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Abstract: Maternal supplementation of docosahexaenoic acid (DHA) during pregnancy has been
recommended due to its role in infant development, but its effect on materno-fetal DHA status is not
well established. We evaluated the associations between DHA supplementation in pregnant women
with obesity or gestational diabetes mellitus (GDM) and maternal and neonatal DHA status. Serum
fatty acids (FA) were analyzed in 641 pregnant women (24 weeks of gestation) and in 345 venous and
166 arterial cord blood samples of participants of the NELA cohort. Obese women (n = 47) presented
lower DHA in serum than those lean (n = 397) or overweight (n = 116) before pregnancy. Linoleic acid
in arterial cord was elevated in obese women, which indicates lower fetal retention. Maternal DHA
supplementation (200 mg/d) during pregnancy was associated with enhanced maternal and fetal
DHA levels regardless of pre-pregnancy body mass index (BMI), although higher arterial DHA in
overweight women indicated an attenuated response. Maternal DHA supplementation was not asso-
ciated with cord venous DHA in neonates of mothers with GDM. The cord arteriovenous difference
was similar for DHA between GDM and controls. In conclusion, maternal DHA supplementation
during pregnancy enhanced fetal DHA status regardless of the pre-pregnancy BMI while GDM may
reduce the effect of DHA supplementation in newborns.

Keywords: obesity; docosahexaenoic acid; diabetes; pregnancy; supplementation; fatty acids

1. Introduction

Docosahexaenoic acid (DHA) is an omega-3 long-chain polyunsaturated fatty acid
(LC-PUFA) that rapidly accumulates on human brain during the last trimester of pregnancy
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and the first months of life [1,2]. An appropriate supply of DHA before delivery is of special
relevance for visual and cognitive development of the newborn and child [3,4]. The main
source of DHA for the fetus is the transfer of the DHA from maternal circulation across the
placenta [5]. However, dietary DHA intake is inadequate in many pregnant women (less
than 1–2 portions of oily fish per week) and therefore, maternal dietary supplementation of
at least 200 mg DHA/d during pregnancy and lactation is recommended [6,7].

Some recent studies reported that pre-pregnancy body mass index (BMI) was inversely
associated with polyunsaturated fatty acids (PUFA), DHA, and omega-6 fatty acids (FA) in
venous cord blood while the results were contradictory in the mothers [8,9]. Similarly, gesta-
tional diabetes mellitus (GDM) has been associated with lower proportion of AA (arachidonic
acid, 20:4 omega-6) and DHA in umbilical vein plasma but not in maternal plasma [10,11]. Dis-
turbances on placental FA transport using labeled FA with stable isotopes [12,13] and altered
FA transporters protein expression in placental tissue of obese and GDM women have been
reported [14–16]. These alterations may affect the efficacy of maternal DHA supplementation
during pregnancy for improving neonatal DHA status at birth.

In addition, an altered handling/metabolism of LC-PUFA in fetus from GDM mothers
have been proposed by some authors since they found lower DHA in umbilical artery
plasma in GDM than in controls but not in umbilical vein plasma [17,18]. However, there
are no large studies that have evaluated both arterial and venous FA profile to confirm
this hypothesis and not one among obese pregnant women. Both lower PUFA placental
transport and altered fetal handling of these essential micronutrients could affect the
efficiency of DHA supplementation in these pregnancies and should be investigated in
healthy and pathological pregnancies.

Supplementation of GDM women during pregnancy with 600 mg/d DHA enhanced
maternal but not fetal DHA status in a randomized double-blinded placebo-controlled trial,
suggesting that placental tissue in GDM could reduce the effect of DHA supplementation
in the fetus [19]. Monthe-Dreze et al. investigated the effect of DHA supplementation in
obese women; in all BMI groups, pregnant women had higher omega-3 concentrations
following supplementation, although obese women had attenuated changes (β = −2.04,
CI: −3.19–−0.90, interaction p = 0.000) compared to lean women, resulting in a 50% differ-
ence in the effect size [20]. To our knowledge the effect of maternal DHA supplementation
on women with obesity on their offspring DHA status has not been evaluated yet. Better
knowledge of PUFA metabolism may help to improve supplementation guidelines and
hence both mother and offspring health outcomes.

The aim of the present study is to evaluate the associations between DHA supplemen-
tation in obese pregnant women with obesity or GDM and fetal DHA status in a prospective
mother–child cohort study in Spain. As secondary objective, we want to explore whether
the differences in PUFA fetal levels are due to an altered placental transport and/or to an im-
pairment of fetal metabolism through the study of the FA arteriovenous cord concentrations.

2. Materials and Methods
2.1. Study Participants

Participants from the Nutrition in Early Life and Asthma (NELA) study (www.nela.
imib.es, accessed on 15 December 2020), a prospective population-based birth cohort set
up in Murcia, a south-eastern Mediterranean region of Spain, were included [21]. The
main objective of NELA cohort is to unravel the developmental origins and mechanisms
of asthma and allergy.

Pregnant women who fulfill the inclusion criteria were invited to participate in the
study at 20 weeks of gestation in the Maternal-Fetal Unit of the Virgen de la Arrixaca
University Hospital, from March 2015 to April 2018. The inclusion criteria were as follows:
Women from Health Area I and certain districts of Health Areas VI and VII of the Region
of Murcia, planning to live in the area of study during at least 2 years and intention
to give birth at the reference hospital; Caucasian origin; 18–45 years of age; singleton
pregnancy; spontaneous conception; and normal echography at 20 weeks of gestation

www.nela.imib.es
www.nela.imib.es
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(no major malformations). The exclusion criteria were: An existing chronic disease and
pregnancy complications, except GDM and hypertensive disorders.

Among the 1350 women invited to participate, 738 (54%) were finally enrolled in the
study and 664 (90%) had data on DHA supplementation during pregnancy and 641 (87%)
FA analysis at mid-pregnancy (Figure 1). Umbilical cord venous FA were analyzed in 345
(47%) subjects and only 166 (22%) samples of cord artery were quantified. According to the
self-reported pre-pregnancy BMI, 456 women were classified as lean (BMI 18.5–24.9 kg/m2,
62%), 145 overweight (BMI 25–29.9 kg/m2, 20%) and 62 obese (BMI > 30 kg/m2, 8%).
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Figure 1. Flow diagram of the study.

GDM was diagnosed with O’Sullivan test between 24–28 weeks of gestation by screen-
ing with 50 g oral glucose. A positive result (1 h plasma glucose > 140 mg/dL) was followed
by a 3 h oral glucose test with 100 g glucose. The test was considered positive with two
or more glucose values were above the cut off according to the National Diabetes Data
Group Criteria [22].

The study protocol was reviewed and approved by the Ethics Committee of the
Virgen de la Arrixaca University Clinical Hospital in accordance with the guidelines of
The Declaration of Helsinki. Written informed consents were obtained from parents
at recruitment.

2.2. Maternal and Neonatal Anthropometrical Measurements

Maternal pre-pregnancy BMI was calculated based on height measured by trained
personnel of the cohort and pre-pregnancy self-reported weight (kg/m2) and categorized as
normal (18.5–24.9 kg/m2), overweight (25–29.9 kg/m2), and obese (≥30 kg/m2). Maternal
weight during pregnancy was measured by trained personnel at 20 and 32 weeks of
gestation. Gestational weight gain during pregnancy was self-reported by the participants
at delivery.



