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Abstract

Cingulum is widely studied in healthy and psychiatric subjects. For cingulum analysis from diffusion tensor MR imaging,
tractography and tract of interest method have been adopted for tract-based analysis. Because tractography performs fiber
tracking according to local diffusion measures, they can be sensitive to noise and tracking errors can be accumulated along
the fiber. For more accurate localization of cingulum, we attempt to define it by skeleton extraction using the tensors’
information throughout the tract of cingulum simultaneously, which is quite different from the idea of tractography. In this
study, we introduce an approach to extract the skeleton of cingulum using active contour model, which allows us to
optimize the location of cingulum in a global sense based on the diffusion measurements along the entire tract and contour
regularity. Validation of this method on synthetic and experimental data proved that our approach is able to reduce the
influence of noise and partial volume effect, and extract the skeleton of cingulum robustly and reliably. Our proposed
method provides an approach to localize cingulum robustly, which is a very important feature for tract-based analysis and
can be of important practical utility.
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Introduction

With diffusion tensor magnetic resonance imaging (DT-MRI),

diffusion anisotropy effects can be ascertained, characterized, and

exploited to provide informative details regarding white matter

microstructure [1]. DT-MRI makes it possible to noninvasively

study three-dimensional geometric structure of specific fiber tracts

[2] and possible micro-structural connectivity between different

brain regions. To date, DT-MRI is widely used in basic

neuroscience research and clinical applications [3–8].

Cingulum is part of the brain’s limbic system, which is involved

in humans’ cognition, emotion, depression, motor function, etc.

[5,9,10] It forms a single and continuous structure. Cingulum has

been widely studied in many clinical researches by DT-MRI.

Wang et al. [3] especially studied anterior cingulum abnormalities

in male patients with schizophrenia; Catheline et al. [4] especially

studied the alterations of the cingulum bundle during aging and

Alzheimer’s disease; Stenset et al. [5] studied the cingulum fiber

diffusivity and CSF T-tau in patients with subjective and mild

cognitive impairment; and many other researchers also focus on

the diffusion analysis of cingulum.

For diffusion analysis of cingulum, region of interest (ROI)

based method is usually adopted [3,4,5]. Interested ROI were

manually defined on different parts of cingulum. As we all know,

this method is laborious and operator dependent. And this

approach limits a study to only being sensitive to changes in those

few parts of the brain where ROIs are placed [11]. More

sophisticated approach is tract of interest (TOI) analysis. In TOI,

tractography is used to reconstruct the fiber bundles and then the

diffusion values along/on the fiber tract are compared across

subjects. For example, Zhang et al. [6] reconstructed cingulum

tract by streamline tracking method [12] and analyzed fractional

anisotropy (FA) in three parts of cingulum for disease analysis;

Gong et al. [7] used tractography (one similar method to Lazar et

al. [13]) to find cingulum bundle and FA was parameterized

according to the position within the tract. TOI-based method

makes it feasible for detailed diffusion analysis along/on the whole

cingulum, which can provide more information for basic

neuroscience research and clinical studies.

Fiber tracking is the most important step for TOI method and

any deviation of tractography will lead to inaccurate results for

following analysis. To ascertain fiber trajectory of cingulum from

DT-MRI, various tractography methods could be used [14].

There are several widely used methods, including streamline

tracking [12,15–17] tensor deflection (TEND) tractography

[13,18,19], and probabilistic diffusion tractography [20,21]. These

methods are based on integrating the local white matter

orientation information in the DT-MRI data across the brain

[22,23]. Although they have been used successfully to track white

matter structures of interest in various studies [22,24,25], they are

sensitive to noise and tracking errors may cumulate along the fiber

track [2,17,26]. Due to the influence of noise, partial volume effect

(PVE), and fiber crossing/fanning/branching [15,23], most

existing tractography methods are known to miss fibers [21] or

result in wrong pathways [8,22]. To reduce the errors in

tractography [23], knowledge-based multiple-ROI approaches

have been adopted [7,23,27,28]. Although these approaches
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impose a significant constraint on the tract to reduce the

occurrence of erroneous results, they rely strongly on prior

tractography results, so any limitations and sensitivities to the

tractography algorithm may not be avoided [22].

Smith et al. [11] proposed the tract-based spatial statistics

(TBSS) method for cross-subject analysis. This method gets the

skeleton of the whole brain white matter tracts for following

analysis. TBSS provides the idea of skeletonisation of whole brain

fiber tracts. It is useful and effective for whole brain tract based

analysis and is becoming more and more popular. Although TBSS

can provide the skeleton for every subject by ‘‘back projection’’

[11], it firstly get the common skeleton from group subjects rather

than the individual, and it provides the skeleton for whole brain

white matter rather than one specific tract. Bringing the

advantages of TOI and TBSS methods together, for more

accurate localization of cingulum individually, we attempt to

define it by skeleton extraction with all tensors’ information

throughout the tract based on active contour model.

The main segment of cingulum, which arching over corpus

callosum, is studied in this paper. Here we describe a novel

approach to extract the skeleton of cingulum individually, not

based on tractography method but by searching the optimized

skeleton based on active contour model and the tensors’

information throughout this tract. Our purpose is to provide an

optimal trajectory representation of cingulum by tract skeletonisa-

tion. The method determines the tract skeleton by global

optimization, which can reduce the influence of noise and PVE

and derive the orientation and shape of individual’s cingulum

pathway more robustly. Robustness and reliability, which is the

most important requirements for the localization of cingulum,

were tested on synthetic and real DT-MRI data.

