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Theranostics is a fast-growing field due to demands for new, efficient therapeutics

which could be precisely delivered to the target site using multimodal imaging with

enhancing auxiliary actions. In this review article we discuss theranostic nanoplatforms

containing polymers andmagnetic nanoparticles along with other components. Magnetic

nanoparticles allow for both diagnostic and therapeutic (hyperthermia) capabilities, while

polymers can be reservoirs for drugs and are easily functionalized for cell targeting. We

focus on the most important design strategies to achieve optimal theranostic effects as

well as the roles of different components included in theranostics, reviewing the literature

from the last 5 years.
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INTRODUCTION

Over the years drug delivery systems have become so sophisticated that they are capable of
combining therapeutic action from a drug or an external field with imaging capabilities such as
magnetic resonance imaging (MRI), magnetic particle imaging (MPI), near infrared (NIR), and
photoacoustic imaging (PAI), etc. The combination of imaging with therapy, called theranostics,
allows for more precise delivery of a treatment, thus, increasing its efficacy. To fabricate theranostic
drug delivery vehicles, one needs to combine in a single design the capacity to adsorb and release
a drug, imaging properties, as well as some enhancing actions. We believe for the development
of such efficient nanoplatforms, a combination of a polymer and magnetic nanoparticles (NPs),
is favorable as the polymer can provide a reservoir for drugs and a platform for additional
functionalization (for cell targeting or imaging), while magnetic NPs allow for MRI, MPI and
hyperthermia—a cancer treatment which can be combined with a drug action. For the last 5 years,
several review articles have been published discussing applications of hybrid nanomaterials based
on bifunctional proteins, functional, and conducting polymers, dendrimers, biopolymers, etc. for
diagnostics and therapies of serious diseases including cancer (Bonilla and Gonzalez, 2017; Deyev
and Lebedenko, 2017; Kudr et al., 2017; Niu et al., 2017; Liu et al., 2018; Ray et al., 2018; Srinivasan
et al., 2018; Aisida et al., 2019). Polymer-assisted magnetic NP assemblies showed a significant
promise due to their controllable magnetic properties and collective functions (Li et al., 2020).
Despite these excellent reviews, we believe there is a gap in understanding of key design elements
needed to fulfill the desired theranostic functions for real life applications. In this review, we discuss
the design of the most promising theranostics containing polymer and magnetic nanoparticles,
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allowing for the best combination of properties and possibilities
of practical applications, analyzing literature from the last 5 years.

DESIGN STRATEGIES

The major design strategies are 3-fold, focusing on (i) magnetic
NPs with an enhanced magnetic response, (ii) a combination
of magnetic and Au NPs, and (iii) sophisticated engineering
solutions for fabrication of shells/containers.

Magnetic NPs With Improved Magnetic
Response
A typical way for increasing a magnetic response is iron oxide
NP clustering which is discussed in section Nanoprecipitation
of a Polymer and NPs. The other methods focus on varying a
magnetic phase composition. A significantly improved magnetic
response in terms of MRI and hyperthermia was achieved
by combining soft magnetic phase (MnFe2O4 NPs) and hard
magnetic phase (CoFe2O4 NPs) in bi-magnetic NP clusters
(NPCs) stabilized by a biocompatible sodium dodecyl sulfate
polymer (Vamvakidis et al., 2018). Paramagnetic ultrasmall NPs
of Prussian blue [Fe3+(Fe2+(CN)6)] types containing Gd

3+ ions
in their exterior showed exceptional longitudinal relaxivities >

40 mM−1 s−1 per Gd3+ independently of the polymer shell
(Fetiveau et al., 2019). In addition, a great photothermal effect
and PAI of tumors in vivo were achieved.

A Combination of Magnetic and Au NPs
Janus particles composed of trisoctahedral magnetite NPs and
Au NPs coated with poly-L-lysine yielded a single nanoprobe
with increased stability in vivo and efficient photothermal tumor
ablation (due to gold) as well as enhanced MRI contrast
properties due to the polymer layer (Abedin et al., 2018). Each
constituent of thesemulticomponent particles plays an important
role in theranostic applications. Other examples of a combination
of gold and magnetic NPs were reported by Cherkasov et al.
(2020), Wang et al. (2018), and (Sun et al., 2016).