Nutrients 2021, 13, 843 4 of 18

Anthropometrical variables of the neonate including birthweight (kg), length (cm),
and head circumference (cm) were obtained from clinical records. Newborn BMI and
the z-score were calculated using Spanish reference data [23]. Nutritional status of the
newborn was calculated from z-score according to the World Health Organization: Low
birth weight (<−2SD), normal weight (−2SD–+1SD), overweight risk (>+1SD), overweight
(>+2SD), and obese (>+3SD) [24].

2.3. Assessment of Maternal DHA Intake from Diet and Use of Supplements during Pregnancy

Maternal diet during gestation was assessed at 20 weeks of gestation using a validated
food frequency questionnaire [25] administrated by trained interviewers. Nutrient values,
including DHA intake, were primarily obtained from food composition tables from the
US Department of Agriculture [26], and other published sources reporting information on
FA content in Spanish foods [26–30]. We calculated the usual daily nutrient intakes for
each woman by multiplying the frequency of the use of each food item by the nutrient
content of the portion size specified in the food frequency questionnaire. Then we added
all foods to obtain the total nutrient intake for each participant. The usual daily intake of
DHA was expressed in mg/day. Furthermore, we estimated the energy intake in kcals/day
for each participant. We used the residual method to estimate calorie-adjusted values for
the nutrient intakes [31]. Information on the use of DHA supplements was collected by
questionnaires at 20 and 32 weeks of gestation. Daily dose of DHA intake from supplements
was estimated based on supplement brand name and composition.

2.4. Sampling

Ten milliliters of maternal blood at 24 weeks of gestation and 1 mL each of both venous
and arterial cord blood were collected at delivery. Serum was separated by centrifugation
at 1400 g for 5 min within 1 h from delivery. Glucose was measured using an automatic
analyzer (Roche-Hitachi Modular PyD Autoanalyzer, Mannheim, Germany). Serum was
frozen at −80 ◦C until FA analysis.

2.5. Fatty Acid Quantification in Maternal and Umbilical Cord Serum

Total lipids were extracted from 100 µL serum into chloroform:methanol (2:1 v/v)
according to Folch et al. method [32]. Previous to the extraction, 0.05 mg pentadecanoic
acid was added to the samples as internal standard. FA methyl esters were produced
according to Stoffel et al. [33] by adding 1 mL of 3 n methanolic HCl (Supelco, Sigma-
Aldrich, St. Louis, MO, USA) and heating at 90 ◦C for 1 h. The derivatives were extracted
into hexane and stored at −20 ◦C until gas chromatographic analysis.

FA methyl esters were analyzed by gas chromatography using a SP-2560 capillary
column (100 m × 0.25 mm i.d. × 20 µm) (Supelco, Sigma-Aldrich, St. Louis, MO, USA) in
a Hewlett-Packard 6890 gas chromatograph (Agilent Technologies, Santa Clara, CA, USA)
equipped with a flame ionization detector. The temperature of the detector and the injector
was 240 ◦C. The oven temperature was programmed at 175 ◦C 30 min and increased at
2 ◦C/min to 230 ◦C and held at this temperature for 17 min. Helium was used as the carrier
gas at a pressure of 45 psi. ChemStation software (Agilent Technologies, Santa Clara,
CA, USA) was used to analyze FA data. Peaks were identified by comparison of their
retention times with appropriate FA methyl esters standards (Sigma-Aldrich, St. Louis,
MO, USA) and FA concentrations determined in relation to peak area of internal standard.

2.6. Covariates

We obtained information through questionnaires administered in person during preg-
nancy about maternal age, parity (0, 1 and >1), time from last pregnancy (<12 months vs.
≥12 months), maternal educational level (incomplete secondary or less, complete secondary
and university), maternal social class (defined as maternal occupation during pregnancy
by using a widely used Spanish adaptation of the international ISCO88 coding system:
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I–II, managers/technicians; III, skilled; IV–V, semiskilled/unskilled; and unemployed) [34],
maternal smoking during pregnancy (yes/no), and maternal alcohol use (yes/no).

Information related to newborn’s sex, gestational age at delivery (weeks), pre-eclampsia
(yes/no), and mode of delivery (eutocic vaginal delivery, instrumented vaginal delivery,
and caesarean section) was collected form clinical records.

2.7. Statistical Analysis

Results were expressed as mean ± standard deviation for normal variables and abso-
lute frequencies or percentages for those categorical. Sociodemographic characteristics
between the three pre-pregnancy BMI groups were analyzed using one-way ANOVA
followed by a post hoc Bonferroni test and for non-parametric variables Kruskal–Wallis
test. For non-quantitative variables Chi-Square test was used. Univariate general linear
models ANCOVA were used to analyze the results on FA by maternal BMI or GDM
adjusted by potential confounders. Confounders were evaluated by linear regression
analyses (Figure S1).

The associations between DHA levels and maternal/neonatal variables were analyzed
using multiple linear regression analyses and corrected by potential confounders. Logistic
regression models were applied to calculate the odds ratios (OR) and 95% confidence
intervals (CI) of having different response to dietary DHA supplements depending on
maternal BMI or GDM condition, also adjusted for potential confounders.

Significance level was set at p < 0.05. Statistical analysis was performed with SPSS
software version 24.0 (IBM Corp., Armonk, NY, USA).

3. Results

Background and baseline characteristics of participant pregnant women and newborns
are shown in Table 1. As expected, maternal weight at both 20 weeks and 32 weeks of
gestation were higher in pre-gestational overweight and obese mothers compared to normo-
weight ones. Overweight and obese women showed lower gestational weight gain than
lean ones. Serum fasting glucose at mid pregnancy (24 weeks) and GDM prevalence were
also higher in overweight and obese women compared to lean pregnant women. About
40% of women consumed DHA supplements during pregnancy; however, lean women
consumed more supplements during the third trimester than obese participants. Obese
women had lower education level and also lower social class than lean women; women
with university studies used more frequently DHA supplements than women with lower
studies (67.2% n = 180 vs. 32.8% n = 88, p ≤ 0.001). Dietary intake of DHA was above the
recommendations (>200 mg/d) in the entire cohort and also in the different pre-pregnancy
BMI groups. Gestational age at delivery was similar among groups. Regarding the mode
of delivery, overweight mothers underwent caesarean section more frequently than the
other groups. Babies born to obese mothers presented higher weight and BMI Z-score at
birth than newborns from lean and overweight women.

Maternal serum FA profile at 24 weeks of gestation presented several differences
between pre-pregnancy BMI groups (Table 2). Among women without GDM, serum DHA
percentage was significantly lower in obese mothers compared to lean and overweight
volunteers in both unadjusted (p = 0.002) and adjusted analysis (p = 0.028). In contrast, AA
and n-6/n-3 PUFA ratio were higher in obese mothers compared to lean and overweight
participants. Despite maternal FA differences, no major differences were observed in
venous cord blood by maternal BMI categories. However, higher linoleic acid (18:2 n-6,
LA) percentage was observed in arterial cord serum of obese women and tended to have
lower arteriovenous LA difference, indicative of lower LA accumulation/retention in fetal
tissues (p = 0.100) (Table 2).
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Table 1. Sociodemographic characteristics of participants categorized by maternal pre-pregnancy body mass index (BMI).
The Nutrition in Early Life and Asthma (NELA) study (2015–2018).