Methods

Diffusion tensor MR data acquisition
DT-MRI data from six healthy subjects were used in this study.

None of the subjects had (a history of) neurological or psychiatric

disorders or anatomical abnormalities. This study was approved

by the local medical ethical committee of Emory University. All

participants gave written informed consent prior to study

participation.

DT-MRI data were obtained on a 3.0 T MRI scanner (Siemens

Medical Solutions, Malvern, PA) using diffusion weighted echo

planar imaging with 12 different diffusion gradient directions

(TR/TE: 6500/90 ms, matrix: 2566256, FOV: 2206220 mm,

slice thickness 2.5 mm, b value: 1000 s/mm2). On each subject,

DT-MRI scans were performed six times for subsequent averaging

to get data sets with different signal-to-noise ratio (SNR) levels for

further evaluation.

Image preprocessing
Before calculating the diffusion tensors from DT-MR images,

each data set was first re-sampled to spatially isotropic dataset, and

preprocessed to remove skull and correct eddy-current-induced

artifacts using FMRIB Software Library (FSL) tools (FMRIB,

Oxford, U.K.; [29,30]).

Estimation of diffusion tensor and diffusion anisotropy
from DT-MR images

Diffusion tensor and its principle values and their orientations

were derived using a standard algorithm. Using eigenvalues/

eigenvectors, different anisotropy measures were computed

[1,31,32] to map tensor data onto scalars and to quantitatively

estimate the diffusion anisotropy. Fractional anisotropy (FA) was

calculated using

FA~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½(l1{SlT)2z(l2{SlT)2z(l3{SlT)2�

q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½l2

1zl2
2zl2

3�
q ð1Þ

SlT~(l1zl2zl3)=3 ð2Þ

where l1, l2, and l3 are the eigenvalues of diffusion tensor D. The

degree of anisotropy (tensor ellipsoid eccentricity) is related to the

presence of oriented structures; and the main direction of

diffusivities (main ellipsoid axes) is linked to the orientation in

space of the structures [1]. Both the degree of anisotropy and

tensor’s eigenvectors provide important information of fiber’s

microstructure.

Active contour based tract skeleton extraction
Our purpose is to provide an approach to extract the skeleton of

cingulum accurately, not based on tractography but by searching

the optimized skeleton based on active contour model. The main

idea of our active contour based tract skeleton extraction (ACTSE)

is to optimize the cingulum skeleton based on the tensors’

information throughout the tract simultaneously, rather than trace

the fiber path step by step and voxel by voxel based on local tensor

information like tractography. So it is possible for ACTSE to

reduce the influence of noise and PVE and derive the orientation

and shape of individual’s cingulum pathway more robustly.

In this study, the goal is to extract the skeleton of cingulum.

Energy based active contour method (also named as ‘‘snake’’) and

curve fitting are adopted to for the optimization. The concept of

snake introduced by Kass et al [33] has been successfully used in

edge detection, object segmentation, and object tracking

[33,34,35]. The snake model is based on an energy minimizing

spline, with the energy depending on its shape and location within

the image. For the skeleton of cingulum C in diffusion tensor

domain, we define the evolving curve as

C(s,t)~f(x(s,t),y(s,t),z(s,t)) : 0ƒsƒLg,C[V ð3Þ

where L denotes the length of the contour C, and V denotes the

entire domain of brain mask. In Eq. (3), t represents the evolution

time; at each t, there is one evolution of the contour. The

continuous form in Eq. (3) can be approximated by a discrete

representation as

C(s,t)&C(n,t)~f(x(n,t),y(n,t),z(n,t)) :ƒnƒN,s~0znDsg ð4Þ

where L~N:Ds, and x(n,t),y(n,t),z(n,t) denote the 3D coordi-

nates of point n at time t. Here we set

P(n,t)~(x(n,t),y(n,t),z(n,t)). An energy function E(C,t) can be

defined on the contour as [33]

E(C,t)~EintzEext?min ð5Þ

where Eint and Eext, respectively, represent the internal energy and

external energy. The internal energy determines the regularity,

and its minimization controls the smooth shape of the contour.

Similar to other researchers [33,34,35, and more others], the

definition for the internal energy is a quadratic functional given by

Skeleton Extraction of Cingulum from DT-MRI
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Eint~

ðL

0

(aDC
0
(s,t)D2zbDC

0
(s,t)D2)ds

&
XN

n~0
(aDC

0
(n,t)D2zbDC

0
(n,t)D2)Ds

ð6Þ

where constants a and b are the weighting parameters that control

the curve’s tension and rigidity, and C9 and C0 denote the first and

second derivatives of contour C with respect to n. Because curve

fitting will be applied after curve evolution at each t for more

smoothed curve, Eint is in fact eliminated in our study. That is, in

our study a = 0, b = 0.

The external energy term determines the criteria of contour

evolution dictated by FA value Ifa(x, y, z) and eigenvectors,

vj
!(x,y,z) (j = 1,2,3), and is defined as

Eext~

ðL

0

(Eimg(C(s,t)))ds&
XN

n~0
(Eimg(C(n,t)))Ds ð7Þ

where Eimg(x,y,z) denotes a scalar function; the local minimum of

Eimg attracts the contour to an optimal location. Fig. 1 provides an

illustration of the main idea for ACTSE. We select the function as

a combination of a function of FA map’s gradient and a function of

eigenvector’s changes.

