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Abstract: Oxidative stress plays an important role in vascular complications observed in patients
with obesity and Type 2 Diabetes (T2D). Xanthine oxidase (XO) breaks down purine nucleotides
into uric acid and contributes to the production of reactive oxygen species (ROS). However, the
relationship between XO activity and glucose homeostasis in T2D subjects with obesity is unclear.
We hypothesized that disordered glucose levels are associated with serum XO activity in overweight
women and men with T2D and without hyperuricemia. We studied serum XO activity in women and
men with and without T2D. Our results show that serum XO activity was greater in T2D patients
with body mass index (BMI) ≥ 25 kg/m2 than in those with BMI < 25 kg/m2 (p < 0.0001). Sex-
based comparative analyses of overweight T2D patients showed that serum XO activity correlated
with homeostasis model assessment of β-cell function (HOMA-β), fasting plasma glucose (FPG),
and hemoglobin A1C in overweight T2D women but not in overweight T2D men. In addition, as
compared to overweight T2D men, women had higher high-sensitivity C-reactive protein (hs-CRP)
levels. However, overweight T2D men had higher XO activity and uric acid levels than women. Our
results suggest that XO activity is higher in overweight T2D patients, especially in men, but is more
sensitive to disordered glucose levels in overweight women with T2D.

Keywords: xanthine oxidase; overweight; obese; type 2 diabetic; biological sex

1. Introduction

Obesity is a risk factor contributing to the pathophysiology and onset of type 2 diabetes
(T2D) through mechanisms that remain unclear [1]. Evidence shows that the prevalence
of obesity in women and men with T2D is about 80–90% [2]. However, there is concern
regarding biological sex differences that may affect the pathophysiology of obesity and
T2D that remain unclear [3].

T2D and obesity are associated with an imbalance in the pro-oxidant/antioxidant
system that promotes a state of chronic oxidative stress [4,5]. Overproduction of free
radicals is mediated, in part, by increased plasma xanthine oxidase (XO) activity [6]. XO (EC
1.17.3.2) is the oxidant form of xanthine oxidoreductase (XOR), the enzyme that participates
in the catabolism of purines to uric acid [7]. XO also can generate superoxide ions (O2

−)
and hydrogen peroxide (H2O2) [8–10]. XO activity is observed only in mammals [11]. In
humans, XO activity has been shown in epithelial cells, liver, intestinal tissue, and breast
tissue during lactation. Serum XO normally exists in very low concentrations, mainly due
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to hepatic cell turnover [7]. However, plasma XO levels and activity are increased under
hypoxic/ischemic conditions and pathological conditions such as cardiovascular diseases
and proinflammatory states [12].

There is evidence that XO contributes to the increased oxidative stress observed in T2D.
Preclinical data shows that plasma malondialdehyde (MDA) levels, glutathione redox ratio,
and liver protein oxidation in diabetic rats were higher than in non-diabetic rats. These
markers of oxidative stress were decreased following treatment with allopurinol, an XO
inhibitor [13]. Studies in humans have shown that serum XO activity is increased in patients
with T2D [14,15]. In addition, plasma XO activity correlated with insulin resistance (IR) [16].
In addition, patients with the metabolic syndrome showed increased serum XO activity
that correlated with body mass index (BMI) [17]. Consistent with these reports in humans,
studies in liver and plasma from streptozotocin-induced diabetic Wistar rats showed higher
XO activity when compared to rats without diabetes [18]. Others have reported that non-
obese, non-hypertensive diabetic Goto-Kakizaki rats have increased hepatic XO activity
in male vs. female rats [19]. However, whether the relationship between XO activity
and glycemic control differs in men and women with T2D remains poorly understood as
sex-disaggregated data and findings on sex-specific XO activity are not frequently reported.
We hypothesized that disordered glucose levels would be associated with XO activity in
overweight women and men with T2D.

