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Abstract: Human movement patterns were shown to be as unique to individuals as their finger-
prints. However, some movement characteristics are more important than other characteristics for
machine learning algorithms to distinguish between individuals. Here, we explored the idea that
movement patterns contain unique characteristics that differentiate between individuals and generic
characteristics that do not differentiate between individuals. Layer-wise relevance propagation was
applied to an artificial neural network that was trained to recognize 20 male triathletes based on
their respective movement patterns to derive characteristics of high/low importance for human
recognition. The similarity between movement patterns that were defined exclusively through
characteristics of high/low importance was then evaluated for all participants in a pairwise fashion.
We found that movement patterns of triathletes overlapped minimally when they were defined by
variables that were very important for a neural network to distinguish between individuals. The
movement patterns overlapped substantially when defined through less important characteristics.
We concluded that the unique movement characteristics of elite runners were predominantly sagittal
plane movements of the spine and lower extremities during mid-stance and mid-swing, while the
generic movement characteristics were sagittal plane movements of the spine during early and
late stance.

Keywords: running; triathlon; movement pattern; human recognition; artificial neural network;
layer-wise relevance propagation; machine learning

1. Introduction

Movement characteristics appear to be similar across individuals and/or functional
groups. Movement patterns derived from males, for example, shared a more pronounced
shoulder sway, while movement patterns derived from females shared a more pronounced
hip sway [1,2]. However, it has also been demonstrated that movement patterns can be as
unique to individuals as their fingerprints [3–5]. Pataky et al. [6], for instance, accurately
identified 104 individuals based only on their plantar pressure distribution during walking.
It appears, therefore, that certain characteristics of human movement are shared amongst
individuals/functional groups while other movement characteristics appear to be unique.

Supporting this notion, our recent work highlighted that some movement characteris-
tics (e.g., joint angles in the coronal and transverse plane) were highly important for the
identification of a specific individual within a cohort of novice runners, while other move-
ment characteristics (e.g., joint angles in the sagittal plane) were less important for said

Sensors 2021, 21, 7145. https://doi.org/10.3390/s21217145 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8512-1543
https://orcid.org/0000-0002-8426-813X
https://doi.org/10.3390/s21217145
https://doi.org/10.3390/s21217145
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217145
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217145?type=check_update&version=1


Sensors 2021, 21, 7145 2 of 13

identification [7]. We speculate, therefore, that a movement pattern—defined through 3D
joint angle trajectories—may be comprised of at least two types of movement characteristics:
those that are specific to an individual (i.e., unique), and those that are common to multiple
individuals (i.e., generic). Understanding unique and generic movement characteristics
may be crucial for health- [8,9], security- [10], and performance-related [11] applications.
A gait-based identification system that considers only unique movement characteristics,
for example, may be more difficult to breach, and the generic movement characteristics of
a population of elite marathon athletes may isolate biomechanically relevant aspects of an
efficient running style.

By applying layer-wise relevance propagation (LRP) to a neural network that was
trained to identify individuals based on their movement patterns, one may isolate unique
and generic movement characteristics for a given population. LRP is an analysis method
that addresses the ‘black-box’ nature [12] of neural networks and highlights why a certain
decision was reached by a classifier [13]. It has been applied in image classifications [14],
text document classifications [15] and, recently, in biomechanics [8,9]. Conceptually, LRP
calculates a relevance score for each input variable of a neural network (i.e., each data
point in a movement pattern). These relevance scores indicate how important a given
input variable was for the decision reached by the model. High absolute relevance scores
represent input variables that were crucial to the decision of the network while low absolute
relevance scores (approx. 0) indicate those input variables that were less crucial to the final
decision of the network.

In biomechanics, LRP has been applied by Aeles et al. [8], who used this method to
highlight features of electromyograms that revealed unique muscle activation patterns
while walking and pedaling. Horst et al. [9] used LRP to highlight individual-specific
features of joint angle trajectories and ground reaction forces during barefoot walking.
Lastly, we previously [7] used LRP to distinguish the characteristics of movement patterns
that were very important for the identification of novice runners from those that were less
important in order to minimize the amount of data needed for human identification. It is
evident that LRP is gaining traction in the field of biomechanics and, consequently, it is
crucial to gain a clear understanding of the functional meaning of relevance scores.