Eimg(n,t)~

wa � e

P
i[R

% ~vv1(i,t){~vv1(n,t)j j
90

� �
zwc � e

% ~uu(n,t){~vv1(n,t)j j
90

� �
z

wfa � e
{Ifa P(n,t)ð Þ

zwd � e

P(n,t){PH,fa(n,t)

��� ���
r=2

0
@

1
A

ð8Þ

There are four terms in Eimg. Constants wa, wc, wfa and wd are

weighing factors for these terms. By experience, here we set

wa, = 1, wc = 1, and wfa = 1. The first item defines the eigenvectors’

consistency of contour’s voxel with surrounding voxels. vj
!

(j = 1,2,3) represent eigenvectors, v1
! is the principle eigenvector.

%D~vv1(i,t){~vv1(n,t)D calculates the absolute angle difference

between~vv1(n,t) and~vv1(i,t). R is defined as the region surrounding

voxel n, usually a 36363 window. The first term keeps the tract

skeleton away from the edge of the fiber bundle. The second term

in Eimg defines the difference between contour’s tangent vector ~uu
and the principle eigenvector. This term is included to make the

tract skeleton’s tangent as consistent as possible with voxel’s

principle vector. The third term in Eimg defines the influence of FA

value Ifa. Due to PVE, FA value decreases at the interface of gray

matter and white matter. Term three tends to move the tract

skeleton to the voxels with high FA value. The fourth term in Eimg

is determined by the distance between the possible tract’s center

line and the estimated skeleton. The center line of cingulum is

defined as a line passing through the center of the fiber tract and

keeping the tract’s trajectory. The fourth term is only used for fine

adjustment. If the difference between ~uu and ~vv1 is larger than 30

degree, wd = 0 and if the iteration number is less than Ns, wd = 0.

Otherwise wd = 1. Ns is set heuristically. At Ns, there are no big

changes for the evolution of tract skeleton. In our study, Ns was set

to 15. Maximum radius r of the tract is defined by the user to

handle the possible situation where two different fiber bundles are

crossing. H is defined as the overlapping area of the fiber tract’s

cross section at point P(n,t) perpendicular to the principle

direction v1
! and the sphere with radius r at point P(n,t). Hfa

represents the region in H with Ifa.0.1; all voxels in Hfa should

have the consistent principle eigenvector with point P(n,t).

PH,fa(n,t) represents the center of Hfa. The minimization of the

fourth term aims to localize tract skeleton close to the centerline of

the tract, as illustrated in Fig. 2. Overall, the minimization of Eext

drives the skeleton to voxels with high FA and consistent

eigenvectors and close to the center of fiber tract. The

Figure 1. Illustration of contour evolution for ACTSE. (a) shows the 3D principle eigenvector direction field. Black arrows represent the
directions are from left to right or from inferior to superior). Light shows high FA values; dark shows low FA values. (b) shows the process of curve
evolving driven by energy E. Black line shows the position of curve C at iterative time t. Black arrow shows the direction of principle eigenvector~vv1 ;
blue arrow shows the curve’s tangent vector~uu. Purple line shows the evolved curve at t+1. The red arrows indicate contour evolving direction driven
by external energy Eext.
doi:10.1371/journal.pone.0056113.g001

Figure 2. Illustration of parameters in the fourth item in Eimg..
Right round region is the enlargement of the dark region in Left image.
H represents the common region of the tract’s cross dissection at point
P(n,t) (blue point) along principle direction ~vv1 and the sphere with
radius r (green line) at point P(n,t). Hfa represents the region in H with
Ifa.0.1. PH,fa(n,t) (red point) represents the center of Hfa.
doi:10.1371/journal.pone.0056113.g002
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minimization of Eext controls the curve evolution of skeleton

searching.

B-spline curve fitting is applied after curve evolution at each t
[22], further reducing the influence of noise and ensuring the

smoothness of the skeleton. In addition, the path of contour C is

represented by a three-dimensional cubic B-spline and re-

parameterized by fixed distance along C at each t. At each t,

energy E(C,t) is minimized with the skeleton of cingulum C(n,t)
defined on the discretized grid. Subsequent curve fitting leads to a

smoothed tract skeleton ~CC(n,t) with subvoxel spatial resolution.

The optimization of skeleton searching, including curve evolution

and curve fitting, is performed iteratively. The distance between
~CC(n,tz1) and ~CC(n,t), Ds, is evaluated according to Eq. (9). The

iteration stops when Ds is less than a predefined constant e.

Ds~D~CC(n,tz1){~CC(n,t)D ð9Þ

Pseudocodes
To accurately localize the skeleton of cingulum in each

individual, a series of consecutive curve evolution and curve

fitting are performed iteratively. To begin the algorithm, a starting

curve C(n,0) of cingulum’s skeleton is initialized by mapping a

reference curve to each individual according to the user-defined

starting region, end region, and/or middle regions. Middle regions

are selected based on possible cingulum’s inflexion points.

Reference curve is manually drawn based on the anatomical

knowledge of cingulum. Based on the initial localization, we try to

get the accurate skeleton of cingulum by the minimization of the

defined energy function E and curve fitting iteratively with Eqs.

(3), (4), (5), (7), (8) and (9).