Engineering Design
Zhang et al. developed sophisticated yolk-shell particles (YSPs)
from simple components such as poly(ε-caprolactone) (PCL),
silicone oil, and magnetite NPs (MNP) using tri-needle coaxial
electrospray engineering to create a Fe3O4 NP-PCL shell
surrounding an interfacing silicone oil layer, located around
a PCL core (Figure 1; Zhang C. et al., 2017). The authors
illustrated a possible simultaneous encapsulation and delivery of
different drugs using the separate compartments of the YSPs.
This situation was simulated using Nile blue (NB) and acridine
yellow (AY)—model hydrophilic compounds—and Sudan red G
(SRG) as a model for a hydrophobic drug. Dual-mode resonance
(ultrasonic andmagnetic) as well as multiple mechanisms of drug
release (inversion, applied magnetic field, acoustic waves) and
the possibility of using different polymers and NPs make these
theranostics especially promising as universal systems for therapy
and diagnostic.

High-power ultrasound was utilized to develop theranostics
for gene silencing capabilities via a one-pot method (Israel et al.,

2016). The NPs were functionalized with a polyethylene imine (b-
PEI25) and a G2 PAMAM dendrimer biopolymer for attachment
of small interfering RNA (siRNA) and decreasing cytotoxicity.
This resulted in effective gene silencing (90–95%) combined with
T2 MRI capabilities.

POLYMERIC COMPONENT

Coating of Magnetic NPs With a Polymer
An in-situ surface polymerization was developed to coat
magnetite NPs with polypyrrole as well as poly(3,4-
ethylenedioxythiophene):poly(4-styrenesulfonate; PEDOT:PSS;
Yan et al., 2017). A conjugated polymer here allows for NIR
absorbance. Powerful multimodal imaging capabilities of the NPs
were utilized through PAI and MRI, while efficient hyperthermia
resulted in effective tumor-ablation in mice.

Polyarabic acid, which is a major component of acacia
gum, is biocompatible and facilitates penetration of cell
membranes. Coating of magnetite NPs with polyarabic acid
followed by further functionalization and DOX loading allowed
fabrication of theranostic nanosystems with excellent cell
penetration, DOX uptake, and pH sensitive DOX release in
breast cancer tumor cells (Patitsa et al., 2017). Additionally, the
NPs demonstrated great biocompatibility, minimal cytotoxicity,
and contrasting properties comparable to current commercial
agents. Coating with poly(ethylene glycol) (PEG), dextran, and
chitosan allowed for better control over the polymer coat
properties, enhancing both MRI and hyperthermia applications
(Zahraei et al., 2016).

A novel nanotheranostic platform was developed from
magnetite NPs conjugated to cyclodextrin polymer nanosponges,
further functionalized with folic acid (FA) (Gholibegloo et al.,
2019). The drug curcumin was then loaded into the lipophilic
central cavity of cyclodextrins and a magnetic field was applied
to guide the system toward the tumor whose acidic pH causes
release of the drug.

A core-shell magneto-fluorescent nanogel was developed
with iron oxide NP cores and a photoluminescent shell, where
comacromers [PEG-maleic acid-glycine] were linked together
by a crosslinker (Vijayan et al., 2019). The nanogel was found
to possess high cytocompatibility, good cellular uptake, as well
as fluorescent imaging and hyperthermia treatment capabilities.
Crosslinking was utilized in another nanotheranostic platform
to combine α-lactalbumin to itself via PEG and glutaraldehyde
(Delavari et al., 2019). The resulting polymer was then attached
to magnetite NPs using PEI. The redox sensitive protein
complex holding DOX allowed for targeted release of the
chemotherapeutic agent once in the acidic environment of
a tumor.

In another example, a thermo-responsive fluorescent polymer
(TFP) was conjugated to the surface of iron oxide magnetic NPs
for use as a degradable and non-toxic theranostic agent (Pandey
et al., 2020). For this, poly(N-isopropylacrylamide) (PNIPAM),
allylamine and a fluorescent polymer were copolymerized and
conjugated to NPs via free radical polymerization to form TFP-
NPs. In vitro studies demonstrated low cytotoxicity and high
biocompatibility of DOX loaded polymer-NP conjugates.
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FIGURE 1 | Schematic representation of tri-needle coaxial electrospray system for developing YSPs (Zhang C. et al., 2017). Reproduced with the permission of the

copyright holder (American Chemical Society).

