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Abstract

Background: Screening programs use mammography as primary diagnostic tool for detecting breast cancer at an
early stage. The diagnosis of some lesions, such as microcalcifications, is still difficult today for radiologists. In this
paper, we proposed an automatic binary model for discriminating tissue in digital mammograms, as support tool for
the radiologists. In particular, we compared the contribution of different methods on the feature selection process in
terms of the learning performances and selected features.

Results: For each ROI, we extracted textural features on Haar wavelet decompositions and also interest points and
corners detected by using Speeded Up Robust Feature (SURF) and Minimum Eigenvalue Algorithm (MinEigenAlg).
Then a Random Forest binary classifier is trained on a subset of a sub-set features selected by two different kinds of
feature selection techniques, such as filter and embedded methods. We tested the proposed model on 260 ROIs
extracted from digital mammograms of the BCDR public database. The best prediction performance for the
normal/abnormal and benign/malignant problems reaches a median AUC value of 98.16% and 92.08%, and an
accuracy of 97.31% and 88.46%, respectively. The experimental result was comparable with related work performance.

Conclusions: The best performing result obtained with embedded method is more parsimonious than the filter one.
The SURF and MinEigen algorithms provide a strong informative content useful for the characterization of
microcalcification clusters.

Keywords: Computer-aided diagnosis, Microcalcifications, Digital mammograms, Haar wavelet transform, SURF,
Minimum eigenvalue algorithm, Random forest, Feature selection

Background
Breast cancer is the first cause of death among women
and, although it is difficult to prevent, an early diagno-
sis of breast lesions increases the chances of survival and
reduce the mortality rate [1]. Currently, screening pro-
grams use mammography [2, 3] as primary diagnostic tool
for detecting breast cancer at an early stage. However
the identification of some lesions remains still difficult
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for radiologists. In particular, the 55% of breast diseases
with tumor lesions are accompanied by the presence of
microcalcifications (MCs), that are tiny spots of calcium
deposits localized or broadly diffused on the breast areas,
especially when they appear extremely minute (sometimes
they do not exceed 0.1 mm) and grouped in clusters.

The diagnosis of microcalcifications is usually based on
radiologists expertise resulting in some cases in inaccu-
rate lesion detection [4–6] or in performing unnecessary
breast biopsies on benign calcification clusters. This limit
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becomes more evident in women with dense breast tis-
sue that can hide lesions causing cancer to be detected at
later stages [7, 8]. To overcome such limits, a solution is
represented by the double blind reading of the mammo-
grams by two radiologists [9] with a consequent higher
workload and cost. A more interesting solution could
be represented by using intelligent techniques to autom-
atize the process of identification, normal vs abnormal
tissue, and diagnosis, benign vs malignant, of clustered
microcalcifications.

Several works have presented computerized methods
to detect abnormalities in mammograms, playing a key
role in the early detection of breast cancer thus help-
ing to reduce the mortality rate due to breast pathologies
in a cost-effective manner [5]. Such methods are known
as Computer-Aided Detection/Diagnosis (CAD) systems
and may offer to radiologists a reliable support in the
evaluation of mammographic images [4, 10–12].

Many methods have been proposed to achieve a robust
mammography-based CAD system for microcalcification
diagnosis [13–18], in some cases well performing in deal-
ing with specific abnormalities. Nevertheless, the auto-
matic and accurate classification of microcalcification
clusters, especially in differentiating the benign from the
malignant ones, remains still complicated due to their
nature. For this reason, the focus of this study is on
the identification of a general model able to discrimi-
nate and, at the same time, characterize breast tissue and
lesions with the aim of facing the fundamental challenge
of improving the accuracy of breast lesion identification in
order to decrease unnecessary biopsies and later surgeries.
Accordingly, in the proposed model, an important role
should be played by the features extraction and selection
process, used to describe and characterize the regions of
interest (ROIs), as well as by the classifier employed in the
last phase of the CAD scheme that should be responsible
of the decision regarding the origin, benign or malignant,
of the region.