The pseudocode for complete skeleton searching of cingulum is

as follows:

Begin
Set t = 0

Initialized localization of skeleton curve by mapping a reference

one to each individual

Get C (n,0) (0,= n,= N)

Set Ds = LARGE

While Ds.e
For every voxel n at curve C (n, t) (0,= n,= N)

For every voxel m surrounding voxel n

Calculate the energy E (m, t)

If E (m, t),E (n, t),

relocate point n to the updated location m

End If

Repeat for all m surrounding n

Repeat for every voxel n at curve C (n, t) (0,= n,= N)

Calculate updated C (n, t+1)

Curve fitting to get a more smoothed tract skeleton ~CC(n,tz1)
Calculate Ds

Set C (n, t+1) = ~CC(n,tz1)
Set t = t+1

End while

Output C (n, t), the calculated skeleton of cingulum

End

Evaluation of ACTSE method on synthetic data
It is necessary to estimate the methods’ robustness for a wide

range of conditions to assess the performance of the method.

Because there is no gold standard means for measuring fiber

trajectories in living humans [17,36], synthetic DT-MRI tensor

data were generated. The data were simulated as a 3-D volume

with 1286128664 voxels, with one diffusion tensor D assumed for

every voxel. Eigenvalues (l1, l2, l3) and eigenvectors (v1
!,v2
!,v3
!)

were assumed. One curved white matter tract structure was

simulated and assumed to be an arc, as shown in Fig. 3(a). The

voxels of simulated fiber tract were characterized by eigenvalues

l1 = 1.0, l2 = l3 = 0.01, and the principle eigenvector v1
! was

assumed to have the same direction with fiber curve’s tangent, the

other two eigenvectors were set perpendicular to the principle one

and to one another. For the voxels outside the simulated fiber

tract, eigenvalues were set as l1 = l2 = l3 = 1 and the directions of

eigenvectors were set randomly. Diffusion quantity, such as FA

map, was calculated accordingly.

The simulated data was filtered by with the application of a

36363 moving average different times (t = 1, 2, 3) to simulate

different PVE levels. Moreover, in order to reflect the uncertainty

in the estimation of the eigenvectors, random noise was added to

the simulated diffusion tensors with different standard deviation

(SD) (sd = 0.003, 0.006, 0.009, 0.012, 0.015) respectively, to

generate different SNR levels. Here SNR is defined as

SNR~mean FA on the fiber=standard deviation of

FA in the background

Both our ACTSE method and tractography could provide the

geometric trajectory of cingulum. So here we compared the

skeleton extracted by ACTSE with the center line acquired by the

streamline tractography (SLT) method [12] on dataset with

different PVE and noise levels. For the evaluation of synthetic

data, the center line acquired by SLT is defined as the line

connected by the continuous centroids of the cross sections along

x-axial direction of all tracked fiber bundles. As shown in Fig. 3(a),

it is easy to get the cross sections when sliced perpendicular to the

x-axis. The deflection errors, defined as the distance along the arc

length between the ideal center line of simulated curved tract (as

shown in Fig. 3(a)) and the estimated tract skeleton by ACTSE or

the calculated center line of tracked fiber tract by SLT, were

quantitatively calculated. The mean error, between the location of

the acquired tract skeleton by ACTSE or the calculated center line

of tracked fiber bundles by SLT and the ideal tract center line, was

also quantitatively calculated at different noise or PVE levels.

Starting and ending regions were defined as boxes placed

manually at the two ends of the fiber trajectory, as shown in

Fig. 3(a). For SLT, these regions served as seed regions and as

stopping criteria. SLT was applied with step size = 1 voxel,

curvature threshold = 30u. For SLT, in order to obtain as many

fiber bundles as possible and obtain the tract as long as possible, no

initial seed threshold or tracking FA threshold restriction were

used; meanwhile a small curvature threshold was set to 30u to

avoid erroneous tracking due to noise and PVE. ACTSE was

applied with the starting and ending regions as two ends of the

skeleton, and the step size of curve evolution was set to 1 voxel.

The initial contour for skeleton searching was acquired by

mapping the reference curve directly to the two ROIs. The

reference curve is a roughly manually drawn curve line. The

possible maximum radius of the simulated fiber r is set to 2 voxels.

Evaluation of ACTSE on experimental data
ACTSE was applied on data from 6 healthy subjects. Each

subject was scanned 6 times to acquire 6 datasets. For every

subject, we randomly combined 5 acquisitions, 3 acquisitions, and

1 acquisition, respectively, resulting in 3 different SNR, each with

Skeleton Extraction of Cingulum from DT-MRI
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6 different data sets and these 6 data sets were independent with

each other. This made it possible to estimate the deviation across 6

acquired scans at three noise levels respectively for every subject

and estimate the average deviation of all subjects at same noise

level.

SLT was only used for qualitative comparison. Seed regions and

two end regions were manually defined on cingulum by expert for

SLT. Color-coded FA map could provide the information to

distinguish fibers with different directions, so it was used to specify

the constraint regions. In color FA map, it is clear that one curved

fiber - the main segment of cingulum – is arching over the corpus

callosum with continuous changed diffusion directions. The

regions were placed on the front end of anterior cingulum, the

middle of cingulum, and the end of posterior cingulum for every

subject. These parameters were used for SLT: step size = 1 voxel,

curvature ,60u for SLT method, FA threshold of seed

region = 0.2. No tracking FA threshold restriction was used for

SLT. For ACTSE, the defined regions served as the constraints of

extracted cingulum skeleton, and the step size of curve evolution

was set to 1 voxel. For real DT-MRI data, r is set to 2 voxels to

represent the possible maximum radius of cingulum.