All
Maternal Pre-Pregnancy BMI

pLean Overweight Obese

n = 627 (18.5–24.9 kg/m2)
n = 429

(25–29.9 kg/m2)
n = 143

(≥30 kg/m2)
n = 55

Mothers

Age (years) 33.23 ± 4.44 33.10 ± 4.36 33.55 ± 4.41 33.43 ± 5.13 0.536
Height (cm) 164.00 ± 5.79 164.04 ± 5.79 163.35 ± 5.71 165.44 ± 5.80 0.073

Maternal weight (kg)
Pregestational 65.09 ± 12.68 58.96 ± 5.98 a 71.93 ± 6.32 b 95.08 ± 11.73 c <0.001

20th weeks 71.51 ± 12.33 65.87 ± 7.00 a 77.68 ± 6.74 b 98.78 ± 11.56 c 0.001
32nd weeks 77.64 ± 12.41 72.33 ± 7.57 a 83.76 ± 7.46 b 104.00 ± 13.02 c 0.001

Pregestational BMI (kg/m2) 24.16 ± 4.30 21.89 ± 1.68 a 26.92 ± 1.39 b 34.69 ± 3.54 c <0.001
Gestational weight gain (kg) 12.17 ± 4.96 12.95 ± 4.19 a 11.32 4.75 b 8.23 ± 8.04 c <0.001

Educational level <0.001
Incomplete secondary or less 117 (18.66%) 78 (18.18%) a 24 (16.78%) ab 15 (27.27%) b

Complete secondary 160 (25.52%) 87 (20.28%) a 54 (37.76%) b 19 (34.55%) b

University 350 (55.82%) 264 (61.54%) a 65 (45.45%) b 21 (38.18%) b

Social class 0.006
Unemployed 127 (20.26%) 78 (18.18%) a 33 (23.08%) ab 16 (29.09%) b

Semiskilled/unskilled 121 (19.30%) 74 (17.25%) a 31 (21.68%) ab 16 (29.09%) b

Skilled 148 (23.60%) 99 (23.08%) a 35 (24.48%) a 14 (25.46%) a

Managers/technicians 231 (36.84%) 178 (41.49%) a 44 (30.77%) b 9 (16.36%) c

Smoking during pregnancy (yes) 99 (15.79%) 63 (14.69%) 23 (16.08%) 13 (23.64%) 0.229
Alcohol during pregnancy (yes) 33 (5.26%) 20 (4.66%) 11 (7.69%) 2 (3.64%) 0.317

Dietary DHA intake (mg/d) 270.16 ± 196.53 275.24 ± 198.30 259.33 ± 174.06 259.42 ± 234.49 0.661
Use of DHA supplements (≥200 mg/d)

1st trimester 246 (39.23%) 179 (41.72%) 52 (36.36%) 15 (27.27%) 0.086
2nd trimester 254 (40.51%) 185 (43.12%) 53 (37.06%) 16 (29.09%) 0.086
3rd trimester 265 (42.26%) 196 (45.69%) a 54 (37.76%) ab 15 (27.27%) b 0.016
GDM (yes) 49 (7.81%) 19 (4.43%) a 22 (15.38%) b 8 (14.55%) b <0.001

Serum glucose 24 weeks (mg/dl) 77.18 ± 7.07 76.15 ± 6.42 a 78.85 ± 7.84 b 81.48 ± 7.87 b <0.001
Pre-eclampsia (yes) 6 (0.96%) 3 (0.78%) 3 (2.36%) 0 0.250

Parity 0.446
0 316 (50.40%) 221 (51.52%) 73 (51.05%) 22 (40.00%)
1 244 (38.92%) 161 (37.53%) 58 (40.56%) 25 (45.45%)

>1 67 (10.69%) 47 (10.96%) 12 (8.39%) 8 (14.55%)
Time from last pregnancy 0.340

<12 months 74 (11.80%) 51 (11.89%) 19 (13.29%) 4 (7.27%)
>12 months 296 (47.21%) 196 (45.49) 67 (46.85%) 33 (60.00%)

Mode of delivery 0.014
Vaginal 491 (78.31%) 347 (81.84%) a 101 (71.13%) b 40 (72.73%) ab

Caesarean section 133 (21.21%) 77 (18.16%) a 41 (28.87%) b 15 (27.27%) ab

Newborns

Gestational age (weeks) 39.66 ± 1.44 39.62 ± 1.40 39.67 ± 1.62 39.98 ± 1.23 0.212
Weight (kg) 3.26 ± 0.46 3.24 ± 0.44 a 3.24 ± 0.50 a 3.48 ± 0.39 b 0.001
Height (cm) 50.68 ± 2.22 50.63 ± 2.15 50.56 ± 2.58 51.33 ± 1.72 0.071
BMI Z-score −0.29 ± 1.05 −0.33 ± 1.02 a −0.38 ± 1.13 a 0.26 ± 0.96 b 0.001

Nutritional status
Low birth weight 27 (4.31%) 16 (4.42 %) 9 (7.56 %) 2 (4.08 %) 0.380
Normal weight 446 (71.13%) 311 (85.91 %) 98 (82.35 %) 37 (75.51 %) 0.189
Overweight risk 47 (7.50%) 29 (8.01 %) 10 (8.40 %) 8 (16.33 %) 0.161

Overweight 9 (1.44%) 6 (1.66 %) 1 (0.84 %) 2 (4.08 %) 0.383
Obese 1 (0.16%) 0 1 (0.84 %) 0 0.163

Head circumference (cm) 34.38 ± 1.56 34.31 ± 1.54 34.43 ± 1.67 34.84 ± 1.39 0.058
Sex 0.149

Male 314 (50.08%) 226 (52.80%) 64 (44.76%) 24 (43.64%)
Female 312 (49.76%) 202 (47.20%) 79 (55.24%) 31 (56.36%)

Data are mean ± SD or n (%). p-values are ANOVA, Kruskal–Wallis, or Chi square test. BMI: Body mass index. Values not sharing the same
superscript letter indicate significant differences between BMI categories (p < 0.05).
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Table 2. Maternal and newborn fatty acid profile according to pre-pregnancy body mass index (BMI). The NELA study
(2015–2018).

Maternal Pre-Pregnancy BMI

Lean Overweight Obese p * p †

(18.5–24.9 kg/m2) (25–29.9 kg/m2) (≥30 kg/m2)

g/100 g Fatty Acids

Materal Serum (24 Weeks) n = 397 n = 116 n = 47

16:0 23.40 ± 1.83 a 23.57 ± 1.51 a 24.30 ± 1.61 b 0.004 0.016
18:0 6.40 ± 1.26 a 6.06 ± 1.07 b 6.29 ± 1.07 ab 0.026 0.034

18:1 n9 18.62 ± 2.38 18.49 ± 2.43 18.20 ± 2.20 0.496 0.527
18:2 n6 30.09 ± 3.22 29.96 ± 3.53 29.84 ± 3.01 0.840 0.782
18:3 n3 0.34 ± 0.18 a 0.33 ± 0.18 ab 0.26 ± 0.14 b 0.036 0.058
20:4 n6 6.76 ± 1.25 a 7.09 ± 1.22 b 7.12 ± 1.40 ab 0.017 0.015
20:5 n3 0.44 ± 0.40 0.43 ± 0.32 0.34 ± 0.30 0.238 0.369

22:6 n3 (DHA) 3.65 ± 0.88 a 3.66 ± 0.75 a 3.20 ± 0.77 b 0.002 0.028
SFA 32.81 ± 2.70 32.48 ± 1.89 33.43 ± 1.82 0.085 0.198