In the context of human recognition based on movement patterns, we propose that
variables with high (absolute) relevance scores may encode unique characteristics of move-
ment patterns, while variables with low relevance scores may encode the more generic
features of movement patterns. Isolating and understanding the unique/generic features
of movement patterns is valuable, especially within a population of elite runners. That is
because the shared movement characteristics of elite level athletes (i.e., generic features)
potentially highlight performance-related characteristics that may be essential to an eco-
nomical running style. Consequently, aspiring professional runners should be encouraged
to model their personal running style after the generic movement characteristics of elite
runners. Unique aspects of elite level runners, on the other hand, may describe athlete-
specific movement strategies; therefore, a deeper understanding of an athlete’s unique
movement characteristics might inspire custom-tailored training interventions that maxi-
mize the potential of a given athlete. The unique and generic movement characteristics of
elite runners, however, remain unknown.

Consequently, the purpose of this work was to isolate the unique and generic move-
ment characteristics of elite-level triathletes and to understand if they are expressed by
variables with high/low relevance scores derived from a neural network trained to recog-
nize athletes based on their running patterns. To this end, we investigated the separability
of movement patterns in two scenarios: (1) when movement patterns were expressed
by variables of high relevance (derived via LRP), and (2) when movement patterns were
defined by variables of low relevance. We expected the movement patterns of different
individuals to separate well when expressed through high relevance variables, and to be
indistinguishable from one another when expressed through variables of low relevance.

Specifically, we hypothesized that:
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Hypothesis 1 (H1). The movement patterns of different individuals would not overlap within a
principal subspace, when movement patterns are defined by variables of high relevance.

Hypothesis 2 (H2). The movement patterns of different individuals would overlap within a
principal subspace, when movement patterns are defined by variables of low relevance.

To contribute to a deeper understanding of the unique and generic movement charac-
teristics of elite runners, we then delineated the top 10% of variables that did and did not
separate well between athletes.

2. Materials and Methods

This work resulted from a secondary analysis of data that was collected previously.
For additional details on the protocol and the primary purpose of the analyzed data, the
reader is referred to the original work [16].

2.1. Participants

Twenty healthy male triathletes (age: 31.65 ± 5.3 years; mass: 74.6 ± 7.3 kg; height:
182.9 ± 6.9 cm) participated in this study. All athletes trained to compete in the 2019
Ironman season and finish the distance in under 9 h and 30 min. Written informed consent
was collected from all participants and approval for this research project was obtained
from the ethics Commission of the Department of Psychology and Sports Science at the
Goethe University in Frankfurt am Main, Germany (reference number: 2019-10).

2.2. Protocol

Overground running data were collected using the Xsens MVN Link System (Xsense
Technologies B.V., Enschede, The Netherlands), an integrated full-body system comprised
of 17 inertial measurement units that sampled at 240 Hz. The participants were equipped
with the system while running alongside the river Main following a 4 km, flat, paved, and
slightly curved path that was part of the 2019 Ironman European Championship course.

Prior to any testing, the participants changed into a Lycra suit (Xsens Technologies
B.V., Enschede, The Netherlands), which facilitated the optimal and secure positioning
of the individual sensors of the MVN Link System. Except for the sensors at the feet,
which were taped to the participants’ own shoes, all the sensors were attached to the
Lycra suit itself. The 17 sensors were located on the left and right foot, shank, thigh,
hand, forearm, upper arm, shoulder, pelvis, torso, and head. A calibration procedure
(including a neutral standing and walking trial) was performed as per the manufacturer’s
recommendations [17] before the equipment—which was not worn by the athletes (i.e.,
laptop, power bank, etc.)—was placed in a backpack that was carried by an instructor, who
remained close to the athlete during the test.