For what concerns the extraction of a representative
set of features from the ROIs, different models have
been proposed in literature ranging from those describing
shapes of the clusters and classical statistical measure-
ments [10, 19] to the ones exploiting morphological fea-
tures [5, 16]. In some works, the texture analysis model
uses a set of local statistical properties of pixel intensity.
The textural features are obtained by the decomposi-
tion of the image into different frequency sub-bands by a
wavelet transform [13, 14, 20] or by considering the spatial
relationship between pixels with different gray-levels
using the gray level co-occurrence-matrix [21–24].
Differently from textural descriptions of the breast lesions,
some works concentrate on the potential correlation
between the topology of clustered MCs and their patho-
logical nature [17, 25]. Overall, all the works reported in

literature use a broad variety of machine learning tech-
niques such as k-Nearest Neighbours (kNN) [17, 23],
Artificial Neural Networks (ANN) [14], and Support Vec-
tor Machines (SVM) [13, 14, 21] to build a classifier
model able to discriminate the ROIs containing micro-
calcifications as benign or malignant using the extracted
feature sets.

The development and integration of such a tool able
to classify breast regions seem to be the natural prose-
cution of work presented in [26] where a CAD system
working on full-field digital mammograms for the detec-
tion of clustered microcalcifications is reported. Indeed,
as a succeeding step one expects the CAD system to
perform a classification of the identified regions firstly
in normal or abnormal tissue, as to reduce the erro-
neously detected regions that represent the false positive
instances, and successively, on the abnormal classi-
fied regions, in benign or malignant lesions so to
reduce recalls for unnecessary and stressful biopsies or
ultrasound scans.

In this work, we propose the exploitation of texture
analysis methods combined with machine learning
techniques in order to characterize breast regions
into normal/abnormal tissue and successively into
benign/malignant lesions. The process is a multi-phase
approach made up of a feature extraction step, performed
by texture analysis methods, a features selection step, car-
ried out with filter and embedded methods, and a breast
region classification, performed by means of machine
learning techniques, in order to categorize clusters of
MCs in digital mammograms. Specifically, for each ROI
a set of well-defined textural features, such standard
statistical features, on a multiscale decomposition of
the image based on the Haar wavelet transform [27, 28]
are extracted. Moreover, interest points and corners are
detected by using Speeded Up Robust Feature (SURF)
[29] and Minimum Eigenvalue Algorithm (MinEigenAlg)
[30], respectively. Successively, two different kinds of
feature selection techniques, such as filter and embedded
methods [31, 32] are exploited. Specifically, the filter
methods include algorithms that evaluate the capacity
of the individual features to predict the expected result.
Embedded methods allow optimization between the
interaction of the selected features and the classification
algorithm used. Finally, a training test by means of a state
of art classifier, such as Random Forest [33], is performed
to classify the clustered microcalcifications. The proposed
approach was tested on full-field digital mammograms
extracted from the public database BCDR (Breast Cancer
Digital Repository − https://bcdr.ceta-ciemat.es) [34].
The model performance was tested in cross-validation
and evaluated in terms of accuracy, sensitivity and
specificity, obtaining results in agreement with the
literature.

https://bcdr.ceta-ciemat.es
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Materials and methods
Dataset selection
The image dataset consisted of a set of digital mammo-
grams randomly selected from the Breast Cancer Digital
Repository [34] (BCDR). Currently, the BCDR contains
cases of 1734 patients with mammography and ultrasound
images, clinical history, lesion segmentation and selected
pre-computed image-based descriptors. Patient cases are
classified according to BIRADS categories [35] and anno-
tated by specialized radiologists covering all the possibili-
ties of diagnosis. In the database all available medio-lateral
oblique (MLO) and cranial caudal (CC) views of the left
and right breast are included. The BCDR is subdivided
in two different repositories: (1) a Film Mammography-
based Repository (BCDR-FM) and (2) a Full Field Digital
Mammography-based Repository (BCDR-DM). In partic-
ular, BCDR-DM includes 724 patient cases with digital
mammograms. The MLO and CC images are gray-level
mammograms with a resolution of 3328 (width) by 4084
(height) or 2560 (width) by 3328 (height) pixels, depend-
ing on the compression plate used in the acquisition
(according to the breast size of the patient).