MUFA 22.80 ± 2.64 22.84 ± 2.85 22.52 ± 2.42 0.765 0.819
PUFA 44.38 ± 2.99 44.68 ± 3.11 44.05 ± 2.96 0.444 0.448

Ratio PUFA n6/n3 9.28 ± 2.86 a 9.28 ± 2.50 a 10.92 ± 3.34 b 0.001 0.012
LC-PUFA n3 4.30 ± 1.27 a 4.26 ± 1.05 a 3.69 ± 1.01 b 0.005 0.060
LC-PUFA n6 9.39 ± 1.49 a 9.83 ± 1.44 b 9.97 ± 1.44 b 0.002 0.003

Venous cord blood n = 218 n = 67 n = 25

16:0 26.91 ± 1.73 26.95 ± 1.39 27.19 ± 1.22 0.723 0.640
18:0 10.93 ± 2.21 10.74 ± 2.02 10.78 ± 1.68 0.802 0.897

18:1 n9 15.74 ± 2.39 16.04 ± 1.73 15.74 ± 1.61 0.607 0.685
18:2 n6 12.02 ± 2.77 12.27 ± 2.99 11.63 ± 1.46 0.595 0.834
18:3 n3 0.02 ± 0.08 0.04 ± 0.12 0.02 ± 0.05 0.427 0.559
20:4 n6 12.68 ± 2.00 12.67 ± 1.92 12.91 ± 1.47 0.850 0.997
20:5 n3 0.37 ± 0.73 0.39 ± 0.38 0.45 ± 0.58 0.837 0.844

22:6 n3 (DHA) 5.57 ± 1.69 5.56 ± 1.31 5.13 ± 1.23 0.417 0.914
SFA 41.45 ± 3.19 41.12 ± 2.84 41.74 ± 2.83 0.641 0.679

MUFA 22.87 ± 3.05 23.01 ± 2.02 22.95 ± 2.24 0.934 0.955
PUFA 35.67 ± 3.44 35.81 ± 2.42 35.30 ± 2.01 0.790 0.865

Ratio n6/n3 5.42 ± 3.68 5.12 ± 1.45 5.54 ± 1.70 0.760 0.593
LC-PUFA n3 6.04 ± 2.18 6.04 ± 1.55 5.67 ± 1.41 0.678 0.985
LC-PUFA n6 16.96 ± 2.41 16.85 ± 2.11 17.33 ± 1.84 0.681 0.980

Arterial cord blood n = 103 n = 32 n = 12

16:0 27.64 ± 2.30 27.96 ± 1.08 27.13 ± 1.77 0.478 0.546
18:0 10.63 ± 1.35 ab 10.83 ± 1.09 a 9.79 ± 0.96 b 0.052 0.032

18:1 n9 15.27 ± 1.91 15.48 ± 1.33 16.02 ± 1.64 0.368 0.134
18:2 n6 11.55 ± 1.96 a 11.49 ± 1.71 ab 12.78 ± 2.29 b 0.107 0.047
18:3 n3 0.00 ± 0.03 0.01 ± 0.04 0.01 ± 0.05 0.544 0.580
20:4 n6 12.98 ± 1.82 12.65 ± 1.46 12.13 ± 0.95 0.210 0.215
20:5 n3 0.19 ± 0.37 0.13 ± 0.31 0.05 ± 0.12 0.293 0.729

22:6 n3 (DHA) 5.48 ± 1.33 5.63 ± 1.22 5.26 ± 1.44 0.707 0.951
SFA 42.76 ± 4.71 42.49 ± 1.92 40.76 ± 2.53 0.287 0.112

MUFA 22.42 ± 2.68 22.80 ± 1.87 23.76 ± 2.34 0.194 0.070
PUFA 34.82 ± 3.44 34.71 ± 1.90 35.47 ± 2.23 0.755 0.568

Ratio n6/n3 5.24 ± 1.21 5.17 ± 1.45 5.99 ± 2.04 0.166 0.683
LC-PUFA n3 5.74 ± 1.52 5.85 ± 1.35 5.40 ± 1.49 0.668 0.978
LC-PUFA n6 17.01 ± 2.05 16.83 ± 1.58 16.70 ± 1.22 0.808 0.569
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Table 2. Cont.

Maternal Pre-Pregnancy BMI

Lean Overweight Obese p * p †

(18.5–24.9 kg/m2) (25–29.9 kg/m2) (≥30 kg/m2)

g/100 g Fatty Acids

Arteriovenous difference n = 95 n = 31 n = 12

16:0 −0.79 ± 2.61 −1.08 ± 1.50 0.20 ± 1.61 0.273 0.214
18:0 0.49 ± 2.46 −0.08 ± 1.51 1.22 ± 1.69 0.204 0.304

18:1 n9 0.44 ± 2.54 0.73 ± 1.74 −0.12 ± 1.11 0.550 0.210
18:2 n6 0.53 ± 2.24 0.64 ± 1.72 −0.92 ± 1.71 0.066 0.100
18:3 n3 0.02 ± 0.09 0.03 ± 0.14 0.01 ± 0.09 0.742 0.836
20:4 n6 −0.39 ± 2.21 −0.19 ± 1.23 −0.32 ± 1.20 0.882 0.827
20:5 n3 0.16 ± 0.63 0.21 ± 0.36 0.47 ± 0.78 0.254 0.294

22:6 n3 (DHA) 0.21 ± 1.75 −0.02 ± 0.61 −0.44 ± 0.63 0.329 0.598
SFA −1.28 ± 5.57 −1.51 ± 2.77 1.56 ± 3.18 0.148 0.060

MUFA 0.30 ± 3.38 0.52 ± 1.68 −0.50 ± 1.57 0.592 0.173
PUFA 0.96 ± 4.39 0.87 ± 1.42 −1.06 ± 1.99 0.215 0.302

Ratio n6/n3 −0.05 ± 1.45 −0.04 ± 0.66 −0.35 ± 0.68 0.735 0.641
LC-PUFA n3 0.42 ± 1.99 0.18 ± 0.88 0.05 ± 0.54 0.943 0.913
LC-PUFA n6 −0.10 ± 2.82 −0.08 ± 1.68 −0.35 ± 1.78 0.675 0.897

Data are mean ± SD. * Unadjusted analysis of variance (ANOVA). † Analysis of covariance (ANCOVA) test adjusted by the following
potential confounders: Maternal age, education level, smoking, dietary DHA intake, DHA supplementation, and previous pregnancies
in the case of maternal parameters; analysis adjusted by maternal serum DHA (24 weeks), DHA supplementation in the third trimester,
gestational age, sex, and birth weight for newborn parameters. BMI: Body mass index; LC-PUFA: Long-chain polyunsaturated fatty acids
(≥2 double bounds and >18 carbons); MUFA: Monounsaturated fatty acids; PUFA: Polyunsaturated fatty acids (≥2 double bounds); SFA:
Saturated fatty acids. Values not sharing the same superscript letter indicate significant differences between BMI categories (p < 0.05).

Associations between serum DHA percentage and maternal/neonatal parameters are
shown in Table 3. Higher maternal serum DHA percentage at 24 weeks was associated
with higher maternal age, higher dietary DHA intake, and maternal DHA supplementation
(β = 0.295, p < 0.001), while lower levels were associated with higher pre-pregnancy BMI,
previous pregnancies, and maternal smoking during pregnancy. Higher cord venous DHA
level was associated with higher maternal DHA status at 24 weeks, DHA supplementation
during the third trimester of pregnancy, and gestational age at delivery, while lower levels
were associated with higher birthweight. There were also differences by newborn’s sex,
although only a non-significant trend towards reduced DHA percentage in cord venous
of females was found (Female: 5.38 ± 1.28% vs. male: 5.67 ± 1.28%, p = 0.112). Despite
maternal serum DHA was positively associated with both umbilical vein and artery levels
of DHA, although it was inversely associated with arteriovenous DHA difference and then,
with less fetal retention of DHA.