The testing protocol consisted of a 10-min ‘cold-run’ (CR), a 10-min ‘warm-run’ (WR),
a 90-min cycling session, and a 4 km long ‘transition-run’ (TR). The CR was performed
without any warmup exercise (no stretching, etc.), while the WR was performed immedi-
ately after the CR. Following the cycling session, the participants changed back into their
running shoes, repeated the calibration procedure, and started their TR. For all the runs
and participants, the specific speeds were set by the instructor, who was cycling ahead of
the athlete to provide slipstream. The speeds were selected such that the athlete would
finish the Ironman competition under 9:30 h.

2.3. Data Preparation

Using the MVN Analyze software with the internal ‘HD processing’ filter enabled,
18 three-dimensional joint angle trajectories (according to the standard of the international
society of biomechanics) were extracted for CR, WR, and TR. The joint centers were located
at the left and right ankle, knee, hip, wrist, elbow, shoulder, and the intersection of the
L5S1, L4L3, L1T12, T9T8, T1C7 and C1head joints. The trajectories of each recording were
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inspected manually, and clear erroneous outliers were removed from further analysis. The
remaining, clean, recordings were exported, and the subsequent analyses were performed
in MATLAB (R2021a, The MathWorks Inc., Natick, MA, USA) via custom written routines.

Step cycles, defined as the period between two consecutive touch-down events, were
parsed from the recordings. The touch-down events were identified using a two-step
routine: first, the vertical positions of the foot (center of the calcaneus) and toe (metatarsal
joint) were calculated, and the maxima of the resulting trajectory were determined. Within
the period of two consecutive maxima, touch-down was identified as the first sample
of either the foot or toe trajectory below a set threshold. A threshold of 2 cm above the
local minimum of the respective (foot/toe) vertical position proved consistent. Similarly,
take-off was identified as the last sample of either the foot or toe vertical position below the
same threshold. Because foot and toe positions were considered, this routine guaranteed
consistent event detection for forefoot and rearfoot strike patterns. Lab-internally, the
quality of the routine was compared to an event detection by an instrumented treadmill
using speeds ranging from 8 to 20 km/h for 20 individuals. We found the overall accuracy
to be in the order of ± 10 ms.

The joint angles of isolated step cycles were time-normalized to 100 data points.
Trunk angles in the frontal and transverse plane of the left side were mirrored to enable
comparisons between the left and right side of the body. Additionally, the angles were
labeled as belonging to the standing or swinging side, the standing side being the side of
the standing leg and the swinging side being the side of the swinging leg. The abduction
and rotation directions of the leg and arm angles were defined in anatomical dimensions.
A single step cycle was characterized by 5400 data points (100 timepoints × 18 joint
locations × 3 dimensions).

For one participant at a time, all step cycles were exposed to an outlier detection
and scaling procedure: first, a principal component analysis was used to reduce the
dimensionality of the step cycles. The loadings on the first three principal axes were then
used to detect outliers following the procedure introduced by Kriegel et al. [18]. The
remaining step cycles were then scaled by subtracting their respective mean, dividing by
their respective standard deviation, and rescaling the result to range from −1 to 1. This
scaling procedure was necessary to prepare the data for the neural network and layer-wise
relevance propagation. All clean and scaled step cycles of all participants were arranged in
a single data matrix of dimensionality 97,899 × 5400 (step cycles × data points).