Yan et al. showed that the thickness of the PNIPAM coat
around iron oxide NPs plays an important role in the drug uptake
and MRI properties (Yan et al., 2017). It was established that
thicker layers of PNIPAM translated to a higher uptake of DOX
but subsequently led to a slower release and longer times to reach
the target area during magnetic drug delivery.

Nanoprecipitation of a Polymer and NPs
A pH switch nanoprecipitation method has been utilized for
encapsulation of iron oxide NPs by a copolymer-drug conjugate
including a tumor homing peptide (iRGD) with tumor specificity
(Herranz-Blanco et al., 2016). The nanosystem showed increased
lysosomal escape due to presence of poly(histidine) via the proton
sponge effect and subsequent release of the polymer into the
cytoplasm. The magnetic response was strong due to clustering,
allowing for magnetic guided therapy. Additionally, intracellular
cleavage of the DOX-polymer linkage was observed, allowing
for efficient DOX delivery and accumulation in the nuclei of
tumor cells.

Micelles prepared by nanoprecipitation of poly-(N-ε-
carbobenzyloxy-L-lysine) grafted hyaluronan copolymer in
the presence of iron oxide NPs and DOX were designed for
targeted tumor diagnosis and treatment (Yang et al., 2020). The
copolymer used in coating consisted of polysaccharides and
polypeptides linked by disulfide bonds which, once reduced
by the high concentration of glutathione (GSH) in the tumor
tissue, released DOX. In vitro studies using HepG2 cells
showed accelerated drug release over a 24 h period from these
redox-sensitive theranostic NPs and increased intracellular
uptake under a high GSH concentration, which mimics tumor
cell conditions.

Self-Assembly in the Formation of Smart
Materials
A NP beacon based on gold and ferrihydrite NPs coated with
a flexible polymer (custom designed amino-group terminated
oligonucleotides with terminal biotin) was fabricated by

conjugation using streptavidin and DNA to form a highly
sensitive input-switchable structure (Cherkasov et al., 2020).
This structure controls accessibility of the terminal receptor
for binding to the target (Figure 2). Here, DNA serves as a
molecular cue to cause the smart material to undergo a serious of
transformations allowing them to bind to cancer cells and initiate
drug release. Biotin affinity to the gold surface shielded it from
interaction until the specific input DNA turned the complex on
so that biotin could interact with the target (streptavidin). These
amazing constructs demonstrate an unusual signal transmittance
between a biochemical cue (input) and a nanoprobe (targeting
receptor) via surface polymer interactions and hold promise of
remarkable future applications.

SURFACE MODIFICATIONS

Fighting Phagocytosis With Self-Peptide
The mononuclear phagocyte system (MPS) poses as a barrier
to NP delivery systems in vivo, and most delivery vehicles use
a “passive stealth” approach through the presence of PEG or
zwitterionic polymers, which delay the coating of nanovehicles
with serum proteins and thus phagocytosis by theMPS. However,
in the body, cell surface protein CD47 displayed on host cells
interacts with phagocyte surface receptors, thus promoting anti-
phagocytosis and acting as a “self-peptide” for the MPS to
distinguish host from foreign particles. Zhang et al. explored an
assembly of biodegradable poly(lactide-glycolide)-PEG (PLGA-
PEG) with synthetic CD47 self-peptide for interactions with the
SIRPα receptor expressed on phagocytes, i.e., an “active stealth”
approach within the body (Zhang K.-L. et al., 2017). Also, iron
oxide NPs absorbed anticancer drug through self-assembly into
micelles, allowing for increased blood circulation, imaging, and
drug delivery in vivo.

Modification for Tumor Targeting
Functionalization of core-shell iron oxide NP-polymer constructs
with FA allows for enhanced targeting and uptake in tumor cells
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FIGURE 2 | Schematic representation of the NP beacon action (Cherkasov et al., 2020). Reproduced with the permission of the copyright holder (American Chemical

Society).

via FA receptor mediated endocytosis (Huang et al., 2017; Roy
et al., 2017; Gholibegloo et al., 2019). Functionalization with
lysine and cysteine derivatives allowed for enhanced tumor cell
ligand targeting and uptake (Wei et al., 2017). A tissue-type
plasminogen activator peptide was employed for modification
of a magnetic construct and targeting pancreatic cancer cells
(Dobiasch et al., 2016).