2. Results
2.1. Characteristics of Study Population

In total, 227 subjects with and without T2D with normal levels of serum uric acid
were included in this study (Table 1). A total of 92 men and 135 women between 30 to
65 years of age with a median age of 49.0 (41.0–57.0) years were studied. In our total
population, 86 (37.9%) participants were overweight and 57 (25.1%) were obese. The
metabolic evaluation showed that 98 (43.2%) participants were IR. Anthropometric and
metabolic characteristics of our study subjects according to T2D status are presented in
Table 1. Eighty-seven (38.3%) patients had T2D with a median of 5.0 (1.0–8.0) years of
diagnosis. Comparative analyses between non-T2D subjects and T2D patients showed
that a high proportion of patients with T2D were overweight (75.9%) and 64.4% were
IR. Glycemic assessment showed that T2D patients had poor glycemic control, high C-
peptide levels, lower β-cell function, and higher high-sensitivity C-reactive protein (hs-
CRP) when compared to non-T2D subjects. XO activity in the T2D group was higher
compared to those without T2D. An assessment of the pharmacological management of
our T2D patients showed that 80.5% of the patients were treated with metformin and/or
glibenclamide (50.6% metformin combined with glibenclamide, 23.0% with metformin
alone, and 6.9% only with glibenclamide) and 19.5% of the patients in our study were
untreated at the time of inclusion.

Table 1. Clinical characteristics of the study participants according to T2D.

Parameter Non-T2D (n = 140) T2D (n = 87) p

Men/women, n (%) 56 (40.0)/84 (60.0) 36 (41.4)/51 (58.6) 0.890
Age (years) 45.0 (39.0–54.0) 56.0 (46.0–61.0) <0.0001
BMI (kg/m2) 25.4 (22.4–28.9) 28.3 (25.0–31.6) <0.0001
FPG (mg/dL) 94.0 (87.2–102.0) 165.0 (127.0–229.0) <0.0001
A1C (%) 5.1 (4.7–5.5) 7.5 (6.6–10.4) <0.0001
FPI (mg/dL) 8.1 (5.6–12.3) 8.4 (5.7–13.0) 0.393
C-Peptide (mg/dL) 2.1 (1.6–2.7) 2.7 (2.1–3.3) <0.0001
HOMA-IR 1.8 (1.3–2.7) 3.4 (2.3–6.6) <0.0001
HOMA-β 102.6 (69.1–133.0) 33.6 (15.2–58.2) <0.0001
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Table 1. Cont.

Parameter Non-T2D (n = 140) T2D (n = 87) p

Uric Acid (mg/dL) 5.0 (4.0–5.7) 4.8 (4.0–5.2) 0.231
hs-CRP (mg/dL) 1.3 (0.5–3.2) 1.8 (1.0–4.2) 0.028
XO (µU/mL) 63.5 (53.4–73.1) 70.7 (58.1–84.6) 0.009
BMI > 25 kg/m2, n (%) 77 (55.0) 66 (75.9) 0.001

Data shown as median and interquartile range (IQR). The comparison between the groups was carried out by the
Mann–Whitney U test. p < 0.05 was considered significant. Abbreviations: body mass index (BMI), fasting plasma
glucose (FPG), hemoglobin-A1C (A1C), fasting plasma insulin (FPI), homeostatic model assessment for Insulin
resistance (HOMA-IR), homeostasis model assessment of β-cell function (HOMA-β), hs-CRP (high-sensitivity
C-reactive protein), xanthine oxidase (XO), type 2 diabetes (T2D).

2.2. Serum XO Activity

We evaluated serum XO activity in non-T2D and T2D patients grouped according to
BMI. Figure 1A shows that T2D patients with BMI ≥ 25 kg/m2 had higher XO activity
when compared to patients with T2D and BMI < 25 kg/m2 (p < 0.0001). We observed that
among non-T2D subjects, there was no significant differences in XO activity when grouped
according to BMI (p = 0.565) Figure 1B.
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Figure 1. Xanthine oxidase (XO) activity in (A) patients with type 2 diabetes (T2D) grouped according
to body mass index (BMI). (B) non-T2D (No-T2D). Data shown as median and interquartile range (IQR).
Comparison between groups analyzed by Mann–Whitney U test. p < 0.05 was considered significant.