2.4. Data Analysis

The deployed neural network consisted of three layers: one input, one hidden, and
one output layer. This three-layer architecture was chosen as a single hidden layer is,
reportedly, sufficient to learn most input–output relationships [19]. For each layer, the
number of nodes was derived from the data: 5400 for the input layer (because a single
step cycle was defined by 5400 variables), 10800 (2 × 5400) for the hidden layer, and
20 nodes for the output layer, one per participant. The hyperbolic tangent was used as
an activation function for the hidden layer. The model was then trained on 200 randomly
selected step cycles (10 per participant) that were derived exclusively from the pooled
data of the CR and WR. The CR and WR data were pooled to provide a bigger selection
of step cycles to choose from. During piloting, we explored how many step cycles per
participant were necessary for the model to accurately recognize individuals. We found
that a minimum of five step cycles per participant was needed to achieve a testing accuracy
of above 99%. Specifically, we trained the network on an increasing number of randomly
selected step cycles (1–15) from the training data set (i.e., CR and WR) and each time
we evaluated the performance of the trained network on the testing data (i.e., TR). The
training of the model was performed in batch sizes of 25 with an epoch limit of 1000,
which were found to be viable trade-offs between training efficiency and model accuracy.
The network’s performance was then determined by classifying each step cycle of the TR
data and calculating the participant-wise accuracy using Equation (1), where, for a given
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participant p, n described the number of correctly assigned step cycles and N the total
number of step cycles.

Accuracy (p) =
np

Np
∗ 100 (1)

The fully trained neural network model was then used to determine the relevance
scores that were key to the subsequent analyses. For each correctly classified step cycle
(from the TR data), the corresponding relevance scores were calculated using the layer-wise
relevance propagation toolbox by Lapuschkin et al. [20]. The 5400 relevance scores of a
given step cycle represented the corresponding relevance pattern. All relevance patterns
were smoothed, whereby the previous and subsequent points were weighted with 25%,
and the current point with 50%. This smoothing process was repeated twice. Because the
input data (i.e., step cycles) were collected in the time-domain, the neighboring values were
dependent and represented related information. The applied smoothing process therefore,
reduced fluctuations in the calculated relevance scores without affecting the general pattern.
The weights for the smoothing process were chosen so that their sum equaled 1 and a
repetitive application would mimic a Gaussian filter. The smoothed relevance patterns
were averaged in a participant-wise fashion, rectified, and normalized to their respective
maximum. This process allowed us to express the relevance of any given variable with
respect to the most relevant variable within the entire pattern of a given participant. The
overall average was then calculated, normalized to its respective maximum, and sorted in
descending order, ranking variables in their importance for human identification.

The similarity between step cycles based on variables of high/low relevance was then
determined in an iterative procedure. First, all the step cycles of the TR were reduced to
only those variables of high/low relevance that were included in any given iteration. For
instance, the first iteration used only the 10 most/least important variables. Both subsets of
data (high/low) were then exposed to a principal component analysis and the projections of
the step cycles onto the first three principal axes were determined. In this three-dimensional
space, any step cycle was represented as a single point. All step cycles of one participant
would, therefore, form a cloud of points in the principal subspace. For each participant,
MATLAB’s inbuild function alphashape was used to create a bounding volume that captured
all step cycles of the given participant. The overlap of a participant’s bounding volume
with all the other bounding volumes was then determined and expressed as a percentage
of the given participant’s total volume. This procedure was repeated, incrementing the
number of variables that were used to express the step cycles by five at every iteration until
all 5400 variables were included again.

3. Results

The neural network model that was trained on the CR and WR data to match step
cycles to their respective athletes was 100% accurate when tested on the TR data. The
averaged relevance scores that were derived from the neural network model varied greatly
across all the variables of a step cycle (Figure 1B). For an accurate identification of individ-
uals, every percentage point (Figure 1A) and every joint angle trajectory (Figure 1C) was
needed. However, the variables from mid-stance (20–40%) and mid-swing (70–80%) were,
on average, slightly more relevant. The variables describing the joint motion of the wrist of
the swinging side were the least relevant for identifying the triathletes.
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Figure 1. Averaged relevance scores per variable (B) and contributions of individual percentage points within a step cycle
(A) and joint angle trajectories (C). In the center (B), darker colors indicate variables with high averaged relevance scores,
while lighter colors indicate variables with low averaged relevance scores. The joint labels on the left-hand side of the
heatmap each correspond to three rows, where the first row always describes the joint’s abduction, the second row the
joint’s rotation, and the third row the joint’s flexion trajectories. The top part of the figure (A) shows the vertical summation
of the heatmap, highlighting the contribution of each percent of a step cycle to the success of the model. The right part of
the figure (C) depicts the horizontal summation of the heatmap, highlighting the contribution of each joint angle trajectory
to the success of the model.