Use of Surfactant for Crossing Blood Brain
Barrier
The blood brain barrier (BBB) often prevents crossing of
theranostic agents into the brain, and thus poses a significant
hurdle for any potential anticancer treatment targeting brain
tumors. Iron oxide NPs modified with PEG, PEI, and Tween
80 (non-ionic surfactant) along with an applied magnetic field
allowed for active penetration of the BBB in vivo, suggesting
future potential for theranostic delivery through the BBB via
Tween-NP conjugates (Huang et al., 2016). Other polymer based
surfactants such as Brij-35, Pluronic F68, and Vitamin E-TPGS
improved passage through BBB allowing for access to brain
tumors such as glioblastoma (Luque-Michel et al., 2019).

It is noteworthy that lyophilization was efficiently used
for preservation of theranostics with zero effect on physical,
chemical, and magnetic properties after prolonged storage (Yang
et al., 2017; Luque-Michel et al., 2019).

DIAGNOSTICS

MRI and MPI
Theranostic nanoplatforms with iron oxide NPs are normally
utilized as T2 (negative) MRI contrast agents. Considering that
MRImeasures a proton response, NPs with higher magnetization
and higher loading of water protons in a polymeric shell make
a better MRI contrast agent (Liao et al., 2017; Yang et al.,

2020). Polymer-NP constructs containing Gd3+ complexes (Roy
et al., 2016; Fetiveau et al., 2019) or Fe3+- terpyridine complexes
(Patra et al., 2018) can provide highly efficient T1 (positive)
MRI contrast.

MPI—a comparatively recent imaging method—is based on a
direct quantification of spatial distribution of iron oxide NPs in a
tissue as a magnetization response to a magnetic field. It provides
a higher contrast than that ofMRI. A polymer-NP system showed
promising MPI contrast properties (Rost et al., 2020).

Fluorescence Imaging
Normally, fluorescence imaging is performed along with MRI
by using a fluorescently labeled polymer (Pandey et al., 2020).
For example, functionalization of iron oxide NPs with the two-
photons fluorescent dye labeled polymer yielded a nanoprobe
capable of quantifying pancreatic Beta cell mass (BCM), an
effective indicator of onset of type 2 diabetes (Xin et al., 2020).
Dye release was achieved via the acidic environment of the
Beta pancreatic cells, thus allowing for fluorescence detection of
Beta cells via confocal one-photon and two-photon microscopy.
Furthermore, the nanoprobe displayed powerful inhibition of
the toxic aggregation of human islet amyloid polypeptide,
the suspected cause of Beta cell degeneration observed with
type 2 diabetes. Magneto-fluorescent nanogels discussed in
Section Nanoprecipitation of a Polymer and NPs displayed dual
emissions (red and green) in Hela cells under different excitation
wavelengths showing that this nanogel has fluorescence imaging
applications toward cancer cells (Vijayan et al., 2019).

Photoacoustic Imaging
PAI is a comparatively novel imaging modality, based on
optical (laser) excitation and ultrasound imaging to detect sound
waves (Attia et al., 2019). It is often combined with other
imagingmethods to impart multimodality and higher accuracy of
imaging. Fetiveau et al. observed a strong photo-acoustic signal
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intratumorally after irradiation at ∼808 nm of Gd-containing
Fe3+[Fe2+(CN)6] NPs (Fetiveau et al., 2019). Lu et al. combined
PAI, MRI and computer tomography utilizing dendrimer-
stabilized nanoflowers containing Au and ultrasmall iron oxide
NPs (Lu et al., 2018). Multimodality imaging including, PAI,
MRI and fluorescence was demonstrated for fluorescent Janus
nanostructures (Song et al., 2019).

THERAPEUTIC PROPERTIES

Magnetic Delivery of Anti-cancer Agents
Multiblock polyurethanes (MPU) containing soft and hard
polymer linkages formed iron oxide NPCs as a nanovehicle
capable of magnetically targeted delivery in vivo (Wei
et al., 2017). PEG connected by benzoic-imine linkage
allowed for pH sensitive release of an anticancer drug in
extracellular acidic environments. Overall, the MPU nanovehicle
demonstrated powerful anticancer properties in vivo and MRI
contrast properties.