2.3. Sex-Based Analyses

Biological sex-based comparative analyses were performed on T2D patients and non-
T2D subjects with BMI ≥ 25 kg/m2. Table 2 shows that no significant differences were
observed in age, fasting plasma glucose (FPG), hemoglobin A1C (A1C), fasting plasma
insulin (FPI), C-peptide, homeostasis model assessment of β-cell function (HOMA-β), and
homeostasis model assessment for insulin resistance (HOMA-IR) between women and men
in both T2D patients and non-T2D subjects. Uric acid levels were higher in men than in
women with T2D and in non-T2D subjects. Serum XO activity was higher in T2D men than
in women. However, as compared to men, hs-CRP was higher in T2D women than men.
These differences were not observed in non-T2D overweight men and women. Age, FPG,
A1C, HOMA-IR, and HOMA-β were higher in overweight T2D men and women versus
overweight non-T2D men and women. C-Peptide was higher in overweight T2D patients
as compared to non-T2D subjects as a shown in Table 2.

We performed sex-based correlation analyses of serum XO activity and measures of
glycemic control in overweight T2D patients and non-T2D subjects. Our results show
that serum XO activity was significantly correlated with HOMA-β in overweight T2D
women (Rho = −0.359, p = 0.027) but not in T2D men (Rho = −103, p = 0.602) (Figure 2A).
Overweight non-T2D subjects did not show any significant differences between women
and men as shown in Figure 2B.

Serum XO activity correlated with FPG (Rho = 0.336, p = 0.024) and % of A1C
(Rho = 0.421, p = 0.007) in overweight T2D women but not in men as shown in Figure 3A,B.
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Correlations between XO activity and FPG and A1C parameters were not significant in
both overweight non-T2D men and women as shown in Figure 3C,D.
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Figure 2. Association between serum XO activity and HOMA-β in overweight women and men with
and without T2D. (A) T2D. (B) Non-T2D. The p values were estimated form Spearman’s correlation
analyses. p < 0.05 was considered significant. Abbreviations: Xanthine oxidase (XO), Homeostatic
Model Assessment of β-cell function (HOMA-β).
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Figure 3. Correlation between XO activity and FPG and hemoglobin-A1C levels in T2D and non-T2D
subjects with BMI ≥ 25 kg/m2. (A) XO activity vs. FPG in T2D patients. (B) XO activity vs. A1C in
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P values were estimated by Spearman’s correlation analyses. Abbreviations: Xanthine oxidase (XO),
fasting plasma glucose (FPG), hemoglobin-A1C (A1C).

Table 2. Sex-based analyses of overweight T2D patients and non-T2D subjects.

Parameter Overweight Non-T2D (77) Overweight T2D (66)

Men (n = 30) Women (n= 47) Men (n = 28) Women (n= 38)

Age (years) 41.0 (30.0–49.5) 45.0 (39.0–54.0) 58.5 (47.2–63.0) † 57.0 (47.5–65.0) ‡

FPG (mg/dL) 95.0 (93.0–102.5) 94.0 (87.0–103.0) 179.5 (137.0–236.2) † 168.0 (119.7–249.0) ‡

A1C (%) 5.2 (4.8–5.6) 5.3 (5.0–5.6) 7.5 (6.7–10.6) † 7.5 (6.2–10.2) ‡

FPI (mg/dL) 10.1 (6.6–12.7) 8.8 (6.2–13.5) 8.5 (5.6–13.0) 10.7 (7.7–15.2)
C-Peptide (mg/dL) 2.3 (1.8–2.8) 2.3 (1.7–3.1) 3.0 (2.4–3.9) † 2.7 (2.3–3.6)
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Table 2. Cont.

Parameter Overweight Non-T2D (77) Overweight T2D (66)

Men (n = 30) Women (n= 47) Men (n = 28) Women (n= 38)

HOMA-IR 1.3 (0.9–1.6) 1.2 (0.8–1.8) 4.1 (2.2–6.6) † 5.0 (2.6–8.1) ‡

HOMA-β 93.9 (73.9–123.6) 98.8 (77.3–119.7) 29.2 (14.9–54.4) † 46.0 (15.7–72.2) ‡

hs-CRP (mg/dL) 1.5 (0.7–3.0) 1.5 (0.5–4.1) 1.3 (0.7–3.2) 2.4 (1.5–4.5) §

Uric Acid (mg/dL) 6.0 (5.0–6.1) 4.3 (4.0–5.0)
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3. Discussion

