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ABSTRACT

Background. Cordyceps militaris is a fungus that parasitizes insects. Compounds from
C. militaris are valuable in medicine and functional food. There are many kinds of
bacteria in the natural sclerotia of C. militaris. However, the community structure
of microorganisms in samples from different places may be different, and their
corresponding ecological functions require experimental verification.

Methods. We used high-throughput sequencing technology to analyze bacterial 16S
rRNA gene sequences in sclerotia of three samples of C. militaris from Liaoning
Province, China. We isolated, identified and verified the function of culturable bacterial
strains from the sclerotia.

Results. Pseudomonas, Pedobacter, Sphingobacterium, and Serratia were the dominant
bacterial genera in the sclerotia. And function prediction showed that Pseudomonas
and Pedobacter could be heterotrophic, Sphingobacterium could decompose urea,
and Serratia could reduce nitrate. Two strains of bacteria isolated from the sclerotia
of C. militaris, N-2 and N-26, were identified as Stenotrophomonas maltophilia and
Pseudomonas baetica, respectively, based on culture and biochemical characteristics.
When these isolated strains were co-cultured with C. militaris, the mycelium biomass
and mycelium pellet diameter decreased, and the content of extracellular polysaccharide
increased. Strain N-26 decreased the cordycepin content in C. militaris.

Conclusions. Bacteria in sclerotia have an important effect on the growth of C. militaris
and the production of its metabolites.

Subjects Ecology, Microbiology, Mycology
Keywords Cordyceps militaris, Microbial community, Co-culture, Functional analysis

INTRODUCTION

Cordyceps militaris is a member of the fungal genus Cordyceps and is used as a traditional
Chinese medicine. It contains a variety of active substances including cordycepin (3'-
deoxyadenosine), cordyceps polysaccharide, and cordyceps acid (Das et al., 2010). In
humans, cordycepin and cordyceps polysaccharide improve immunity (Lee et al., 2020);
protect the kidney (Han et al., 2020a); have antifatigue (Xu, 2016) and antioxidation
properties (Song et al., 2015); inhibit bacterial growth (Ahn et al., 2000), inflammation
(Zheng, Li & Cai, 2020), and tumors (Jin et al., 2018); and can be used as an effective
anticancer supplement (Tuli et al., 2013). Cordycepin has been suggested for potential use
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against COVID-19 (Verma, 2020). Much attention has been paid to the cultivation and
utilization of C. militaris (Jin et al., 2018; Lee et al., 2020).

C. militaris is a parasitic fungus that can infect larvae, pupae and adults of Lepidoptera,
Coleoptera, Diptera and Hymenoptera (Shrestha et al., 2012; Xue et al., 2018); it is
distributed throughout the Northern Hemisphere (Zhang ef al., 2013). Because the host
insects contain a variety of microorganisms, the sclerotia of Cordyceps also contain
various microorganisms (Sirmon et al., 2019). In sclerotia of C. militaris collected in
Yunnan Province, China, the bacteria identified included members of the phyla
Proteobacteria, Acidobacteria, Bacteroidetes, and Actinobacteria, and the genera
Pedobacter, Phyllobacterium, Pseudomonas, Mesorhizobium, Bradyrhizobium, Variovorax,
Sphingomonas, and others (Zhang et al., 2021). The bacteria in sclerotia of C. sinensis
were dominated by Proteobacteria and Actinobacteria and included Pseudomonas,
Rhodoferax, Pedobacter, and Sphingomonas (Xia et al., 2016; Xia et al., 2019). In the sclerotia
of Cordyceps cicadae, Proteobacteria, Bacteroidetes, and Actinobacteria were the main
bacterial groups, and Pseudomonas and Serratia were dominant genera (Mou et al., 2021).