Kumar et al. studied magnetic navigation steering capabilities
of the nanostructures formed by maghemite NPs and
thermoresponsive poly(2-ethyl-2oxazoline) in a synthetic
blood vessel model (Kumar et al., 2018). High efficiency of
magnetic steering navigation was achieved for all directions of
blood flow studied, including angular, parallel, and antiparallel
flow to the target destination combined with efficient release
of anticancer drug (paclitaxel) at 41◦C. Delavari et al. and
Herranz-Blanco et al. also reported targeted delivery to tumor
sites via magnetic guidance which allowed for increased DOX
uptake in cancer cells (Herranz-Blanco et al., 2016; Delavari
et al., 2019). This significantly improved cytotoxicity and
apoptosis within the tumor while reducing those effects on
healthy tissue.

Reduction of Hypoxia
Hypoxia is a key aspect of tumor cell environments, contributing
increased resistance to anticancer therapies. Loading of porous
hollow Fe3O4 NPs with a FDA approved oxygen carrier,
perfluorocarbon, was performed to study potential for decreasing
hypoxia induced resistance to these treatments (Zhou et al.,
2019). Modification of these NPs with lactobionic acid-
containing block copolymer allowed for enhanced targeting
of tumor cells and uptake via cleavage of the hydrophilic
PEG segment by intratumoral GSH. Effective release of oxygen
was achieved, leading to a decrease in hypoxia induced
tumor resistance.

Hyperthermia
Upon irradiation with an infrared laser or under the influence
of an alternating magnetic field, many magnetic NPs undergo
hyperthermia. It can be utilized in two major ways: enhanced
drug release through the heat-expansion of a polymer coat
(Zhang C. et al., 2017; Vijayan et al., 2019) and achieving
temperatures above the minimum for inducing apoptosis (42◦C)
of surrounding cells (Thirunavukkarasu et al., 2018; Yar et al.,
2018; Fetiveau et al., 2019) or by a combination of both methods
(Vijayan et al., 2019). In all cases, once the nanomaterials had

accumulated at the tumor site, they were triggered to reach
required temperatures, resulting in a highly controlled and
localized method for killing cancer cells.

Gene Silencing
An enhanced interest has been shown for utilizing gene silencing
and RNA interference techniques for cancer treatment. However,
RNA interference is often limited due to fast degradation of
siRNA by endonucleases prior to cell uptake. Functionalization
of iron oxide NPs with chitosan and siRNA was performed
for MRI contrast and RNA interference capabilities (Bruniaux
et al., 2017). The addition of PEG and poly-L-arginine
coating significantly increased the biocompatibility and siRNA
transfection of the nanoplatform. Additionally, chitosan allowed
for endosomal escape and thus pH sensitive release of siRNA
into the cytoplasm. The use of polymer coated magnetic NPs as
carriers for siRNA for gene silencing therapy was also reported
by Israel et al. (2016).

SUMMARY AND OUTLOOK

What does the future hold in the field of magnetic theranostics?
The literature shows that successful theranostics are based on
three major principles: (i) multimodality of imaging allowing
for high fidelity, (ii) efficacy of a therapeutic action often
requiring additional functionalization for targeted delivery and
an external field for an enhancement of the drug action, and
(iii) potentials for robust scale up of the theranostic system
production. The combination of all these factors can be realized
in multicomponent systems, whose fabrication can be performed
in a few steps. These requirements are met using tri-needle
coaxial electrospray engineering resulting in YSPs. Moreover,
this approach allows a wide variation of polymers, NPs, drugs,
modifiers, etc., thus presenting the opportunity for a wide array of
imaging modalities and therapeutic actions. Another promising
fabrication strategy is self-assembly of multiple components into
micelles (smart materials), where there is a molecular cue (for
example, DNA), allowing one to trigger an ON-OFF mechanism
of a therapeutic action. It is noteworthy that self-assembly is easy
to scale up and to modify with various components.

At the same time, there is a number of shortcomings in this
field, the major of which is a slow transition from laboratory
studies to real world applications. This is often determined by
high costs, fabrication issues, and the length of both preclinical
and clinical studies. Thus, a concerted effort from scientists,
engineers and clinicians is required to move the field forward.
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