When step cycles were defined through the variables with the lowest relevance scores
(Figure 2: green), they overlapped substantially more than when step cycles were defined
through the variables with the highest relevance scores (Figure 2: blue). For both low and
high, increased subspace sizes resulted in reduced overlap. When the variables with high
relevance scores were used to define step cycles, however, the decline in overlap occurred
faster compared to when the variables of with low relevance scores were used to define the
step cycles.
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Figures 4–6 profile the 540 variables (10% of all variables) that were, on average, 
most/least relevant in more detail. More than 50% of the 540 variables expressed flex-
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other movements (ab-/adduction and internal/external rotation) were described by 30% 
(or less) of the profiled variables. 

Figure 2. Average (± SEM) overlap of movement patterns in subspaces defined by the first three principal components
derived from increasing numbers of variables with high (blue) and low (green) relevance. Overlap describes the intersecting
volume of two point clouds that resulted from projecting movement patterns onto the first three principal axes for two
participants. Using a pairwise comparison of all participants, the average was obtained.

Figure 3 visualizes the projection of step cycles onto the first three principal axes for
100 randomly selected step cycles from four participants. When the variables with high
relevance scores were used to define step cycles, the resulting point clouds of the different
participants separated well, and minimal overlap was observed (Figure 3: left). When the
variables with low relevance scores were used to define the step cycles, the resulting point
clouds did not separate, and maximal overlap was observed (Figure 3: right).

Sensors 2021, 21, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 2. Average (± SEM) overlap of movement patterns in subspaces defined by the first three 
principal components derived from increasing numbers of variables with high (blue) and low 
(green) relevance. Overlap describes the intersecting volume of two point clouds that resulted from 
projecting movement patterns onto the first three principal axes for two participants. Using a pair-
wise comparison of all participants, the average was obtained. 

Figure 3 visualizes the projection of step cycles onto the first three principal axes for 
100 randomly selected step cycles from four participants. When the variables with high 
relevance scores were used to define step cycles, the resulting point clouds of the different 
participants separated well, and minimal overlap was observed (Figure 3: left). When the 
variables with low relevance scores were used to define the step cycles, the resulting point 
clouds did not separate, and maximal overlap was observed (Figure 3: right). 

 
Figure 3. 100 randomly selected steps from four participants represented in the subspace defined 
by the first three principal components of the 100 most relevant (left) and least relevant (right) var-
iables. 

Figures 4–6 profile the 540 variables (10% of all variables) that were, on average, 
most/least relevant in more detail. More than 50% of the 540 variables expressed flex-
ion/extension movements in both the most and least relevant subspaces (Figure 4). The 
other movements (ab-/adduction and internal/external rotation) were described by 30% 
(or less) of the profiled variables. 

Figure 3. 100 randomly selected steps from four participants represented in the subspace defined by the first three principal
components of the 100 most relevant (left) and least relevant (right) variables.

Figures 4–6 profile the 540 variables (10% of all variables) that were, on average,
most/least relevant in more detail. More than 50% of the 540 variables expressed flex-
ion/extension movements in both the most and least relevant subspaces (Figure 4). The
other movements (ab-/adduction and internal/external rotation) were described by 30%
(or less) of the profiled variables.

With respect to time, the 540 most relevant variables were distributed predominantly
around 29% and 74% of a step cycle (Figure 5: blue). The least relevant variables were
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most prominent during early stance phase (7%) just after touch-down and late stance phase
(55%) right before take-off (Figure 5: green).

The 540 most relevant variables were predominantly derived from the joints located
at the spine (47%) and the lower extremities (39%). Few variables (14%) were derived from
the upper extremity joints (Figure 6: blue). The 540 least relevant variables were derived
from the spine, the upper extremities, and the lower extremities, with 46%, 28%, and 26%,
respectively (Figure 6: green).
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Elbow-sw., Wrist-st., and Wrist-sw. joints. Lower extremities includes the Hip-st., Hip-sw., Knee-st., Knee-sw., Ankle-st.,
and Ankle-sw. joints.