Some of these symbiotic/associated microorganisms have the ability to regulate the
growth characteristics and metabolites of Cordyceps. Herbaspirillum and Phyllobacterium
on the fruiting body can increase the bioactive compound content of C. militaris (Zhang
et al., 2021). Three species of bacteria (Serratia marcescens, Cedecea neteri and Enterobacter
aerogenes) isolated from C. cicadae promoted the production of N6-(2-hydroxyethyl)
adenosine and decreased the production of adenosine, uridine and guanosine (Qu et al.,
2019). In co-culture, the color of the fungus and the morphology of its mycelia may change
(Tauber et al., 2016; Bor et al., 2016). The effect of microorganisms in the sclerotia on the
growth of, and metabolite production by, C. militaris needs further research.

In nature, microorganisms coexist in complex communities that interact with each
other (Hibbing et al., 2010). These interactions lead to the activation of otherwise silent
biosynthetic pathways that affect the production of metabolites (Bertrand et al., 2014).
Based on this principle, laboratories sometimes use co-culture to increase the accumulation
of metabolites. The purpose of this study was to explore the interaction between the
microbes in the sclerotia of wild and cultured C. militaris and the fungus. First, the
microbial composition of wild C. militaris harvested in Liaoning Province, China, was
analyzed; then, the bacteria were isolated from the sclerotia and identified. These isolated
bacteria were then co-cultured with cultured C. militaris to study the effects of the bacteria
on the morphology and biomass of mycelia pellets, and the yield of cordycepin and
polysaccharide.

MATERIALS AND METHODS

Sample preparation

Wild C. militaris was obtained in October 2019 from 12 insect pupa collected from soil in
a broad-leaved mixed forest at an elevation of 240 m above sea level in Tieling City (42.39
N, 124.26 E), Liaoning Province, China. Cultured C. militaris (L.) Link was stored in the
Institute of Fungi Resources of Guizhou University (GZUIFR; strain SYCM1910).
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The wild C. militaris obtained from Liaoning Province was divided into three samples
for analysis in this work. Sclerotia samples were prepared using the method reported
in Zeng et al. (2019), with slight modifications. The sclerotia formed by C. militaris were
rinsed with sterile water to remove residual soil, soaked alternatively with 75% alcohol and
2% sodium hypochlorite three times for 20 s each time, and then rinsed with sterile water.
After removal from the body surface of the insect, the sclerotia were used for analysis. Each
C. militaris sclerotia sample weighed about 3.5 g. The samples were stored at —80 °C until
analysis.

Bacterial community determination by culture method

LB medium contained tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L, and agar 15 g/L
(pH = 7.0). Potato-dextrose-agar (PDA) contained potato 200 g/L, glucose 20 g/L, and
agar 15 g/L (pH =~ 7.0). Sabouraud’s medium contained glucose 40 g/L and peptone 10 g/L
(pH ~ 7.0).

Each C. militaris sclerotia sample (0.5 g) was ground, and its suspension was placed on
Luria Bertani agar for microbial isolation at 25 °C. Then, bacteria isolated by the culture
method were observed by scanning electron microscopy (SU8100, Hitachi), and their
physiological and biochemical characteristics were identified using bacterial biochemical
identification strips HBIG05 and HBIG08 (Qingdao Hopebio Biotechnology Co., Ltd.).
Bacterial DNA was extracted according to the procedures for the Bacterial Genomic DNA
Extraction Kit DP2002 (Beijing Bioteke Biotechnology Co., Ltd.). The 16S rRNA gene was
amplified from all DNA extracts using primers 27F (5-AGAGTTTGATCCTGGCTCAG-
3’) and 1492R (5-GGTTACCTTGTTACGACTT-3") (Palkova et al., 2021). The reaction
mixture (25 pL in total) contained 1 pmol/L primers (1 pL each), 10 ng/nL DNA template
(2 uL), Master Mix (green) (including DNA polymerase, buffer, and dNTPs;12.5 pL,
product number TSE005; Tsingke Biotechnology Co., Ltd.) and ddH,O (8.5 pL). The
PCR conditions were: predenaturation at 95 °C for 3 min; 32 cycles of denaturation at
94 °C for 30 s, annealing at 55 °C for 30 s, and extension at 72 °C for 30 s; and a final
extension at 72 °C for 10 min. PCR products were sequenced by Tsingke Biotechnology
Co., Ltd. Using the sequence data, BLAST was performed against DNA sequences in
GenBank, and the sequences of related species (similarity > 97%) were downloaded. Using
Pseudomonas carboxydohydrogena as the outgroup, a phylogenetic tree was constructed by
the neighbor-joining method using MEGA X software with 1,000 bootstrap replicates.