Our studies support the hypothesis that BMI and T2D contribute to increased XO
activity in both women and men with normal uric acid. We show that XO activity correlates
with measures of glucose homeostasis in women with T2D and altered BMI but not in
men. These results suggest a novel role for glucose on XO activity that may be dependent
on glycemic status, fat mass, and biological sex. These findings are of clinical importance
as they add to the growing body of evidence that while men are at a higher risk of de-
veloping T2D [3], women with T2D have an increased risk of developing cardiovascular
complications and increased mortality [20,21]. Furthermore, the risk of developing T2D
complications in women increases at menopause [22].

Our results show that XO activity correlates with FPG and A1C in overweight T2D
women. Consistent with these data, XO activity correlates with HOMA-β—a parameter
that evaluates the function of the β-cell and its alteration is indicative of impaired glucose
metabolism [23]. To the best of our knowledge, this is the first study documenting the
relationship between XO activity and glycemic control in patients with T2D according
to biological sex. These results suggests that glycemic control may play a key role in
modulating XO activity. In addition, XO appears to be more sensitive to alterations in
glucose metabolism in women than in men with T2D and obesity, thus implicating sex
hormones in XO and reactive oxygen species (ROS) regulation. However, the reasons for
these observations are not known. It is important to note that higher levels of oxidative
stress markers have been reported in postmenopausal women as compared to women of
reproductive age that is probably due to decreasing estrogen levels in the menopausal
stage [24]. In addition, women, as compared to men, have a lower total antioxidant
capacity, especially among postmenopausal women [25]. Of interest, in vitro studies show
that estradiol treatment of human granulocytes is associated with lower anion superoxide
(O2

−) production compared to vehicle treated cells [26]. Additional studies are needed
to clarify the mechanisms that can explain the association between parameters of glucose
metabolism and XO activity in women. Of note and contrary to our results, a study in
patients with T2D and hyperuricemia found no significant correlation between indices of
glycemic control (A1C or FPG) and plasma XO activity [27]. However, this study did not
assess the effects of biological sex on their outcomes [27].

We observed a significant difference in XO activity between overweight men and
women with T2D. A literature review shows that XO activity and its relationship to biologi-
cal sex is not clear. For example, a study of liver XO activity in patients without diabetes
undergoing partial hepatectomy or open liver biopsy showed higher levels of XO activity
in men than in women [28]. In contrast, others have shown the absence of any biological
sex effects on enzyme activity [29,30]. Studies in wild-type rodents and rat models of T2D
are more consistent. Sprague Dawley rats have higher liver XO activity in males than in
female rats. Goto-Kakizaki rats (a model of T2D) also showed higher levels of hepatic XO
activity in male than in female rats [19]. Although the precise mechanism(s) to explain the
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differences in XO activity between men and women is(are) unknown, some have proposed
an effect of androgens [31] and estrogens [24]. It is important to note that uric acid is a
product of XO activity, and its levels can be positively influenced by increased muscle mass
as observed in men vs. women with T2D in our cohort.

There also is evidence to suggest that elevated XO activity may affect glucose metabolism.
Studies show that treatment with allopurinol, a XO inhibitor, lowered A1C in T2D nor-
motensive patients [32] and caused a decrease in markers of oxidative stress such as MDA
in patients with T2D and mild hypertension [33]. However, a meta-analysis revealed
that XO inhibition may have blood glucose-lowering effects only in individuals without
T2D [34]. Consistent with our results, Kuppusamy et al. [15] showed a strong positive
association between A1C and serum XO in patients with T2D suggesting that poor glycemic
control is associated with increased XO activity.

Increases in adipose tissue also may independently contribute to greater XO activity.
A small study in obese children reported an increase in XO activity compared to children
with normal weight [35]. In obese adults, weight loss was associated with decreased XO
activity [36]. Furthermore, there is evidence that XO may be key in regulating adipogenesis
via peroxisome proliferator-activated receptor gamma (PPARγ) regulation that is essential
in fat accumulation [37]. In fact, these investigators showed that in adipose tissue of
obese mice, both the expression and activity of XO were increased. In line with these
studies, there is evidence to suggest that human adipose tissue can overproduce the
substrate hypoxanthine—an XO substrate that is secreted from human fat tissue especially
under hypoxic conditions [38]. Consistent with these observations, obese subjects have
been reported to have significantly higher serum hypoxanthine levels than non-obese
subjects [39]. These findings suggest that increased hypoxanthine may contribute to
elevated XO activity by a substrate-mediated increase in XO activation.