Similar to the quantitative evaluation method of smith et al.

[11], SD of the location of extracted cingulum skeleton was

calculated for ACTSE across scans and subjects as a measure of

robustness and repeatability. Two fixed positions were selected:

the ROI on anterior cingulum (AC) and another ROI on posterior

cingulum (PC).

Figure 3. Illustration of extracted skeleton by ACTSE and tractography result by SLT on simulated phantom. (a) shows the ideal central
line of simulated fiber tract overlaid on FA map (in blue). Light blue region and yellow region are defined as the starting and ending regions for the
SLT. These regions also served as the constraints for ACTSE. (b) and (c) were reconstructed with added noise sd = 0.003 (SNR = 31.28) and PVE level
t = 2; (d) and (e) were reconstructed with noise sd = 0.009 (SNR = 10.67) and t = 2. (b) and (d) show the fiber tractography results by SLT in red; (c) and
(e) show the extracted tract skeleton by ACTSE in green. In (b), (c), (d) and (e), the blue rectangles amplified the same part of the results.
doi:10.1371/journal.pone.0056113.g003
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Results

Synthetic data
Extracted skeleton by ACTSE was compared to the center line

of tracked fiber bundles by SLT on the simulated synthetic data.

Fig. 3 (a) shows the ideal center line of simulated fiber tract

overlaid on FA map. The blue line shows the ideal central line of

simulated curve tract. Light blue region and yellow region are

defined as the starting and ending regions for SLT. These regions

also served as the constraints for ACTSE. Fig. 3 (b) and (c) were

reconstructed with added noise sd = 0.003 (SNR = 31.28) and PVE

level t = 2; (d) and (e) were reconstructed with noise sd = 0.009

(SNR = 10.67) and t = 2. Fig. 3 (b) and (d) show the fiber

tractography results by SLT in red; (c) and (e) show the extracted

tract skeleton by ACTSE in green. With increasing noise or PVE,

fewer fiber bundles reached the end region compared to the

starting region by SLT method and there are obvious tracked

deflections at low SNR (Fig. 3 (d)). In contrast, ACTSE led to

robust tract skeleton extraction even at high noise situation (Fig. 3

(e)).

Fig. 4 plots the deflection error between the tract central line

derived by SLT or tract skeleton extracted by ACTSE and the

ideal tract central line, at SNR = 31.28, 10.67, 6.49 corresponding

to added noise sd = 0.003, 0.009, 0.015 respectively at t = 2. Table 1

shows the mean error between the skeleton extracted by ACTSE

or the center line of tracked fiber tract by SLT and the ideal tract

center line at different noise or PVE levels. It is evident that the

error of ACTSE is considerably lower than that of SLT under all

circumstances investigated.

Along the center line of tracked fiber tract from SLT, the errors

were often larger than 1 voxel. For example, with t = 2, as shown

in Fig. 4(c), some errors from SLT reached 1.5 voxels, while the

errors remained lower than 0.4 voxel for ACTSE. With t = 3, noise

sd = 0.012 (SNR = 5.56) or 0.015 (SNR = 4.64), no tracked fiber

reaching the end region by SLT, while ACTSE was able to

identify the skeleton with low error (shown in Table 1). The results

proved that ACTSE is robust in identifying the skeleton of

simulated curve fiber tract at different noise and PVE levels,

showed the superiority for cingulum location by ACTSE

compared to tractography methods.

Experimental DT-MRI data
ACTSE were applied to extract the skeleton of cingulum on 6

healthy subjects. Fig. 5 illustrates the 3D results of skeleton

extraction by ACTSE and fiber tracking by SLT on subjects 4 and

6 for right cingulum (from sagittal view and in 3D view). (a), (b),

and (c) are from subject 4; (d), (e), and (f) are from subject 6. (b) and

(e) show the tract skeleton extraction results by ACTSE (in green)

from sagittal view; (c) and (f) show fiber tractography results by

SLT (in red) from sagittal view; (g) and (h) show the results of

ACTSE and SLT in 3D view. The tract skeleton from ACTSE

was consistent with fiber tracking results from SLT, and both

results were consistent with fiber directions indicated by color FA

maps. However, the fibers derived by SLT also exhibit clearly

spurious branches.

Fig. 6. illustrates the 3D tract skeleton extraction of right

cingulum bundle by ACTSE on 6 subjects from sagittal view. (a)

shows the reference curve of cingulum skeleton. (b) illustrates the

anatomical structure of cingulum on color FA map. Three ROIs

were manually defined by one expert as the constraint regions for

ACTSE; these regions also served as seed ROI and end ROIs for

fiber tracking by SLT. (c) show the initial curves for skeleton

searching by ACTSE of 6 healthy subjects. (d) show the extracted

cingulum skeletons of 6 healthy subjects. These skeletons appeared

consistent with the anatomical structure of cingulum.