Co-culture of bacteria isolated from sclerotia

C. militaris SYCM1910 was inoculated on the center of a PDA plate and cultured at 25 °C
for 7 days. Then, bacteria were inoculated at three locations on the periphery of the colony
(25 mm from the point where C. militaris had been inoculated) and culture was continued
at 25 °C for 7 days.

A piece of mycelium of C. militaris from a 21-day-old culture on PDA plate culture
was inoculated into a 250-mL triangular flask containing 100 mL Sabouraud’s medium
and cultured on a magnetic stirrer (120 rpm) at 25 °C for 3 days. Then, one mL/flask of
bacterial suspension (bacterial cell density 1.5 x 10® colony-forming units/mL) was added
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and culture was continued at 120 rpm and 25 °C for 7 days. The co-cultured fermentation
liquid was filtered using 0.45-pm and 0.22-pm microporous membranes, and then the
filtrate was analyzed for the content of cordycepin and extracellular polysaccharides (EPS).

Dry weight of mycelium pellets was determined after the fermentation broth was filtered
using qualitative filter paper and the pellets were dried to constant weight at 60 °C. Then,
the mycelium pellet diameter was measured using vernier calipers.

Cordycepin content was determined by high-performance liquid chromatography
according to the Agricultural Industry Standard NY/T 2116-2012 of the People’s Republic
of China, using a Thermo Fisher Ultima 3000RS system and a Cig column with mobile
phase acetonitrile: water (5:95 v:v) at flow rate 1.0 mL/min, column temperature 35 °C,
detection wavelength 260 nm, and with sample volume 10 nL. EPS content was determined
by the anthrone sulfuric acid method (Guo et al., 2016).

Bacterial community by non-cultural method

C. militaris sclerotia samples (3.0 g) were taken, ground in liquid nitrogen, and total
microbial DNA was extracted according to the instructions of the E.Z.N.A.® SOIL DNA Kit
(Omega, USA). PCR amplification used TransStart FastPFU DNA Polymerase. The reaction
system contained: 5x FastPFU buffer (4 pL), 2.5 mmol/L dNTPs (2 nL), 5 pmol/L primers
338F (5'-ACTCCTACGGGAGCAG-3") and 806R (5'-GGACTACHVGGGTWTCTA-3')
(0.8 pL each) targeting the V3-V4 region of 16S rRNA genes (Zeng & An, 2021), FastPFU
Polymerase (0.4 nL), bovine serum albumin (0.2 pL, 1 pg/pL), and template DNA (10 ng),
supplemented with ddH,O to 20 pL. An ABI Gene AMP® 9700 PCR instrument was used
for the reaction. The reaction parameters were 95 °C for 3 min; 30 cycles of 95 °C for 30 s,
55 °C for 30 s, and 72 °C for 45 s; and a final extension at 72 °C for 10 min. The amplified
products were sent to Shanghai Major Biomedical Technology Co., Ltd. and sequenced
using the Illumina MiSeq platform.

Paired-end reads obtained by MiSeq sequencing were first stitched by overlap, and
sequence quality was controlled and filtered at the same time. Effective sequences
were obtained by distinguishing samples according to barcode and primer sequences
at both ends of the sequence, and sequence direction was corrected to obtain optimized
sequences. Using UPARSE software (http:/www.drive5.com/iparse/), repetitive sequence
operational taxonomic unit (OTU) clustering was carried out with a threshold of 97%
similarity, chimeras were removed in the process of clustering, and the RDP database
(http:/rdp.cme.msu.edu/) was used for OTU annotation.