For this study, digital mammograms from BCDR-DM
both in MLO and CC views were considered. Since the
BCDR images reported the segmentation of the main
lesions only, each extracted image was evaluated in dou-
ble blind by two radiologists of our Institute dedicated
to senological diagnostics, which have manually identified
and classified ROIs containing the microcalcification clus-
ters. Then, after a comparison between these independent
readings, only ROIs for which both radiologists agreed
were taken into account. As result, the dataset exploited in
this study consists of 130 ROIs with clustered MCs, where
75 benign and 55 malignant, and 130 ROIs without any
pathology.

Textural feature extraction
In this paper, we propose a fully automated model for the
characterization of regions containing clustered micro-
calcifications in digital mammograms mainly based on a
texture analysis approach. Since a fundamental property
of the image texture is the scale at which the image is
observed and analyzed, in this work a wavelet transform
based on multiscale texture analysis approach, and specif-
ically the Haar wavelet transform, was exploited. The Haar
wavelet [27, 28] is a sequence of rescaled “square-shaped”
functions which together form a wavelet family or basis.
Wavelet approach is similar to Fourier analysis in that
it allows a target function over an interval to be repre-
sented in terms of an orthonormal basis. This basis is
composed by scaled and translated basis functions and
denoted as φ(x, y) and ψ(x, y). Conceptually, the scaling
function is the low frequency component of the scaling
function in 2 dimensions, and therefore there is one 2D

scaling function. The translated function has three differ-
ent wavelet components, namely horizontal, vertical and
diagonal. However, the wavelet function is related to the
order at which apply the low- and high-filters and, since
the wavelet function is separable, i.e.

f (x, y) = f1(x)f2(y)

these functions can be written as follows:

φ(x, y) = φ(x)φ(y) → LL = low − low,
ψH(x, y) = ψ(x)φ(y) → HL = high − low,
ψV (x, y) = φ(x)ψ(y) → LH = low − high,
ψD(x, y) = ψ(x)ψ(y) → HH = high − high,

(1)

where the corresponding filter order is denoted [27].
The Haar sequence is recognized as the first known

wavelet basis and extensively used as a teaching exam-
ple. In the 2D Haar wavelet decomposition on the image,
the original image is first low-pass filtered and down-
scaled, yielding an approximation coefficients sub-image
(LL1 in Fig. 1a, top left), and then high-pass filtered, yield-
ing the three detail coefficients sub-images (Fig. 1a, top
right: horizontal HL1, bottom left: vertical LH1, and bot-
tom right: diagonal HH1), according to the general form
of 2D wavelet transform (Eq. 1). To compute the succes-
sive level of decomposition, the process is iterated on LL1,
i.e. the approximation coefficient sub-image (Fig. 1b, top
left). Specifically, in this study, we performed the 2D Haar
Transform at two levels of decomposition.

However, to perform texture analysis, a number of
attributes or descriptors that differentiate the textures
have to be identified. Of course, such descriptors are
assumed to be uniform within the regions with the same
texture. Many works in literature report the texture anal-
ysis process based on first- or second-order statistics
computed on the image histogram. The use of such tex-
ture descriptors rely on the assumption that texture can
be defined by local statistical properties of pixel gray lev-
els. For this reason, in our study, for each of the eight
sub-images obtained in the Haar decomposition (LL, HL,
LH and HH for levels 1 and 2) the following features are
computed: mean, variance, skewness, kurtosis, entropy,
relative smoothness; thus resulting, for each ROI, in a set
of 48 Statistical Features (SF set).

