like 
asthma, chronic obstructive pulmonary disease, and ARDS 
[50–52]. Further, MSCs can also enhance the phagocytic 
activity of macrophages and monocytes by mitochondrial 
transfer and also influence the innate immune response 
against bacterial infection via direct or indirect mecha-
nisms [53]. Importantly, the mechanism for the MSC 
therapeutic function is regulated by paracrine secretory 
factors, which have been reported to induce an anti-inflam-
matory response, reduce apoptosis, initiate an antimicro-
bial innate response, protect the pulmonary endothelial 
cell and alveolar epithelial cell from damage and improve 
alveolar fluid clearance [52].

Endothelial barrier restoration by MSCs 
by (i) inhibiting MMPs (ii) its antioxidant 
potential & (iii) regulating microRNAs

In COVID-19 and dengue, either infected monocytes/mac-
rophages or transmigrated neutrophils secret matrix metal-
loproteinases (MMPs) that damage the tight junction (TJ) 
proteins, leading to endothelial damage along with ampli-
fying vascular permeability [54, 55]. In this sense, a study 
has reported that MMP9 activity can be suppressed by 
MSC transplantation [56]. Therefore, inhibition of MMP 
is a potential target therapy for preventing endothelial dys-
regulation. In addition, MSCs can attenuate the expres-
sion of MMP9 from extravasated neutrophils and resident 
cells which helps in the blood–brain barrier in ischemic 
stroke [57]. Similarly, MSC transplantation significantly 
reduced the IgG leakage by declining MMP9, TNF-α, and 
pro-inflammatory cytokines expression in transient mid-
dle cerebral artery occlusion (MCAO) models [57]. Also, 
MSC can suppress ICAM-1 expression via AMP-activated 
protein kinase (AMPK), suggesting ICAM-1 might be a 
critical paracrine factor of MSCs in regulating leukocyte 
diapedesis [57]. Therefore, the regulation of endothelial pro-
teins by MSCs needs further investigation to advance stem 
cell therapy which could be used to treat various VHF and 
COVID-19 patients.

Oxidative stress and hyper-inflammatory response 
secreted by immune cell/dysregulated immune cells during 
COVID-19 and DENV infection are considered central fac-
tors of disruption of tight junction proteins and endothelial 
leakage [58–60]. Hence, the anti-oxidant potential of MSC 
therapy might be an effective strategy in restoring endothe-
lial barrier function. For example, CCR2 overexpressed 
MSC are reported to preserve BBB integrity by damping 
ROS production and TJ breakdown in in vivo model [61]. 
Moreover, in vitro culture of brain-microvascular endothelial 
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cells (BMVECs) with CCR2 overexpressed MSC resulted in 
reduced TJ loss and ROS levels, suggesting an anti-oxidant 
activity by MSC secretomes [61]. Consistently, a genome-
wide study reported a series of anti-oxidant-related genes 
in MSC, revealing elevated expression of peroxiredoxin, an 
anti-oxidant enzyme family. Among these peroxiredoxins, 
PRDX4 was shown to protect BBB integrity [61]. Most 
importantly, MSC therapy can also trigger the production 
of other anti-oxidant enzymes like heme oxygenase-1 via 
activation of the Cx43/Nrf2 mechanism, thereby leading to 
reduced brain edema and cell death [62]. Indeed, a study 
by Yoshida et al., demonstrated that BBB integrity was 
significantly increased when injected with human amniotic 
MSC accompanied by decreased levels of TNF-α and iNOS 
[56]. In reference to this, amniotic stem cell-induced mac-
rophage polarization enhances the secretion of anti-inflam-
matory cytokines (IL-10 and IL-6) which might contribute 
to endothelial repair [63].

Various junction proteins such as β-catenin, VE-cadherin, 
and occluding regulate paracellular permeability whereas 
transcellular permeability is controlled by endothelial bar-
rier macromolecules like transferrin and albumin [64, 65]. 
In this respect, an in vitro study exhibited that human BM-
derived MSCs are capable of restoring pulmonary endothe-
lial permeability by regulating adherens junction proteins 
(VE-cadherin and β-catenin) [65]. An in vivo study using 
the Japanese encephalitis virus demonstrated that treatment 
with MSC enhances the expression of tight junction protein 
1 and alleviates the virus-induced destruction of BBB by 
inhibiting the overproduction of cytokines [66]. Mechanisti-
cally, another study revealed that hepatocyte growth factor 
(HGF as a paracrine factor) secreted from mouse bone mar-
row-MSCs (BM-MSCs) could protect TJ protein (occludin) 
and endothelial barrier through the mTOR/STAT3 signal-
ing pathway [64]. The synergistic effect of human MSCs 
secreted paracrine factor HGF and VEGF protect both tran-
scellular and paracellular endothelial barriers by activating 
the Rac1 signaling mechanism [67].

On the other hand, MSC-derived exosomes are capable 
of regulating immune functions in ARDS. For example, 
P2X, a ligand-gated ion channel, plays a critical role in the 
inflammatory response of ARDS. Regarding this, a study 
reported that rat BM-MSC-derived exosomes carrying 

miR-124-3p have been shown to impede P2X7 expression 
accompanied by downregulation of inflammatory response 
in a rat model [68]. Parallelly, another study also reported 
that rat BM-MSC-derived exosomes could inhibit the 
TLR4/NF-κβ signaling pathway and downregulated intes-
tinal ischemia reperfusion-induced ARDS [69]. A similar 
observation was also reported in human UC-MSC-derived 
exosomes carrying miR-451 which suppressed the expres-
sion of TLR4 and p56, thereby hindering the TLR4/NF-κβ 
signaling pathway [70]. Notably, mouse BM-MSC-derived 
exosomes showed impede pulmonary endothelial apopto-
sis via miR-21-5p, which downregulated the expression of 
PTEN and PDCD4 [71]. These investigations indicate that 
MSC-derived exosomes could be an effective and key master 
plan for treating patients with ARDS and hemorrhagic man-
ifestation. Besides, engineered exosomes could also pave 
the way new direction for the advancement of therapeutic 
approaches in near future. Based on the above evidence we 
have depicted (Fig. 1), the molecular mechanism of MSCs 
is restoring endothelial barrier function. Although MSCs 
therapy has shown marked advantages over other treatment 
strategies, it still faces some limitations like inconsistency 
in terms of immune-compatibility, heterogeneity, stability, 
differentiation, formulation and preparation procedures, 
dosing conditions, route of delivery, and long-time storage 
strategies [72, 73].

Conclusion

Since there is no standard therapy for the treatment and 
management of patients with debilitating virus diseases like 
COVID-19 and dengue, we would like to suggest that mes-
enchymal stromal/stem cell therapy could be a potential and 
novel therapeutic approach to overcome the endothelial dam-
ages driven in ssRNA virus infection and could also restore 
the endothelial barrier function that helps to improve the 
survival rate of COVID-19 patients as well as patient with 
hemorrhagic complications. However pre-clinical/clinical 
trials need to be conducted to ascertain the role of MSCs in 
restoring endothelial activity and prevent disease progres-
sion during the course of virus infection.
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