The raw sequence reads obtained in this study were deposited in the NCBI
Sequence Read Archive database under accession number PRJNA722375. FAPROTAX
(http:/www.zoology.ubc.calouca/FAPROTAX)), a tool that can predict ecological functions
of bacterial and archaea taxa from 16S rRNA amplicon sequencing (Sansupa et al., 2021),
was used to identify ecological functions of OTUs. An OTU abundance table and taxonomic
annotation of OTUs were inputted in the corresponding option box, and the PLOT option
was selected. Then, predicted function output was obtained as an Excel spreadsheet. A
heatmap was generated using the online tool at the http:/www.chbio.com/ImageGP/.

Luo et al. (2021), PeerdJ, DOI 10.7717/peerj.12511 418


https://peerj.com
http://www.drive5.com/uparse/
http://rdp.cme.msu.edu/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA722375
http://www.zoology.ubc.ca/louca/FAPROTAX/
http://www.ehbio.com/ImageGP/
http://dx.doi.org/10.7717/peerj.12511

PeerJ

Figure 1 Scanning electron micrographs of strains. (A) N-2 and (B) N-26. In (A), the reticular-like
structure on the surface of the bacteria is secretion by the bacteria.
Full-size Gl DOI: 10.7717/peerj.12511/fig-1

Data analysis
Statistical analysis of the experimental data was performed using SPSS software v.22.0. The
least significant difference test was used for one-way analysis of variance.

RESULTS

Isolation and identification of bacteria

Two pure strains of bacteria, N-2 and N-26, were isolated from sclerotia of C. militaris.
Strain N-2 is short rod-shaped (7.2-9.4 x 3.2-3.8 pm) (Fig. 1) and Gram-negative;
colonies were slightly convex, pale yellow, smooth, moist, and opaque. Physiological and
biochemical tests (Table S1) showed that strain N-2 is motile, can decompose glucose to
produce pyruvate, and can decarboxylate the pyruvate and convert it into alcohol and
other substances. In addition, ornithine decarboxylase, lysine decarboxylase and amino
acid decarboxylase were detected, indicating that strain N-2 can decarboxylate amino
acids (-COOH) to produce an amine and CO,. Strain N-2 cannot use mannitol, inositol,
sorbitol, melibiose, ribitol, raffinose, xylose, or maltose as carbon sources. Using the
methods described in the eighth edition of “Bergey’s Manual of Systematic Bacteriology”,
strain N-2 was identified as belonging to the genus Stenotrophomonas. By BLAST analysis,
the 16S rRNA gene sequence of strain N-2 was found to be 99.93% identical to that of
S. maltophilia GZUIFR-YCOL. Strain N-2 was identified as S. maltophilia (Hugh) (Fig. S1)
(NCBI accession number: MW829549),

Strain N-26 is short rod-shaped (9.5-11.5 x 4.2-5 um), Gram-negative, and its colonies
are yellow, smooth, moist and opaque, with a central bulge. The semi-solid agar (dynamic
test) of strain N-26 was positive, the Voges-Proskauer test was positive, and the Methyl Red
test was negative. The strain was positive for ornithine decarboxylase, lysine decarboxylase
and amino acid decarboxylase. The strain could not use mannitol, inositol, sorbitol,
melibiose alcohol, raffinose, xylose, or maltose as carbon sources. In BLAST analysis,
the 16S rRNA gene sequence of strain N-26 was 99.71% identical to that of Pseudomonas
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Figure 2 Co-culture on PDA plates. (A) Strain N-2 and C. militaris, (B) strain N-26 and C. militaris, (C)
C. militaris only.
Full-size B8 DOI: 10.7717/peerj.12511/fig-2

baetica YHNGS (Fig. S1), which led to the identification of strain N-26 as P. baetica (Lopez)
(NCBI accession number: MW829550).