Interest point/corner detection
As pointed out, the microcalcifications are characterized
as to be tiny spots of calcium deposits localized or broadly
diffused alone the breast areas or in some cases extremely
minute and grouped in clusters. For this particular char-
acterization of such lesions, in our model we enriched
the information coming from the texture analysis with the
information about points and corners of interest that can
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Fig. 1 Image Haar decomposition. a One- and b two- level of decomposition

be identified in the ROIs. Specifically, they were obtained
by using SURF and MinEigenAlg.

SURF method [29] is an interest local point detector and
descriptor that relies on integral images for image con-
volutions. It consists of three main parts: interest point
detection, local neighborhood description and matching.
For the detection of interest points, first it uses square-
shaped filters as an approximation of Gaussian smoothing,
and then evaluates the sum of the original image within
a rectangle using the integral image and requiring evalu-
ations at the four corners of that rectangle. Then, SURF
algorithm employs an integer approximation of the deter-
minant of Hessian matrix of an image I, defined at the
point p(x, y) and scale σ as follows:

H(p, σ) =
(

Lxx(p, σ) Lxy(p, σ)

Lyx(p, σ) Lyy(p, σ)

)
, (2)

where Lxx(p, σ) is the convolution of the second-order
derivative of Gaussian with the image I(x, y) at the point
x, and similarly for Lxy, Lyx and Lyy; the scale σ represents
the layers obtained by filtering the image with gradually
bigger mask (9x9, 15x15, 27x27, etc.). In this way, a pyra-
midal scale space is built: rather than serial downsampling
(Fig. 2a), each successive level of the pyramid is built by
upscaling the image in parallel (Fig. 2b) [29]. In order
to find points of interest in the image and over scales,
local change around the point is measured and detected
points are highlighted. Finally, the maxima of the Hessian
matrix determinant are interpolated in scale and image
space. The descriptor of local neighborhood is made by
means a description of the intensity distribution of the
pixels within the neighborhood of the point of interest
in order to provide a solid description of an image fea-
ture. The SURF descriptor fixes a reproducible orientation
by using information from a circular region around the
points of interest, and adds the Haar wavelet responses.
Then, the interest region is split into smaller sub-regions,

and for each of them, the Haar wavelet responses are
extracted. Finally, the responses are weighted with a Gaus-
sian in order to offer more robustness for deformations,
noise and translation. For the last part of the algorithm,
matching pairs can be found by comparing the descriptors
obtained from different images.

MinEigenAlg uses the Shi-Tomasi detector to identify
the interest corners of an image. It is based on the Harris
corner detector [30] with a modification in the score cal-
culation. A corner can be defined as a point where two
dominant and different edge directions meet in a local
neighborhood of the point, differently from an edge with
no change along the edge direction and from a flat region
where no change are in all directions. The corner selection
criterion of the Harris corner detector is that a score is
calculated for each pixel with respect to all the directions
(horizontal, vertical and on the two diagonals) by using
the two eigenvalues (λ1 and λ2) of a symmetric matrix,
known as Harris matrix. According to this corner detec-
tor, the Harris matrix provides two “large” eigenvalues for
an interest corner. Then, a function taking into account
the determinant and trace of the Harris matrix gives the
following score:

RH = λ1λ2 − k(λ1 + λ2)
2, (3)

where k is an empirical constant (k = 0.04 − 0.06). The
Shi-Tomasi corner detector is different from the Harris
corner detector in the score computation:

RST = min(λ1, λ2), (4)

where the score depends only on two eigenvalues and not
on k constant. Considering this minimum value between
two eigenvalues as score, when it is greater than a mini-
mum value, the point can be marked as a corner (green
hatched area in Fig. 3).
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Fig. 2 Scale space representation. a Traditional approach with a serial downsampling of an image. b Surf approach with a parallel upscaling of an
image [29]

In this preliminary approach, only the number of inter-
est points (IP) and corners (IC) has been taken into
account by applying the two algorithms above described.