Maternal DHA supplementation in all participants was associated with increased
levels of DHA in maternal serum even after adjustment by potential confounders (in-
cluding pre-pregnancy BMI) in pregnant women without GDM (Table 4). Maternal DHA
supplementation in both the first and the second trimester enhanced also maternal DHA
serum percentage at 24 weeks if separated into lean and overweight groups. It was not
possible to perform logistic regression models in obese group due to the low number of
obese women supplemented (13 supplemented vs. 40 non-supplemented). Nevertheless,
maternal serum DHA percentage in obese mothers supplemented at the first trimester
with DHA was higher than in those non-supplemented (3.62 ± 0.82% vs. 3.08 ± 0.79%,
p = 0.036), and also in the second trimester (3.58 ± 0.84% vs. 3.07 ± 0.72%, p = 0.045).
Thus, this confirmed that maternal DHA supplementation was positively associated with
maternal serum DHA levels regardless of maternal pre-pregnancy BMI.
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Table 3. Associations between serum docosahexaenoic acid (DHA) percentage and maternal/neonatal variables. The
NELA study (2015–2018).

B β CI (95%) p

Maternal serum DHA 24 weeks (n = 526) <0.001

Maternal age 0.029 0.147 (0.012, 0.045) 0.001
Educational level 0.074 0.079 (−0.004, 0.152) 0.064

Smoking −0.233 −0.097 (−0.421, −0.046) 0.015
Previous pregnancies −0.286 −0.222 (−0.394, −0.178) <0.001
Pre-pregnancy BMI −0.016 −0.080 (−0.031, −0.001) 0.042

Dietary DHA 0.495 0.115 (0.163, 0.827) 0.004
DHA supplementation 1st trimester 0.524 0.295 (0.387, 0.661) <0.001

Cord venous DHA (n = 299) <0.001

Maternal serum DHA 24 weeks 0.308 0.170 (0.093, 0.522) 0.005
DHA supplementation 3er trimester 0.467 0.143 (0.080, 0.854) 0.018

Gestational age 0.282 0.226 (0.127, 0.436) <0.001
Sex −0.363 −0.114 (−0.714, −0.012) 0.043

Birth weight 0.000 −0.128 (−0.001, 0.000) 0.045

Cord artery DHA (n = 143) <0.001

Maternal serum DHA 24 weeks 0.645 0.422 (0.403, 0.887) <0.001
DHA supplementation 3er trimester 0.088 0.033 (−0.335, 0.510) 0.681

Gestational age 0.285 0.293 (0.132, 0.438) <0.001
Sex 0.293 0.111 (−0.087, 0.673) 0.130

Birth weight 0.000 −0.098 (−0.001, 0.000) 0.216

Arteriovenous difference (n = 135) 0.008

Maternal serum DHA 24 weeks −0.422 −0.238 (−0.750, −0.094) 0.012
DHA supplementation 3er trimester 0.692 0.227 (0.123, 1.262) 0.018

Gestational age −0.083 −0.075 (−0.289, 0.123) 0.428
Sex −0.564 −0.186 (−1.076, −0.052) 0.031

Birth weight 0.001 −0.068 (−0.001, 0.000) 0.470

Associations were evaluated using lineal regression analyses. β and p are corrected values after adjustment for potential confounders:
Maternal age, education level, smoking, dietary DHA intake, DHA supplementation, previous pregnancies, and pre-pregnancy BMI in the
case of maternal DHA; analysis adjusted by maternal serum DHA (24 weeks), DHA supplementation in the third trimester, gestational age,
sex, and birth weight for cord blood DHA. BMI: Body mass index. CI: Confidence interval. Significance level set at p < 0.05.

Concerning umbilical cord DHA levels, maternal DHA supplementation during
pregnancy was also associated with higher DHA percentage in both cord venous and artery
in all participants even after adjustment by potential confounders (including pre-pregnancy
BMI) (Table 4). The positive association between DHA supplementation and cord serum
DHA levels regardless of pre-pregnancy BMI was confirmed using lineal regression analysis
by stepwise method; there was a significant positive association between maternal DHA
supplementation and DHA in cord venous (p < 0.001) but not with pre-pregnancy BMI
(p = 0.335) or the interaction (DHA supplementation*BMI p = 0.853). Similar results were
obtained for cord artery DHA (data not shown). However, supplementation with DHA
in overweight mothers appears to have an attenuated response compared to lean women
since higher DHA enhancement is observed in umbilical cord artery of overweight mothers
(overweight OR = 2.58 CI 1.06–6.25, p = 0.036 vs. lean OR = 1.56 CI 1.06–2.28, p = 0.023).
No associations were observed between maternal DHA supplementation and the DHA
arteriovenous difference (Table 4).
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Table 4. Logistic regression analysis assessing the odds of having different response to dietary DHA supplements depending on maternal pre-pregnancy body mass index (BMI). The
NELA study (2015–2018).

All
Maternal Pre-Pregnancy BMI

Lean (18.5–24.9 kg/m2) Overweight (25–29.9 kg/m2)

Unadjusted Adjusted † Unadjusted Adjusted * Unadjusted Adjusted *

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

Maternal serum DHA 24 wk Suppl. yes/no n = 225/361 Suppl. yes/no n = 205/341 Suppl. yes/no n = 162/233 Suppl. yes/no n = 150/221 Suppl. yes/no n = 42/74 Suppl. yes/no n = 38/71

DHA supl. 1st trimester 2.68
(1.09–3.43) <0.001 2.50

(1.90–3.29) <0.001 2.86
(2.10–3.88) <0.001 2.73

(1.94–3.84) <0.001 2.60
(1.44–4.69) 0.001 1.89

(0.97–3.65) 0.06

Suppl. yes/no n = 233/353 Suppl. yes/no n = 213/333 Suppl. yes/no n = 169/228 Suppl. yes/no n = 156/215 Suppl. yes/no n = 43/63 Suppl. yes/no n = 39/70

DHA supl. 2nd trimester 2.40
(1.89–3.04) <0.001 2.26

(1.74–2.95) <0.001 2.45
(1.83–3.27) <0.001 2.31

(1.67–3.19) <0.001 2.88
(1.57–5.28) 0.001 2.21

(1.14–4.30) 0.019

Cord venous DHA Suppl. yes/no n = 112/207 Suppl. yes/no n = 110/207 Suppl. yes/no n = 81/137 Suppl. yes/no n = 81/137 Suppl. yes/no n = 23/44 Suppl. yes/no n = 23/44

DHA supl. 1st trimester 1.32
(1.11–1.57) 0.002 1.35

(1.12–1.62) 0.001 1.27
(0.04–1.55) 0.017 1.32

(1.07–1.63) 0.01 1.42
(0.95–2.11) 0.084 1.53

(0.98–2.40) 0.062

Suppl. yes/no n = 119/200 Suppl. yes/no n = 118/199 Suppl. yes/no n = 86/132 Suppl. yes/no n = 86/132 Suppl. yes/no n = 25/42 Suppl. yes/no n = 25/42

DHA supl. 2nd trimester 1.36
(1.14–1.63) 0.001 1.39

(1.15–1.68) 0.001 1.36
(1.10–1.68) 0.005 1.42

(1.13–1.78) 0.003 1.46
(0.98–2.18) 0.062 1.54

(0.98–2.40) 0.06

Suppl. yes/no n = 128/191 Suppl. yes/no n = 126/191 Suppl. yes/no n = 92/126 Suppl. yes/no n = 92/126 Suppl. yes/no n = 26/41 Suppl. yes/no n = 26/41