4. Discussion

The observation that individuals move in their own unique manner has resulted in
various works that have explored the identification of individuals based on their respective
movement patterns [10,11,21–23]. Methodologies that utilize machine learning methods,
such as support vector machines or artificial neural networks, generally report high accura-
cies when identifying individuals by their movement patterns [7,9,10,24]. However, not
every aspect of a movement pattern is equally relevant to the identification of individuals.
Some aspects (i.e., movement characteristics) were shown to be more important to a neural
network than others [7], a finding supported by the results of this study (Figure 1).

Consequently, we explored the idea that any movement pattern might be a combina-
tion of unique (individual-specific) and generic (common to many individuals) movement
characteristics. The unique aspects of a movement pattern may be encoded in those vari-
ables that are more relevant to a neural network when identifying individuals, while
generic aspects may be encoded in those variables that are less relevant to the neural
network. Specifically, we hypothesized that the movement patterns of individuals would
not overlap (i.e., would be distinct) in a data subspace derived from variables that were
highly relevant to identifying individuals based on their movement patterns (determined
by layer-wise relevance propagation). Conversely, in a data subspace derived from vari-
ables that were identified as less relevant, the movement patterns of different individuals
would overlap and be indistinguishable from one another.

In general, both hypotheses were supported when considering a select few participants
(Figure 3). When variables of high relevance were used to express movement patterns,
a projection of movement patterns onto the first three principal axes of the given data
set showed no overlap between the movement patterns of different athletes (Figure 3:
left). The projections of movement patterns that were expressed through variables of low
relevance overlapped substantially (Figure 3: right). Averaging the results across the entire
study population, however, showed that some overlap (although small) persisted when
variables of high relevance defined movement patterns (Figure 2: blue). Ultimately, then,
H1 needs to be rejected, while H2 was supported by the findings of this work.
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A possible explanation for the rejection of H1 might be associated with the homoge-
neous nature (male Ironman competitors) of the study population: elite athletes adjust
their movement patterns to be more efficient [25], as running economy is key to success
in competition. Similarities between movement patterns that are optimized to be more
economical, then, are to be expected when the margin of error in competition is vanishingly
small. In fact, previous studies showed that certain kinematic variables (e.g., range of
motion) are too unspecific to distinguish between individuals within a homogenous study
population [26,27]. A second explanation for the residual similarities in movement patterns
might be related to the fact that movement patterns were defined through joint angle
trajectories only. When humans recognize friends and family members by means of their
movement, they do so via visual cues that include information such as intent, motor effort,
gender, and others [28–30]. For instance, Johansson [31] has shown that the emotional
state of an individual can be identified when movements are presented as simple point
lights. A movement pattern derived exclusively from joint angle trajectories, however,
does not capture information about height, weight, and/or emotional states. Consequently,
the ‘uniqueness’ of a movement pattern might be inherently limited if a movement is
described exclusively by joint angle trajectories. Future research would have to show if
more holistically defined movement patterns would result in less overlap. Given these
considerations, it appears reasonable that our results did not show a perfect separation of
movement patterns within subspaces defined by the most relevant variables.

While H2 was supported by our results, the maximal observed overlap did not surpass
60% (Figure 2: green), suggesting that some degree of ‘uniqueness’ remained within the
variables that defined a movement pattern. This finding contrasts our initial speculation
that the movement patterns of different athletes would be indistinguishable when variables
of low relevance were used to define movement patterns. A possible explanation for the
remaining ‘uniqueness’ within variables of low relevance might be the variability inherent
to human movement [32,33]. Additionally, factors such as joint laxity, footwear, step length,
anthropometrics, and others were not controlled for in this study and, consequently, it
is likely that they contributed to some measure of ‘uniqueness’ within the studied joint
kinematics. Given these considerations, the initial speculation that movement patterns
would overlap perfectly needs to be revaluated: some degree of individuality should
be expected, even within those variables that are least relevant for a neural network to
identify individuals.