An example of the feature set extraction is shown in
Fig. 4: the SF, IP and IC sets are obtained starting from
an original ROI including microcalcifications by apply-
ing Haar wavelet transform, SURF and MinEigen algo-
rithms, respectively. The extraction of these feature sets
was performed by using the corresponding default func-
tions implemented in the MATLAB R2017a (Mathworks,
Inc., Natick, MA, USA) software.

Classification model
The general structure of the classification model proposed
is showed in Fig. 5. The method is developed in three
phases: (i) for each ROI a set of features are extracted by
using the methods above described; (ii) a features subset is
selected on training set; (iii) finally, a Random Forest (RF)

binary classifier [33] is trained to discriminate ROIs using
the selected features sub-set.

In this work, we evaluate two different kinds of feature
selection techniques, such as filter and embedded meth-
ods [31, 32]. The filter methods include algorithms that
evaluate the capacity of the individual features to pre-
dict the expected result. Usually, univariate parametric
and non-parametric statistical tests are used to evaluate
the significance of the different distributional form of fea-
tures in sub-samples (classes). Since the feature selection
procedure is independent from the machine learning algo-
rithm used, it is possible that the selected features in the
first phase will result in a subset that may not work very
well downstream of the learning algorithm. Although the
learning pipeline is faster, the contribution to discrimina-
tion problem generated by the combination of features is
lost. In our work, in order to filter out features that have
little chance to be useful in data analysis, we used the

Fig. 3 Shi-Tomasi score. In the (λ1, λ2) space, only when λ1 and λ2 are above a minimum value λmin , the point is considered as a corner (green
hatched area). The white and gray areas represent the conditions in which the point is marked as an edge and a flat region, respectively
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Fig. 4 Example of feature set extraction from an original ROI containing microcalcifications. The Statistical Features set is obtained from eight
sub-ROIs decomposed by Haar wavelet transform, while the Interest Point and Corner sets are formed by counting the number of points and
corners of interest extracted by SURF and MinEigen algorithms, respectively

non-parametric Wilcoxon-Mann-Whitney test [36] to
verify whether the medians of distributions of the two
classes of the binary problem are equal.
Embedded methods allow optimization between the
interaction of the selected features and the classification
algorithm used. In fact, the selection criterion is grafted
into the chosen machine learning algorithm: an analysis
of feature importance with respect to its expected result
is intrinsically elaborated, therefore these methods are
essentially fulfilling the goal, i.e. optimizing the classifier
performance. However, they are computationally more
expensive than the repeated learning steps and cross-
validation. In this work, the feature relevance problem-
driven is calculated by the same RF [33] that is often used
for feature selection task. Indeed, the tree-based strategy
used by random forests naturally ranks by how well they
improve the purity of the node: nodes with the greatest

decrease in impurity happen at the start of the trees, while
nodes with the least decrease in impurity occur at the end
of trees. Thus, by pruning trees below a particular node,
we can create a sub-set of the most important features.

At each step of cross-validation, a feature ranking is cal-
culated with respect to their predictive power assessed
with the two different approaches (filter and embedded
method) on training set. Then, a binary classification
model is trained by selecting iteratively an increasing
number of features sorted by their discriminating power.

By using the filter method, the features are sorted in
descending order by the p-value non-parametric test cal-
culated on the training dataset; on the contrary, with the
embedded method the features are sorted in increasing
order by the relevance calculated on the training set. The
subset selected at each step of the cross-validation is in
turn used to train a RF classifier: a standard configuration

Fig. 5 Flow-chart of the proposed model. In a first phase, a set of features on each ROI is extracted, then the feature selection step is performed;
finally the RF classifier is trained for the resolution of the binary problem - normal vs abnormal and benign vs malignant
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was adopted with 100 trees and 20 features (as described
in [33]) randomly selected at each split.

The proposed model was evaluated on two binary dis-
crimination problems, i.e. normal vs abnormal tissue and
benign vs malignant lesions. The performance of the pre-
diction models was evaluated in terms of Area Under the
Curve (AUC) of the Receiver Operating Characteristic
(ROC) curve, accuracy, sensitivity and specificity on 100
ten-fold cross-validation rounds.