DHA supl. 3rd trimester 1.36
(1.14–1.62) 0.001 1.39

(1.15–1.68) 0.001 1.30
(1.06–1.59) 0.011 1.37

(1.09–1.71) 0.006 1.49
(1.00–2.22) 0.053 1.59

(1.01–2.50) 0.047

Cord artery DHA Suppl. yes/no n = 55/99 Suppl. yes/no n = 53/99 Suppl. yes/no n = 39/64 Suppl. yes/no n = 39/64 Suppl. yes/no n = 11/21 Suppl. yes/no n = 11/21

DHA supl. 1st trimester 1.37
(1.04–1.80) 0.023 1.35

(1.00–0.82) 0.052 1.28
(0.93–1.76) 0.138 1.24

(0.87–1.79) 0.236 1.65
(0.86–3.18) 0.135 2.02

(0.84–4.87) 0.116

Suppl. yes/no n = 59/95 Suppl. yes/no n = 58/94 Suppl. yes/no n = 41/62 Suppl. yes/no n = 41/62 Suppl. yes/no n = 13/19 Suppl. yes/no n = 13/19

DHA supl. 2nd trimester 1.41
(1.07–1.85) 0.014 1.36

(1.01–1.83) 0.04 1.29
(0.94–1.78) 0.118 1.36

(0.95–1.94) 0.097 1.92
(0.98–3.77) 0.058 2.24

(0.94–5.33) 0.067

Suppl. yes/no n = 66/88 Suppl. yes/no n = 64/88 Suppl. yes/no n = 46/57 Suppl. yes/no n = 46/57 Suppl. yes/no n = 14/18 Suppl. yes/no n = 14/18

DHA supl. 3rd trimester 1.55
(1.17–2.05) 0.002 1.52

(1.20–2.06) 0.007 1.46
(1.04–2.05) 0.028 1.56

(1.06–2.28) 0.023 2.16
(1.06–4.37) 0.033 2.58

(1.06–6.25) 0.036

Arteriovenous difference Suppl. yes/no n = 51/93 Suppl. yes/no n = 49/93 Suppl. yes/no n = 35/60 Suppl. yes/no n = 35/60 Suppl. yes/no n = 11/20 Suppl. yes/no n = 11/20

DHA supl. 1st trimester 1.14
(0.89–1.46) 0.305 1.15

(0.89–1.49) 0.275 1.08
(0.85–1.37) 0.527 1.12

(0.87–1.44) 0.38 2.30
(0.59–8.92) 0.228 2.49

(0.50–12.49) 0.269

Suppl. yes/no n = 54/89 Suppl. yes/no n = 54/88 Suppl. yes/no n = 37/58 Suppl. yes/no n = 37/58 Suppl. yes/no n = 13/18 Suppl. yes/no n = 13/18

DHA supl. 2nd trimester 1.15
(0.89–1.50) 0.278 1.19

(0.90–1.57) 0.215 1.15
(0.88–1.51) 0.304 1.18

(0.89–1.56) 0.252 1.58
(0.46–5.41) 0.469 1.37

(0.30–6.27) 0.682

Suppl. yes/no n = 62/82 Suppl. yes/no n = 60/82 Suppl. yes/no n = 42/53 Suppl. yes/no n = 42/53 Suppl. yes/no n = 14/17 Suppl. yes/no n = 14/17

DHA supl. 3rd trimester 1.16
(0.89–1.53) 0.274 1.19

(0.90–1.57) 0.225 1.14
(0.87–1.49) 0.355 1.18

(0.89–1.57) 0.25 1.22
(0.37–4.01) 0.741 1.04

(0.24–4.50) 0.956

* Analyses adjusted for potential confounders: Maternal age, education level, smoking, dietary DHA intake, and previous pregnancies in the case of maternal DHA; previous pregnancies, gestational age, sex,
and birth weight for cord venous, cord artery, and arteriovenous DHA difference. † Analysis adjusted by the potential confounders listed before plus maternal pre-pregnancy BMI. BMI: Body mass index. CI:
Confidence interval; OR: Odds ratio. Significance level set at p < 0.05.
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Regarding the results in women with GDM, maternal serum FA profile in both GDM
and healthy women presented similar values for DHA percentage at 24 weeks, although
PUFAs were lower in women with GDM mainly due to reduced level of LA (Table 5).
Newborns from GDM women tended to have lower DHA percentage in cord venous
serum compared to those born from non-GDM women (p = 0.061), although this trend
did not remain after adjustment for potential confounders (p = 0.489) (Table 5). Moreover,
higher levels of MUFA were found in cord venous of GDM group as a consequence of
higher percentage of oleic acid (18:1 n-9) compared to the non-GDM group. Some minor
differences were observed in cord artery FA profile although all of them disappeared after
adjustment (Table 5). The arteriovenous difference was similar for all selected FA in both
GDM and non-GDM women and hence their offspring tissues FA retention (Table 5).

Table 5. Maternal and newborn fatty acid profile in healthy and gestational diabetes mellitus (GDM) pregnancies. The
NELA study (2015–2018).

Non-GDM GDM p * p †

g/100 g Fatty Acids

Maternal Serum (24 Weeks) n = 586 n = 49

16:0 23.53 ± 1.76 24.38 ± 2.34 0.017 0.014
18:0 6.31 ± 1.20 6.18 ± 0.93 0.448 0.458

18:1 n9 18.52 ± 2.38 19.08 ± 2.84 0.121 0.223
18:2 n6 30.03 ± 3.29 28.19 ± 4.05 <0.001 0.001
18:3 n3 0.33 ± 0.18 0.34 ± 0.12 0.721 0.784
20:4 n6 6.87 ± 1.26 7.11 ± 1.27 0.194 0.094
20:5 n3 0.43 ± 0.38 0.40 ± 0.31 0.582 0.588

22:6 n3 (DHA) 3.62 ± 0.86 3.58 ± 0.83 0.782 0.536
SFA 32.81 ± 2.46 33.40 ± 2.66 0.108 0.216

MUFA 22.76 ± 2.68 23.57 ± 3.05 0.044 0.083
PUFA 44.42 ± 3.04 43.02 ± 3.90 0.017 0.013

Ratio PUFA n6/n3 9.41 ± 2.87 9.06 ± 2.22 0.408 0.548
LC-PUFA n3 4.24 ± 1.21 4.14 ± 1.10 0.570 0.448
LC-PUFA n6 9.55 ± 1.49 9.99 ± 1.48 0.048 0.017

Venous cord blood n = 319 n = 26

16:0 26.93 ± 1.65 26.43 ± 2.10 0.150 0.281
18:0 10.88 ± 2.16 10.34 ± 1.78 0.217 0.148

18:1 n9 15.79 ± 2.20 17.00 ± 2.38 0.008 0.004
18:2 n6 12.09 ± 2.78 11.60 ± 3.71 0.405 0.400
18:3 n3 0.03 ± 0.10 0.08 ± 0.14 0.068 0.036
20:4 n6 12.70 ± 1.93 12.85 ± 2.53 0.697 0.865
20:5 n3 0.37 ± 0.65 0.28 ± 0.27 0.471 0.504

22:6 n3 (DHA) 5.53 ± 1.58 5.14 ± 0.92 0.061 0.489
SFA 41.39 ± 3.15 40.87 ± 3.04 0.421 0.395

MUFA 22.89 ± 2.78 24.47 ± 2.90 0.006 0.004
PUFA 35.70 ± 3.17 34.64 ± 3.14 0.100 0.076

Ratio PUFA n6/n3 5.37 ± 3.16 5.24 ± 1.51 0.836 0.619
LC-PUFA n3 6.01 ± 1.99 5.62 ± 1.02 0.333 0.645
LC-PUFA n6 16.96 ± 2.29 16.71 ± 2.69 0.605 0.281
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Table 5. Cont.