To illustrate the robustness of ACTSE, we showed the cingulum

skeleton extraction results of ACTSE at same and different noise

levels. To provide a qualitative reference, SLT was also used to

show the tracked cingulum. Fig. 7 illustrates the skeleton

extraction results by ACTSE and fiber tracking results by SLT

of right cingulum on 6 different dataset of subject 4 at the same

noise level from sagittal view. All these 6 dataset came from the

averages of 3 random acquisitions of subject 4. We can see that the

extracted skeleton by ACTSE on the 6 data sets are highly

consistent; while tractography results by SLT differ significantly,

especially on anterior and/or posterior part of cingulum. Fig. 8

illustrates the skeleton extraction results by ACTSE and fiber

tracking results by SLT of right cingulum at different noise levels

on subject 4 from saggital view. In Fig. 8, (a), (b) and (c) were

derived from data sets of averages from 1, 3, and 5 acquisitions

respectively. From (a), (b) to (c), SNR increased. It is evident that

ACTSE led to reproducible and reliable results at various SNR

levels.

Figure 4. Illustration of deflection errors of ACTSE and SLT along the arc length on simulated phantom. Deflection errors were
calculated along the arc length between the ideal tract central line and the skeleton extracted by ACTSE or the center line of tracked fiber tract
acquired by SLT on the simulated curve fiber phantom. Red shows the deflection error of calculated center line by SLT method; and green shows the
error of extracted skeleton by ACTSE. From left to right, the errors were accessed with filter times t = 2, and noise level sd = 0.003, 0.009, 0.015
respectively.
doi:10.1371/journal.pone.0056113.g004
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Two regions with the fixed positions on AC and PC were

manually defined by expert for SD analysis for every subject, as

illustrated in Fig. 9. As described above, for every subject, the

datasets at 3 different noise levels were generated from the average

of 5, 3, and 1 acquired scans respectively, and the corresponding

noise levels are 1, 2 and 3. From noise level 1 to 3, noise increases

and the SNR decreases. SD of the location was estimated on the

extracted skeletons by ACTSE at various SNR levels across 6

dataset for every subject. At the position on AC, the average SDs

of these six subjects are 0.4313, 0.4396, and 0.5002 voxel for noise

level 1, 2, 3 respectively; at another position on PC, the average

SDs are 0.2660, 0.3543 and 0.4521 voxel for noise level 1, 2, 3

respectively. Totally with increasing noise, SD increased slightly.

At various noise levels, SD is generally lower than 0.67 voxel for

Table 1. Mean error between the skeleton extracted by ACTSE or the center line of tracked fiber tract by SLT and the ideal tract
center line at different noise or PVE levels on simulated curve fiber phantom data.

SLT ACTSE

mean tracking errors

PVE Levela With random noise SDb With random noise SDb

0.003 0.006 0.009 0.012 0.015 0.003 0.006 0.009 0.012 0.015

1 0.3998 0.2596 0.3276 0.5298 0.4920 0.0782 0.0908 0.1193 0.3468 0.2134

2 0.4708 0.3639 0.6954 0.4411 0.7839 0.0872 0.1379 0.1161 0.2893 0.2458

3 0.5878 0.6027 0.5672 NULL NULL 0.0782 0.3771 0.509 0.7223 0.3654

aThe phantom data was filtered by mean filter with window 36363 in variable times (N = 1, 2, 3) to simulate different PVE levels.
bRandom noise with standard deviation (SD = 0.003,0.006,0.009,0.012,0.015) were added to phantom data to simulate different noise levels.
doi:10.1371/journal.pone.0056113.t001

Figure 5. Illustration of skeleton extraction by ACTSE and fiber tracking by SLT for right cingulum. (a), (b), (c) and (g) are from subject 4;
(d), (e), (f) and (h) are from subject 6. (a) and (d) show FA color map. (b) and (e) show tract skeleton extraction results of ACTSE (in green) from sagittal
view; (c) and (f) show fiber tractography results by SLT (in red) from sagittal view. (g) and (h) show the results of ACTSE and SLT in 3D view.
doi:10.1371/journal.pone.0056113.g005
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every subject, and the average SD of these six subjects is lower

than 0.51 voxel. These quantitative analysis results indicated that

ACTSE is able to successfully extract the cingulum skeleton under

various noise situations and ACTSE is robust and reproducible.

Discussion

ACTSE was proposed in this paper to extract the tract skeleton

of cingulum robustly. This method was evaluated on both

synthetic data and experimental DT-MRI data. From Fig. 3 and

Table 1, it was proved that ACTSE performed robust at different

noise or PVE levels on simulated curved fiber data. From Fig. 5

and 6, it is clear that ACTSE was able to identify the cingulum in

various subjects and its results are consistent with known anatomy.

From Fig. 7, Fig. 8, and SD analysis, ACTSE showed robustness

either at various SNR or on individuals. In general, our proposed

ACTSE is robust and reproducible on skeleton extraction of

cingulum, which is a very important feature for tract-based

clinical/basic analysis.

To provide an optimal trajectory of cingulum, tractography

method is usually used. Tractography is to track fiber bundles step

by step according to local diffusion tensors, while our ACTSE tries

to extract the whole skeleton of cingulum based on active contour

model using all the tensors’ information throughout the tract

simultaneously. For Fig. 3–4 and Fig. 7–8, it is obviously that SLT

algorithm is highly sensitive to noise and PVE, and tracking errors

will be accumulated along the trajectory, which is consistent with

other researcher’s results [2,17,26]. From Fig. 3 and 4, we can see

that with increasing noise or PVE, fewer fiber bundles reached the

end region compared to the starting region with SLT method; in

Figure 6. Illustration of 3D skeleton extraction of right cingulum bundle by ACTSE from sagittal view. (a) shows the reference curve of
cingulum skeleton (in blue). (b) illustrates the anatomical structure of cingulum on color FA map. Green indicates anterior-posterior; red, left-right;
blue, superior-inferior. Cingulum is arching over the corpus callosum. Three ROIs were manually defined on the front end of anterior cingulum, the
middle of cingulum, and the end of posterior cingulum for every subject. These regions serve as the constraints of tract skeleton extraction for ACTSE
method; for SLT method, these regions also serve as seed ROI (yellow) and end ROIs (pink) for fiber tracking. (c) show the initial curves for skeleton
searching by ACTSE of 6 subjects overlaid on sagittal FA maps.. (d) show the extracted cingulum skeletons of 6 subjects overlaid on sagittal FA maps.
doi:10.1371/journal.pone.0056113.g006
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contrast, ACTSE led to robust tract skeleton extraction even at