Results
In a previous work [37], we proposed a CAD for charac-
terizing and discriminating ROIs that did not provide a
real feature selection process. It was trained on statisti-
cal features calculated on the multiscale decomposition of
the image based on the Haar wavelet transform, and on
interest points and corners detected by using two known
algorithms, SURF and MinEigenAlg. In particular, a state-
of-the-art machine learning classifier, such as a Random
Forest classifier, was trained to solve a binary discrimi-
nation problem. The performance of the proposed model
was evaluated in cross validation on 260 ROIs (130 nor-
mal, 75 benign and 55 malignant ROIs); the experimental
outcomes showed that the developed model was high per-
forming both for the normal vs abnormal classification
problem, with a median AUC value of 98.46% and an accu-
racy of 95.83%, and for benign vs malignant one, with a
median AUC value of 94.19% and an accuracy of 88.19%.

Starting from these encouraging results, here we would
examine the contribution of different methods on the fea-
ture selection process, and consequently on the learning
performance, as well as analyze the discrimination power
of some features according to their assigned relevance on
a larger and different set of ROIs.

Specifically, as previously reported, two different
approaches for the feature selection task were evalu-
ated, namely filter and embedded methods and the per-
formance of the classification model in cross-validation
was measured. In particular, as described in the
“Methods” section, at each step of cross-validation, a fea-
tures ranking is calculated with the two approaches on
training set and a binary RF classifier is trained by select-
ing iteratively an increasing number of features.

Figure 6 shows the performance results for solving the
normal/abnormal (a) and benign/malignant (b) problems
on ROIs extracted from BCDR dataset. The mean accu-
racy of classifier models (%) has been calculated on 100
rounds of 10-fold cross validation. The experiment results
show that the number of features needed to optimize
the performance for discriminating normal and abnor-
mal ROIs are 2 in case of the embedded method is used,
whereas they become 6 with the exploitation of the fil-
ter method. In particular, the embedded method always
selects only the interest points and corners with SURF

and MinEigen algorithms, respectively; instead, among
the first 6 most significant features selected with the filter
method there is also the kurtosis measurement calculated
on different Haar decompositions (Table 1).

The discrimination problem of the benign and malig-
nant ROIs requires more features to solve the classifica-
tion problem; specifically, 10 features with the embedded
method and 26 with the filter method. Among the first 10
most significant features selected with the first method,
there are yet interest points and corners provided by SURF
and MinEigen algorithms, respectively, but also relative
smoothness, variance and entropy measurements calcu-
lated on different Haar decompositions. With reference to
the features selected by the filter method, skewness and
kurtosis measurements result also significant.

Table 2 shows the best classification performances cal-
culated on 100 rounds of 10-fold cross-validation. The
binary models trained to discriminate normal/ abnor-
mal ROIs by using the two different feature selection
approaches are highly performing; however, the perfor-
mance of the model trained on features selected by the
embedded method is slightly higher (p-value Wilcoxon-
Mann Whitney test ≤ 0.01) of those obtained with the
filter approach, except in the identification of malignant
ROIs (sensitivity); in particular, with only 2 features, it
reaches a median AUC value of 98.16%, an accuracy of
97.31%, a sensitivity of 94.62%, and a specificity of 100%.

Indeed, the models trained to discriminate
benign/malignant ROIs with two different feature selec-
tion methods are yet highly performing and significantly
comparable (p-value Wilcoxon-Mann Whitney test
≤ 0.01), however the embedded method selected fewer
features: with 10 features selected by the embedded
feature selection method, the classification performances
reaches a median AUC value of 92.08%, an accuracy of
88.46%, a sensitivity of 89.09%, and a specificity of 88.00%.