Non-GDM GDM p * p †

g/100 g Fatty Acids

Arterial cord blood n = 154 n = 12

16:0 27.69 ± 2.04 27.90 ± 0.87 0.720 0.655
18:0 10.62 ± 1.27 11.22 ± 1.15 0.112 0.213

18:1 n9 15.34 ± 1.76 15.22 ± 2.14 0.821 0.601
18:2 n6 11.67 ± 1.98 10.43 ± 1.27 0.035 0.187
18:3 n3 0.01 ± 0.03 n.d. - -
20:4 n6 12.85 ± 1.68 14.41 ± 2.66 0.004 0.089
20:5 n3 0.16 ± 0.34 0.06 ± 0.11 0.021 0.874

22:6 n3 (DHA) 5.47 ± 1.31 5.12 ± 0.70 0.365 0.601
SFA 42.56 ± 4.06 42.92 ± 2.14 0.762 0.787

MUFA 22.58 ± 2.49 22.39 ± 2.88 0.799 0.789
PUFA 34.86 ± 3.07 34.69 ± 2.43 0.854 0.900

Ratio PUFA n6/n3 5.33 ± 1.36 5.69 ± 1.01 0.370 0.371
LC-PUFA n3 5.70 ± 1.47 5.23 ± 0.77 0.077 0.652
LC-PUFA n6 16.96 ± 1.88 18.48 ± 2.67 0.010 0.186

Arteriovenous difference n = 144 n = 9

16:0 −0.75 ± 2.30 −2.05 ± 2.19 0.102 0.187
18:0 0.46 ± 2.26 −0.50 ± 0.76 0.210 0.121

18:1 n9 0.45 ± 2.24 1.34 ± 1.94 0.242 0.439
18:2 n6 0.42 ± 2.07 1.09 ± 1.66 0.341 0.724
20:4 n6 −0.36 ± 1.92 −0.57 ± 1.24 0.743 0.833
20:5 n3 0.20 ± 0.59 0.10 ± 0.26 0.625 0.600

22:6 n3 (DHA) 0.10 ± 1.48 0.07 ± 0.31 0.957 0.732
SFA −1.02 ± 4.87 −1.89 ± 2.12 0.598 0.898

MUFA 0.26 ± 2.90 1.16 ± 1.85 0.360 0.558
PUFA 0.73 ± 3.72 0.73 ± 1.63 0.999 0.798

Ratio PUFA n6/n3 −0.08 ± 1.25 −0.08 ± 0.39 0.998 0.883
LC-PUFA n3 0.33 ± 1.68 0.15 ± 0.29 0.742 0.555
LC-PUFA n6 −0.14 ± 2.48 −0.53 ± 1.71 0.646 0.908

Data are mean ± SD. * Unpaired Student t-test. † Analysis of covariance (ANCOVA) test adjusted by the following potential confounders:
maternal age, education level, smoking, dietary DHA intake, DHA supplementation and previous pregnancies in the case of maternal
fatty acids; analysis adjusted by maternal serum DHA (24 weeks), DHA supplementation in the third trimester, gestational age, sex, and
birth weight for newborn parameters. GDM: Gestational diabetes mellitus; LC-PUFA: Long-chain polyunsaturated fatty acids (≥2 double
bounds and >18 carbons); MUFA: Monounsaturated fatty acids; n.d.: Non detected. PUFA: Polyunsaturated fatty acids (≥2 double bounds);
SFA: Saturated fatty acids. Significance level set at p < 0.05.

Maternal DHA supplementation was also associated with higher maternal serum
DHA status at 24 weeks in both the total population (adjusted and unadjusted) and in
the sub-group of women with GDM (Table 6). However, DHA supplementation only
showed positive associations with umbilical cord venous DHA when considering all study
participants while there was no association in the GDM sub-group. The huge differences in
the number of samples in both cord venous (non-GDM n = 319 vs. GDM n = 26) and cord
artery (non-GDM n = 154 vs. GDM n = 12) could have masked the GDM-driven differences
in this association in the whole population. Linear regression analysis corroborated the
association between cord venous DHA and maternal DHA supplementation (p < 0.001)
while the association of cord venous DHA with GDM in the whole population was non-
significant but showed a low p tending value (p = 0.160) and the interaction was in the
same line (DHA supplementation*GDM p = 0.296). Similar results were obtained in cord
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artery (data not shown). Thus, maternal DHA supplementation improved maternal serum
DHA in GDM women while there was no benefit for cord DHA status at birth although it
cannot be excluded that this lack of association might be due to the low sample size in the
GDM sub-group.

Table 6. Logistic regression analysis assessing the odds of having different response to dietary DHA supplements in
pregnancies affected by gestational diabetes mellitus. The NELA study (2015–2018).

All GDM

Unadjusted Adjusted † Unadjusted Adjusted *

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

Maternal Serum DHA 24 wk Suppl. Yes/No n = 250/385 Suppl. Yes/No n = 228/363 Suppl. Yes/No n = 25/24 Suppl. Yes/No n = 22/22

DHA supl. 1st trimester 2.75
(2.17–3.49) <0.001 2.58

(1.98–3.36) <0.001 4.53
(1.66–12.37) 0.003 4.07

(1.29–12.78) 0.016

Suppl. yes/no n = 258/377 Suppl. yes/no n = 236/355 Suppl. yes/no n = 25/24 Suppl. yes/no n = 23/21

DHA supl. 2nd trimester 2.57
(2.04–3.24) <0.001 2.40

(1.85–3.10) <0.001 9.95
(2.59–38.19) 0.001 9.84

(2.15–45.00) 0.003

Cord venous DHA Suppl. yes/no n = 124/221 Suppl. yes/no n = 124/221 Suppl. yes/no n = 12/14 Suppl. yes/no n = 12/14

DHA supl. 1st trimester 1.33
(1.12–1.57) 0.001 1.35

(1.13–1.62) 0.001 2.01
(0.73–5.56) 0.177 1.34

(0.47–3.79) 0.584

Suppl. yes/no n = 132/213 Suppl. yes/no n = 132/213 Suppl. yes/no n = 13/13 Suppl. yes/no n = 13/13

DHA supl. 2nd trimester 1.34
(1.13–1.60) 0.001 1.36

(1.14–1.63) 0.001 1.29
(0.54–3.08) 0.570 0.86

(0.33–2.25) 0.757

Suppl. yes/no n = 140/205 Suppl. yes/no n = 140/205 Suppl. yes/no n = 12/14 Suppl. yes/no n = 12/14

DHA supl. 3rd trimester 1.37 (1.15–1.6.) <0.001 1.40
(1.16–1.68) <0.001 2.33

(0.79–6.86) 0.125 1.68
(0.52–5.45) 0.385

* Analyses adjusted for potential confounders: maternal age, education level, smoking, dietary DHA intake, and previous pregnancies in
the case of maternal DHA; previous pregnancies, gestational age, sex, and birth weight for cord venous DHA. † Analysis adjusted by the
potential confounders listed before plus GDM condition. CI: Confidence interval; OR, Odds ratio. Significance level set at p < 0.05.