ROS produced by endothelial cells may compromise the integrity of the endothelium
and lead to increased inflammatory responses and vascular damage in patients with T2D.
Sex-based comparative analyses in patients with T2D and increased BMI showed that
hs-CRP levels in women were higher than in men; raising the possibility that obesity and
hyperglycemia may contribute to stimulating proinflammatory processes and ROS produc-
tion in women. These alterations may, in turn, contribute to increased cardiovascular risk
and worse outcomes in women [40]. Young women have a more favorable cardiovascu-
lar risk profile than men [41,42]. However, in women with T2D it would seem that this
protection is lost [43,44]. Thus, we posit that in women, the presence of factors such as
inflammation, obesity, and diabetes increase the sensitivity of XO to glucose.

Our study has some limitations. This is a cross-sectional study from one center. As
such, we cannot provide a cause-and-effect relationship. First, the hormonal profile and
reproductive status were not available in this study, limiting the analyses of potential impact
of XO activity and menopausal status on parameters of glycemic assessment. Second, the
age of the T2D group was higher compared to the non-T2D group, which may be a factor
that additionally affects XO activity. Of importance and to the best of our knowledge, this
study is the first to address the relationship between BMI, XO activity, and biological sex
among patients with T2D. We provide information on the association between parameters
of glycemic assessment and XO activity in T2D women and men. However, additional
studies in larger populations that are age- and biologically sex-matched are needed to
confirm our findings and prospectively assess the relationship between XO activity, glucose
metabolism, and menopausal status. Our novel findings provide the rationale for the
development of such studies.

4. Materials and Methods
4.1. Subjects and Settings

This cross-sectional study included 227 participants, men (n = 92) and nonpregnant
women (n = 135) between the ages of 30 to 65 years of age. Eighty-seven subjects with
previous medical diagnosis of T2D and 140 non-T2D were included in our study. The
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T2D patients are beneficiaries of the medical services of the Family Medical Unit Number
2 (UMF-2) of the Mexican Social Security Institute (IMSS) in Puebla, Mexico. For the
recruitment of the non-T2D group, an open invitation was made for family members of T2D
patients. All participants provided signed informed consent before study participation and
were evaluated for a complete clinical and family history. Anthropometric and biochemical
parameters were determined. Exclusion criteria included: incomplete clinical history
or blood sampling, chronic proinflammatory diseases (arthritis, autoimmune disease,
malignancy), endocrine diseases (hyperthyroidism, hypothyroidism, or Cushing’s disease),
or if the subjects were receiving anti-inflammatory treatments. Subjects with hyperuricemia
were excluded because elevated uric acid levels are associated with XO hyperactivity in
patients with diabetes [45,46]. Patients with T2D and insulin therapy or >10 years of
evolution of the disease also were excluded from the study. The study was approved by
the IMSS National Ethics and Scientific Research Committee (R-2020-785-013).

4.2. Clinical and Anthropometric Characterization

Using standardized protocols, all participants were evaluated including their individ-
ual and family clinical history. Height (meters), weight (kg), and muscle mass (Kg) were
measured using an electronic digital scale (Tanita Body Composition Analyzer, Model TBF-
215, Tokyo, Japan), and BMI was calculated as weight/height2 (kg/m2). A BMI between
18.5–24.9 kg/m2 was considered normal, between 25–29.9 kg/m2 was considered over-
weight, and between 30–39.9 kg/m2 was obese [47]. BMIs < 18.5 kg/m2 and >40 kg/m2

were excluded from this study.
Venous blood was taken after an overnight fast (10–12 h) between 7 am–10 am by