Discussion
In this work we have developed a binary classification
model of ROIs containing microcalcification clusters.
Firstly, for each ROI obtained from images of BCDR
database, we have extracted textural features on a multi-
scale decomposition based on the Haar wavelet transform,
and also detected interest points and corners by using two
known algorithms, SURF and MinEigenAlg. In particu-
lar, we have evaluated the classification performance of a
RF classifier for increasing values of features selected on
training set of the cross-validation selected by two differ-
ent approaches, that are embedded and filter methods.

The experimental results on the dataset considered have
highlighted, regardless of the method of feature selection
used, the normal/abnormal problem can be effectively
solved with a number of features decidedly contained (no
more than 6), achieving high performance comparable
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Fig. 6 Median accuracy (%) with the growth of the number of features. The median value is calculated on 100 rounds of 10-fold cross validation for
increasing values of the number of features used to train the proposed model to classify ROIs into a normal/abnormal b and benign/malignant.
Two different feature selection approaches are used, that are embedded (red line) and filter (blue line) methods

to the state-of-the-art. Specifically, the best performance
is obtained with the embedded feature selection method
using only two features, that are interest points and cor-
ners provided by SURF and MinEigenAlg, respectively.

For what concerns the much more complex problem
of benign/malignant classification, which represents the
main focus of the works proposed in the literature about
the characterization of microcalcification clusters, the
best results of the proposed method (median AUC value
of 92.08%, accuracy of 88.46%) were obtained using 10
features selected by the embedded method: the joint con-
tribution of these has allowed the achievement of compa-
rable performance with respect to the best result obtained
by independently selecting the 26 features with the highest
discriminated power.

Experimental results showed that interest points and
corners, relative smoothness, variance and entropy mea-
surements calculated on different Haar decompositions
seem to have significant information content for discrim-
inating benign/malignant ROIs.

Results of this study are quite promising. Table 3 shows
the performance of state-of-the-art models for the clas-
sification into benign and malignant microcalcifications.
For this comparison, works on classification of micro-
calcification clusters mainly using textural features [38]
or a combination of these with other types of features
[21], but also topological ones [17, 25] and statistical
features [19] were taken into account. Moreover, dif-
ferent machine learning approaches and databases have
been used. Therefore, the comparison is purely qualita-
tive. However, the classification performances obtained by
our approach are more performing with respect to these
works and do not require a manual segmentation of the
lesion by radiologist but only the identification of a sus-
picious area. Moreover, the proposed approach is able
to characterize the lesions by exploiting a reduced set of
features.

In the next stage of our studies, we will evaluate
the proposed model on different databases and also
evaluate other features to improve the classification
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Table 1 Significant features on BCDR database

Normal/Abnormal Benign/Malignant

Embedded M. freq (%) Filter M. freq (%) Embedded M. freq (%) Filter M. freq (%)

(k ≤ 2 ) (k ≤ 6 ) (k ≤ 10 ) (k ≤ 26 )

# Interest Points 100 # Interest Points 100 Variance_LL2 100 Variance_LL1 100

# Interest Corners 100 Kurtosis_HL2 99.80 # Interest Corners 100 Skewness_LL1 100

# Interest Corners 99.10 Variance_LL1 99.90 Entropy_LL1 100

Kurtosis_HL1 97.80 RelSmoothness_LL2 99.90 RelSmoothness_LL1 100

Kurtosis_LH1 76.40 RelSmoothness_LL1 99.60 Entropy_HL1 100

Kurtosis_LH2 61.90 # Interest Points 91.30 Entropy_HH1 100

Variance_LH2 24.80 Variance_HH1 77.70 Kurtosis_HH1 100

RelSmoothness_LH2 21.90 RelSmoothness_HH1 77.40 Variance_LL2 100

Entropy_HH1 58.90 Skewness_LL2 100

Entropy_HL1 44.80 Entropy_LL2 100

Mean_HH1 41.20 RelSmoothness_LL2 100

Kurtosis_LH2 100

Kurtosis_HL2 100

Kurtosis_HH2 100

# Interest Points 100

# Interest Corners 100

Entropy_LH1 99.20

Entropy_LH2 98.60

Entropy_HH2 97.80

Kurtosis_HL1 97.10

RelSmoothness_HH1 96.10

Variance_HH1 88.80

Skewness_HL2 76.30

Mean_LL1 59.00

The features whose occurrence in the first k positions of the rankings defined by the filter and embedded methods is significantly different from the case (p-value null model
test ≤ 0.05) are reported. k is the number of features that maximizes the accuracy of normal vs abnormal and benign vs malignant classification problems