4. Discussion

In the present study, we found that maternal DHA supplementation in special condi-
tions such as pre-pregnancy obesity and GDM is associated with increased maternal DHA
status, while enhancement of offspring DHA status seems to be compromised by maternal
GDM condition.

Obese women included in this study presented increased levels of n-6 LC-PUFA while
n-3 PUFA, especially DHA, were significantly lower compared to lean pregnant women.
These results are in agreement with others [35–37]. However, Cinelli et al. reported in a
435 mother-infant pairs cohort that maternal BMI was positively associated with maternal
serum DHA [8]. The authors argued that this finding was unlikely related to a higher
dietary DHA intake, since most of the pregnant women consumed less than three servings
of fish per week, and that this might be due to lower transfer of DHA from mother to
fetus [8]. Interestingly, in the present study, the baseline dietary intake of DHA was similar
among the three BMI groups and in all cases above the recommendations (>250 mg/d).
Nevertheless, obese women tended to consume less DHA supplements, which could be
related to their lower DHA percentage in plasma. N6/n-3 PUFA ratio in the maternal
serum was also impaired by pre-pregnancy obesity, being significantly higher in obese
mothers, which is related to a systemic pro-inflammatory response [38,39]. It is important
to note that, in contrast to obese participants, in the present study, maternal serum DHA
percentage and n-6/n-3 PUFA ratio were not altered in overweight women. All these
evidences together may indicate that an additional n-3 PUFA intake in obese mothers
would be desirable in order to promote a healthy FA pattern.

Despite BMI-related alterations in maternal FA plasma profile, no major changes were
found neither in venous cord blood, nor in arterial cord blood nor in the arteriovenous
FA difference among groups. Only LA was higher in arterial cord blood of obese mothers,
while no differences were observed in cord venous blood. This may suggest lower LA
fetal retention among obese pregnancy of this FA, which is in line with the altered fetal
lipid profile with lower percentage of PUFA, both n-6 and n-3 (including DHA) previously
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reported by other authors [8]. No other studies are available for arteriovenous difference
in obese or overweight women.

Maternal supplementation with 200 mg DHA/day during the first and the second
trimester of pregnancy in our study was associated to enhanced maternal serum DHA
status regardless of pre-pregnancy BMI. Monthe-Dreze et al. showed an attenuated re-
sponse to n-3 supplementation in overweight and obese pregnant women resulting in a
50% difference in the effect size compared to lean pregnant women [20]. However, they
administered a very high amount of n-3 FA to women (800 mg of DHA + 1200 mg of EPA
per day) and 17-hydroxyprogesterone weekly, as a treatment to prevent preterm birth [20].
17-hydroxyprogesterone might have influenced the results since it has shown DHA biosyn-
thesis promotion in human hepatocytes and liver of ovariectomized rats [40,41]. Other
studies in non-pregnant women also described a reduced increase in serum DHA with
higher BMI in young women [42] and in women with increased risk of breast cancer [43].
Pregnancy is a special physiological condition in which lipid metabolism is adapted to
supply the fetus FA requirements. Our results indicate that the maternal supplementation
with DHA was effective in all BMI groups to increase maternal DHA status.

Maternal supplementation with DHA during pregnancy was also associated with
increased fetal DHA status, in both cord venous and arterial blood regardless of pre-
gestational BMI. This is consistent with previous studies that demonstrated enhanced fetal
DHA status after maternal n-3 supplementation in healthy lean pregnant women [44–46].
However, regression analysis suggested an attenuated response in overweight women
since umbilical artery DHA was especially enhanced in overweight respect to lean women,
which may indicate a lower DHA retention in the fetus and hence less effectiveness of
dietary DHA supplementation.

Concerning GDM condition, lower percentages of LA and PUFA were found in
pregnant women with GDM compared to non-GDM ones, while similar DHA levels were
observed for both groups. There are discrepancies in the literature with regard to maternal
FA profile in GDM pregnancies; lower, similar, or even higher levels of DHA in GDM have
been reported [10,17,47–49]. However, newborns of women suffering GDM tended to have
lower DHA in cord venous than those from non-GDM women, although these differences
disappeared after adjustment by potential confounders. Other authors also reported lower
DHA in cord venous despite no changes in maternal blood [10,11].

Maternal DHA supplementation (200 mg/d) was also associated with increased level
of DHA in maternal serum in pregnancies complicated with GDM but failed to enhance
the newborn DHA status in the GDM sub-group (unadjusted and adjusted analysis).
Our results are in line with those reported by Min et al. who showed maternal but
not fetal DHA level enhancement in pregnant women with GDM after 600 mg/d DHA
supplementation [19]. An impaired materno-fetal transfer of DHA has been demonstrated
in GDM pregnancies [12,50,51], which can be explained at least in part by some alterations
in FA transport protein associated to phospholipid transfer such as the major facilitator
superfamily domain-containing 2a and FA transport protein number 4 [15,16]. In vitro
experiments with human choriocarcinoma BeWo cells have shown a regulatory role of
insulin on some specific FA carriers that may be related to the higher adiposity observed
in GDM neonates [52]. Ortega-Senovilla et al. suggested that lower cord DHA could be
due to enhanced DHA utilization by fetal tissues (e.g., active conversion or metabolism)
in GDM rather than unpaired transport across the placenta [17,51]. They obtained lower
DHA percentage in arterial cord blood of GDM while similar DHA content in venous cord
blood respect to healthy controls [17]. A similar observation has been made in neonates
from mothers with type I diabetes [18]. We cannot confirm a higher fetal uptake of DHA by
the fetus from GDM mothers since there were no differences for DHA in the arteriovenous
difference between GDM and non-GDM subjects, and the number of patients in the present
study was much higher than in previous ones. A disturbed placental transfer in GDM
seems to be the main reason for lower cord DHA in the offspring of GDM according to the
present results.
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The strengths of the present study include the quantification of FA in both venous
and arterial cord serum samples in a population-based prospective birth cohort, which
allows us to estimate for the first time not only the associations between the maternal DHA
supplementation during pregnancy and fetal DHA levels but also the fetal tissue retention
of DHA. Our study also presents some limitations. The small number of women included
in the supplemented obese group that limited the statistical power of some analyses in this
group. In this line, we cannot exclude that the lack of association between maternal DHA
supplementation and cord venous DHA percentage in GDM group might be due to the low
number of subjects included in this sub-group, although the results were consistent among
the three trimesters by DHA supplementation. Information about DHA supplementation
was obtained from self-reports of participant pregnant women, which could have also
biased the results obtained. Finally, the influence of other residual confounding factors not
included in the present statistical analyses, bias due to missing data, in the measurement of
outcomes or perhaps also in selection of the reported results cannot be excluded.

5. Conclusions

In conclusion, maternal DHA supplementation during pregnancy was associated
with both maternal and newborn increased DHA status regardless of the pre-gestational
BMI of the mother, although supplementation with DHA at third trimester in overweight
women was associated with higher levels of arterial DHA cord serum and less DHA
fetal retention. However, in women with GDM, DHA supplementation was associated
with increased maternal but not cord venous DHA status. Our results support an altered
materno-fetal transfer of DHA during pregnancy instead of higher DHA fetal accumulation
since no changes were found in arteriovenous DHA difference in GDM women. A higher
consumption of n-3 LC-PUFA might be desirable in obese women in order to improve
maternal serum FA n6/n3 ratio. In addition, neonates born from GDM women may need
DHA fortification after birth, especially those non breast-fed.
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