high noise situations. From Fig. 7 and 8, we can see that with the

SNR changing, the tractography results by SLT differed

obviously, especially on anterior and/or posterior part of

cingulum; at the high noise situation, SLT even cannot get

acceptable tractography results (Fig. 8(a)). While ACTSE per-

formed robustly and consistently in various noise or PVE

situations. For the representation of fiber trajectory of cingulum,

Figure 7. Results illustration of ACTSE and SLT of cingulum at the same noise level from sagittal view. From top to bottom row, they
are 6 different volume data with the same noise level. All of them come from the average of random 3 acquisitions of subject 4. Green shows the tract
skeleton extraction results by ACTSE (left column) and red shows the fiber tractography results by SLT (right column) correspondingly.
doi:10.1371/journal.pone.0056113.g007
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it seems ACTSE provides a more robust, consistent, and reliable

approach.

Smith et al. [11] proposed the method of TBSS, which attempts

to combine the strength of voxelwise analyses with the strength of

tractography based analyses. TBSS provided the idea of tract

skeletonisation to better localize the white matter tracts of the

whole brain. It aims to provide the common skeleton of the group

subjects, not for individual, although it can provide the skeleton for

every subject by ‘‘back projection’’. During our proposed ACTSE,

not only FA but also tensor information is used to provide more

accurate localization of cingulum individually. TBSS provide the

common skeleton from the group subjects, and registration is very

important step. Any error from registration will influence the result

of skeleton extraction. Compared to TBSS, ACTSE provides the

individual skeleton of cingulum from every subject, and this

reduces the requirements of accurate registration. Moreover, in

the superior part of the cingulum, TBSS skeletonizes it to a thin

surface. In our ACTSE, one consistent line of the skeleton of

cingulum was extracted.

Melonakos et al. [37,38] proposed the Finsler tractography

method for white matter connectivity analysis of the cingulum

bundle. Although Melonakos et al. adopted active contour model,

they used it to construct the direction-dependent cost. Like other

tractography method, fiber is tracked by front propagation

techniques from seed to target region and then back from target

to seed region, which is quite different from ACTSE method. For

ACTSE, curve evolution is used for the whole tract searching

simultaneously by active contour. Other researchers [39,40] tried

to get the cingulum region by segmentation directly rather than

tractography. Edge detection is very important for accurate

segmention of cingulum tract. While for ACTSE, the critical issue

is to accurately locate the tract pathway of cingulum.

Our results show that ACTSE is robust and it produces smooth

and reproducible fiber trajectory of cingulum. The robust

performance of ACTSE can be attributed to the use of the active

contour model. Active contour model is widely used in computer

vision and pattern recognition [33,34,35]. It has been proven to be

an effective approach to extract object geometric characteristics.

In ACTSE, active contour model reduces sensitivity to noise and

artifacts in the data and also provides a more flexible framework to

incorporate regularization of cingulum skeleton while maintaining

consistency with the measured data. Active contour model updates

the skeleton based on all the tensors’ information throughout the

tract simultaneously at each iteration, making it less sensitive to

noise and PVE. One requirement for active contour model in

ACTSE is the initialization of skeleton contour. If the initial

contour is too far from the ideal location, and contour evolution

has to pass through more other fiber tracts to reach the ideal

location, ACTSE may be failed. To avoid it, we get the

initialization by mapping the reference curve to each individual

with the constraints of user-defined starting, middle, and end

regions. As illustrated in Fig. 6, for these 6 subjects, we got the

satisfied skeleton extraction by ACTSE. Moreover, from Fig. 7

and 8, it is proved ACTSE could extract the robust skeleton at

various noise levels.

To localize the trajectory of cingulum, like tractography,

ACTSE require users to define the start/middle/end regions.

For specific analysis of cingulum, both tractography and ACTSE

require users’ interactions. There are some other methods which

provide automatic diffusion analysis of human brain data, such as

statistical parametric maps (SPM) and TBSS, which are the

popular methods for whole brain diffusion analysis. However,

these automatic methods, including SPM and TBSS, aim at the

whole brain analysis, so registration is the most important step.

The selection of registration method and the selection of filter

kernel are still unresolved problems [11,41]. Any error from

registration will led to the error of final analysis results. For more

accurate analysis of specific fiber tract, TOI is proposed recently.

TOI localizes the trajectory of specific fiber tract individually.