Table 2 Best classification performance on BCDR database

Normal/Abnormal Benign/Malignant

Embedded Method

AUC 98.16 (97.87 − 98.48) ∗ ∗ 92.08 (91.61 − 92.58)

Accuracy 97.31 (96.92 − 97.31) ∗ ∗ 88.46 (87.69 − 89.23)

Sensitivity 94.62 (93.85 − 94.62) 89.09 (87.27 − 90.91)

Specificity 100 (100 − 100) ∗ ∗ 88.00 (86.67 − 89.33)

Filter Method

AUC 98.67 (98.57 − 98.76) 92.13 (91.66 − 92.78)

Accuracy 96.92 (96.54 − 96.92) 87.69 (86.92 − 89.23)

Sensitivity 93.85 (93.85 − 94.62) 89.09 (87.27 − 90.91)

Specificity 99.23 (99.23 − 100) 87.33 (85.33 − 89.33)

The classification performance calculated in correspondence with the best result highlighted in the 100 rounds of 10-fold cross-validation for increasing the number of
selected features, are summarized. We tested the significance of the diversity of performance measures obtained with the two different feature selection techniques on the
same classification problem. Statistical significance is measured with the Wilcoxon-Mann-Whitney test: ** p-value < 0.01 (Bonferroni correction)
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Table 3 Benign vs Malignant microcalcifications: accuracy (Acc) and Area Under the Curve (AUC) performances

Method No. ROIs Feature type Classifier Acc (%) AUC (%)

Chen et al. (2015) [17] 300 topological features kNN 85 91

Ren et al. (2012) [19] 295 statistical features kNN 82 86

Khehra et al. (2013) [21] 380 statistical, shape and LS-SVM 89 89

textural features

Strange et al. (2014) [25] 300 mereotopological features Barcodes 80 82

Hu et al. (2017) [38] 150 textural features ELM - 92

Proposed approach 260 textural features and RF 88 92

#interest points/corners

performances of benign and malignant microcalcification
clusters.

Conclusion
The diagnosis of microcalcifications is usually based on
radiologists expertise sometimes resulting in an inac-
curate lesion detection with unnecessary biopsies and
subsequent surgery.

Several methods have been developed for the task of
microcalcification diagnosis, in some cases well perform-
ing. Nevertheless, the automatic and accurate classifica-
tion of microcalcification clusters, especially in differen-
tiating the benign from the malignant ones, remains still
complicated due to their nature. In this paper, we pro-
pose the use of texture analysis methods combined with
machine learning techniques in order to select the opti-
mal subset for characterizing breast regions. In particular,
we trained a binary RF classifier on an increasing number
of features sorted by their statistical significance in the set
of data; these features were calculated using two different
feature selection approaches, such as embedded and filter
methods.

Both feature selection techniques revealed highly per-
forming, nevertheless the best accuracy result obtained
with embedded method is more parsimonious than the fil-
ter one: it needs only 2 features to discriminate ROIs into
normal/abnormal and 10 into benign/malignant.

The measurements provided by SURF and MinEigen
algorithms seems to provide a strong informative content
useful for the characterization of microcalcification clus-
ters. In this work we have limited ourselves to considering
only the number of interest points and corners and not
also the features associated with them. In order to improve
the performances, specially in the classification of benign
and malignant microcalcifications, it would be interesting
to deepen the analysis of these features. Future work will
concern also the simultaneous exploitation of the infor-
mation coming from the CC and MLO views of the same
breast lesion [39] and the evaluation of more complex
features selection methods by wrapped approach.
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