venipuncture. Blood samples were collected in K2EDTA to obtain whole blood or plasma
and in a tube without anticoagulants to obtain serum. FPG and hemoglobin-A1C were
determined according to conventional laboratory protocols (Clinical Analyzer System from
Beckman Coulter, Indianapolis, IN, USA). FPI and C-peptide levels were determined by
immunoassay utilizing anti-insulin or anti-C-peptide mouse monoclonal antibodies re-
spectively with alkaline phosphatase (Roche E170 analyzer, Roche Diagnostics, Mannheim,
Germany). β-cell function and IR were determined by the HOMA: HOMA-β = [20 × FPI
(mU/L)]/[FPG (mmol/L) − 3.5] and HOMA-IR = [FPI (mU/L) × FPG (mmol/L)]/22.5.
The HOMA-β was used to evaluate the β-cell function and is expressed as a percentage of
normal (100%). The HOMA-IR is used to evaluate the index of IR [48]. IR was defined by
a HOMA-IR >2.6 [49]. hs-CRP levels were determined in serum to assess the inflamma-
tory status of the participants using an immunoturbidimetric assay (DiaSorin, Stillwater,
MN, USA).

4.3. XO Activity

The XO activity was measured in serum containing samples using a fluorometric
assay (Xanthine oxidase: Cayman, Ann Arbor, MI, USA, Item No. 10010895). The assay
is based on a multistep enzymatic reaction in which XO first produces H2O2 during oxi-
dation of hypoxanthine. In the presence of horseradish peroxidase, the H2O2 reacts with
10-acetyl-3,7-dihydroxyphenoxazine in 1:1 stoichiometry to produce resorufin, a fluores-
cent compound, which was measured with at an excitation wavelength of 520–550 nm and
emission wavelength of 585–595 nm.

4.4. Allocation of Subjects into Groups and Subgroups

Glycemic assessment was done according to measures of FPG, FPI, C-peptide, and
HOMA-β. Glycemic control was categorized using the recommendations of American Dia-
betes Association (ADA) and the Guideline for Diagnosis and Pharmacological Treatment of
T2D. These included: FPG ≥ 126 mg/dL (7.0 mmol/L) or A1C ≥ 6.5 % (48 mmol/mol) [50].
These two groups were sub-divided by BMI: normal weight (BMI < 25 kg/m2) or over-
weight (BMI ≥ 25 kg/m2).
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4.5. Statistical Analyses

Data were analyzed and presented using descriptive statistics. Continuous variables
were expressed as a median and interquartile range, and categorical variables as frequencies
and percentages. The Kolmogorov–Smirnov test was used to determine the normality of
the data distribution. Comparisons between groups were tested using the Chi-square test
for categorical variables, and the Mann–Whitney U test for continuous variables. Compar-
isons between subgroups were analyzed utilizing the Kruskal–Wallis test. A Spearman
correlation test was used to investigate the association between serum XO activity with
measures of glycemic evaluation (FPG, A1C, FPI, C-peptide, and HOMA-β and HOMA-
IR). Differences and correlation analyses between non-diabetic and T2D patients were
considered statistically significant for p < 0.05. BMI-based analyses for non-T2D subjects
and T2D patients were corrected by the Bonferroni post hoc test for multiple comparisons
and correlation analyses, using a significance threshold of 0.0125 (0.05/4 comparisons).
Statistical analyses were performed using SPSS for Windows version 24.0 (SPSS, Chicago,
IL, USA). Statistical charts were generated using GraphPad Prism for Windows version
7.0.0 (San Diego, CA, USA).

5. Conclusions

XO activity is higher in overweight T2D patients, especially in men, but is sensitive
to disordered glycemic control in overweight women with T2D. These findings suggest
that biological sex and measures of glucose homeostasis are biological variables that affect
XO activity in patients with T2D. Future studies that assess the mechanisms by which
glucose regulates ROS homeostasis and the contributions of XO activity and sex-hormones
in women and men with and without T2D are needed. Understanding these mechanisms
in women is of critical importance as they may assist in explaining pathophysiological
mechanisms for cardiovascular disease in women with T2D and lead to the development
of novel and/or more precise therapeutic approaches. The importance of these studies is
further underscored by reports showing that women with T2D, as compared with men,
have an increased risk of developing cardiovascular complications and increased mortality
through mechanisms that are not entirely clear.
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