However TOI is based on the results of tractography, and any

Figure 8. Results illustration of ACTSE and SLT of cingulum at different noise levels from sagittal view. (a), (b) and (c) are the volume
data with 3 different noise levels; they were derived from the averages of 1, 3, and 5 acquisitions of subject 4 respectively. From (a), (b) to (c), SNR
increased. Green shows tract skeleton extraction results by ACTSE, and red shows the fiber tractography results by SLT correspondingly.
doi:10.1371/journal.pone.0056113.g008

Figure 9. Illustration of locations for SD analysis. Blue and red
show the locations on AC and PC for SD analysis respectively.
doi:10.1371/journal.pone.0056113.g009
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deviation of tractography will lead to inaccurate results for

following analysis. Based on the idea of TOI and the tract

skeletonisation idea of TBSS, ACTSE provide an approach to

localize the skeleton of cingulum accurately and robustly at various

noise and PVE situations.

ACTSE was evaluated on real DT-MRI data of six healthy

subjects with 12 diffusion directions. 12 diffusion directions is

fewer for fiber tracking by tractography methods because of low

SNR, and 20 or even 64 diffusion directions were usually acquired.

Our study showed that ACTSE could get more robust and reliable

cingulum skeleton from DT-MRI data with only 12 diffusion

directions, and it is potential to speed up the scan time for data

acquisition with fewer diffusion directions for cingulum analysis.

There are widely interests in the study of cingulum [3,4,5,6]. It

has been shown that cingulum is involved in many high-level

cognitive functions and is an important factor in some psychiatric

diseases, such as schizophrenia, depression, Alzheimer’s disease,

etc. The robust extraction of cingulum skeleton makes it possible

for tract-based analysis of cingulum for these clinical psychiatric

diseases. For cerebral diseases with space occupying lesions, if part

of the cingulum is destroyed or seriously bending, it is not

appropriate to extract the whole skeleton of cingulum by ACTSE.

The robust localization of cingulum skeleton will result in a robust

estimation of diffusion properties along tract skeleton. The

evaluation of robustness and reproducibility of skeleton extraction

is the most important in our study. How to quantify the diffusion

parameters along tract skeleton is another issue. Based on the

individual skeleton, similar to TBSS [11], various diffusion

parameters, including apparent diffusion coefficient (ADC), FA,

and lattice index (LI), can be quantified accordingly along tract

skeleton for further analysis. To go back from the skeleton to the

whole tract to access the thickness along this fiber tract, directly

and simply, we can assess the tract thickness of cingulum by using

the FA threshold around the skeleton with some conditions. More

other methods could be developed for this in the future. Though

ACTSE is proposed for cingulum skeleton extraction, it also

provides an idea of skeleton extraction for other tubular-shape

fibers.

There are some selective parameters for the model of ACTSE.

In our study for the skeleton extraction of cingulum, the weighting

parameters wa, wc, and wfa were set to 1; wd was distinctly set to 0

or 1 according to the calculated angle difference between the

contour’s tangent vector and the principle eigenvector or the

iteration numbers. They worked well for the skeleton extraction of

cingulum in our study. The parameters wa and wc are the

weighting factors related to the anatomical characters of cingulum,

wd could be distinctly set, and wfa is used to locate the skeleton to

the voxels with high FA value. Given the fact that there could be

no big difference for the anatomical characters of cingulum and

the contrast of FA value between gray matter and white matter for

conventional DT-MRI data, it might be feasible to apply these

weighting parameters’ selection for other DT-MRI data. Howev-

er, it should be careful that r should be selected according to the

spatial resolution of DT-MRI data. According to our scanning

parameters and the spatial resolution, it was good to set r = 2

voxels to represent the possible maximum radius of cingulum. If

other scanning parameters are used, r should be adjusted and set

accordingly. Moreover, although ACTSE has the potential to be

used for the skeleton extraction of other tubular fibers, it may be

noticed that all the parameters should be checked and adjusted by

experiments to make it more efficient.

ACTSE could extract the skeleton of cingulum under various

noise situations, which is robust and reproducible. There are some

limitations and possible future work. First, although ACTSE is

quite convenient and friendly to users’ interaction, like tracto-

graphy methods, this method is not fully automatic and it still

requires user’s knowledge of anatomy to choose the starting/

middle/ending regions. It is possible to ‘‘back project’’ the pre-

defined constraint regions from the standard space to every native

one, to make the definition of constraint regions more automatic

and consistent across subjects. It could be studied in the future.

Second, although like tractography, ACTSE provides an approach

to robustly extract the orientation and shape of cingulum

individually, further studies will be conducted about how to

quantify the diffusion parameters along tract skeleton and how to

make the comparison across subjects. Third, like other researchers

[7,37–40], our study focuses on the main segment of cingulum

which arching over corpus callosum. It should be noticed that

there is another part of cingulum which parallel to hippocampus.

Finally, although ACTSE method has the potential to be extended

to the skeleton extraction of other tubular shape fiber tracts, here

in our paper ACTSE is proposed specially for cingulum. If apply

our approach to other tubular-shape tract, it should be studied

further about how to apply these equations and select these

parameters. Based on the idea of ACTSE, further studies could be

conducted for skeleton extraction of other tracts and to set up the

possible anatomic connections between different brain functional

regions.

Conclusion

In summary, we have introduced an approach ACTSE to

extract the pathway of cingulum using active contour model based

on the tensors’ information throughout the tract simultaneously,

which allows us to optimize the location of cingulum in a global

sense. Validation of this method on synthetic and experimental

data proved that ACTSE is able to reduce the influence of noise

and PVE, and extract the skeleton of cingulum robustly and

reliably. Our proposed method provides an approach to localize

cingulum robustly, which is a very important feature for tract-

based analysis of cingulum and can be of important practical

utility.
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