In summary, similarities between the movement patterns of different athletes were
small when the movement patterns were reduced to those variables that were most relevant
for a neural network to distinguish between athletes. Variables of high relevance, therefore,
isolated movement characteristics that separated well between individuals and may be
considered unique. Similarities between the movement patterns of different athletes were
large when the movement patterns were expressed through those variables that were least
relevant for a neural network to distinguish between athletes. Variables of low relevance,
therefore, isolated movement characteristics that do not separate well between individuals
and may be considered generic.

It is of interest to examine the unique and generic movement characteristics of the
studied population in greater detail as they may have implications for health [8,9], secu-
rity [10], and performance [11]. The unique movement characteristics of elite triathletes
were predominantly sagittal plane movements (Figure 4) of the spine and lower extremities
(Figure 6) during mid-stance and mid-swing (Figure 5). Conversely, the generic movement
characteristics of elite triathletes were sagittal plane movements (Figure 4) of the spine
(Figure 6) during early and late stance (Figure 5).

This contrasts with previous findings, which suggested that coronal and transverse
plane movements are unique, while sagittal plane movements are more generic [7]. How-
ever, this comparison should be treated with caution as the cited work studied novice
runners and a limited set of joint angles, while the present work investigated elite run-
ners and a more extensive set of joint angles. Nonetheless, the predominance of sagittal
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plane movements within unique and generic movement characteristics remains striking.
A potential explanation might be that postural control and running movements are mostly
confined to the sagittal plane [34–36]. In this plane, a joint’s range of motion tends to be
larger [37]; thus, similarities and dissimilarities in flexion/extension movements between
individuals might simply be more common. That generic movement characteristics of
elite runners were confined to the early and late stance phase appears reasonable when
considering that the movements of recreational and elite runners differ within these pe-
riods [38,39]. Additionally, some running programs cue their participants to adjust their
landing strategies [40], so that ‘overstride’ is reduced and longer flight times are promoted.
Amongst others these are defining characteristics of elite runners [41]. Consequently, it
seems reasonable that elite runners would express similarities during early and late stance,
while individual movement strategies may vary during mid-stance and mid-swing. Finally,
it is not surprising that both unique and generic movement characteristics were dominant
in spinal motion. Both extremities (lower and upper) are connected via the trunk and,
thus, spinal motion reflects upper and lower extremity motion. As a result, an individual’s
unique movement strategy will be reflected in spinal motion just as much as a generic arm
swing during running.

In summary, the unique and generic movement characteristics of elite runners are
predominantly flexion/extension movements of the spine. However, unique strategies
occur during mid-stance and mid-swing, while generic movements occur during early and
late stance.

A limitation of this study was that only well-trained triathletes participated. This
is important because triathletes have high training volumes in running, swimming, and
cycling. It is unclear whether the presented results would generalize well to the broader
population of runners. The running patterns of novice athletes and males and females,
however, are known to be distinct enough to differentiate between them. Consequently,
similar findings may be expected from different study populations. Further, the participants
did not run at the same speed, and it is well accepted that running speed changes running
patterns. While the running speed was self-selected, it was based on the participants’
finishing time for an Ironman competition, and all the participants were able to finish the
competition in under 9 h and 30 min. The running speeds were therefore comparable
across the participants and the small variation in speed was considered acceptable, as
variations of 0.1 m per second can be observed in treadmill running as well. Finally, the
relevance scores presented in this work were all dependent on the data the trained neural
network received. They should therefore be treated with caution and a generalization of
their importance should be avoided.

5. Conclusions

Human movement patterns are a composition of unique and generic movement char-
acteristics. Unique characteristics include aspects that are specific to any given individual,
while generic characteristics include aspects that are common to all individuals. For elite
runners, unique movement characteristics were found to be predominantly sagittal plane
movements of the spine and lower extremities during mid-stance and mid-swing. The
generic movement characteristics were found to be sagittal plane movements of the spine
during early and late stance.
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