Interaction between isolated bacteria and C. militaris
On PDA plates, S. maltophilia N-2 had an inhibitory effect on the growth of mycelium of
C. militaris. Strain N-2 released something that slowed the growth of C. militaris mycelia
near the area of S. maltophilia N-2 growth (Fig. 2A). P. baetica N-26 did not inhibit mycelial
growth on PDA plates (Fig. 2B).

The dry weight of mycelium pellets decreased from 1.57 g/flask in the control to 0.21
g/flask in the presence of S. maltophilia strain N-2 or 0.35 g/flask in the presence of
P. baetica strain N-26 strain after co-culture with C. militaris for 7 days; these differences
were highly significant when compared with the control (N-2: F = 885.476, P < 0.001;
N-26: F =493.275, P < 0.001) (Fig. 3A). The diameter of mycelium pellets decreased
from 7.38 mm in the control to 3.29 and 3.63 mm after culture in the presence of strains
N-2 and N-26, respectively (N-2: F =1240.221, P < 0.01; N-26: F = 605.933, P < 0.001)
(Fig. 3B). The addition of strain N-26 significantly decreased the cordycepin content
of the culture medium from 3015.73 pg/g in the control to 2537.77 pg/g (F = 22.501,
P =0.009). However, addition of strain N-2 had little effect (3102.00 png/g; F = 0.285,
P =0.622) (Fig. 3C). The EPS content was increased after bacteria were added to C. militaris
culture, and the difference was significant compared with the control (N-2: 481.43 mg/g,
F=291.121, P < 0.001; N-26: 326.87 mg/g, F = 93.546, P = 0.001; control: 86.20 mg/g)
(Fig. 3D).

Bacterial community composition and ecological function

A total of 204,067 valid sequences were detected in three sclerotia samples of C. militaris
collected in October 2019 in Liaoning Province, China; 62,929-71,212 sequences were
obtained for each sample, with average length 423.45-425.61 bp. With the increase of the
number of sample sequences, the Shannon-Winner index curve flattened out (Fig. S2),
indicating that the sequencing data depth in this experiment comprehensively reflected the

bacterial community in the samples.
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Bacteria identified in the sclerotia included 21 phyla, 46 classes, 123 orders, 195 families,
321 genera, 450 species, and 549 operational taxonomic units (OTUs). At the phylum level
(Fig. 4), Proteobacteria (average relative abundance of OTU 68%), Bacteroidetes (24%), and
Actinobacteria (8%) were dominant. At the genus level, Pseudomonas (17%), Unclassified
Enterobacteriaceae (14%), Pedobacter (11%), Sphingobacterium (11%), Serratia (10%),
Rhodococcus (6%), and Acromobacter (6%) were dominant.

Forty-two OTUs were common to the three samples (Fig. S3), accounting for only 7.65%
of the total number of OTUs. These 42 OTUs were uploaded to the FAPROTAX system
for analysis, and predicted functions of 17 genera represented by 21 OTUs were identified
(Fig. 5; Table S2). OTU1490 (Stenotrophomonas) is animal parasitic or symbiotic, and a
human pathogen; it actively participates in the nitrogen cycle. OTU2342 (Sphingobacterium)
is involved in urea decomposition. OTUs 1448, 2330 and 2314 (Pseudomonas) are
chemoheterotrophic. OTUs 1539 and 1423 (Rhodococcus) degrade aromatic hydrocarbons
and aliphatic non-paraffin hydrocarbons.
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DISCUSSION

In our study, we isolated two bacteria belonging to the microbiota of C. militaris sclerotia,
S. maltophiliaN-2 and P. baetica N-26. Then, we co-cultured these bacteria with C. militaris,
and found that both of them increased the EPS content of C. militaris, but Pseudomonas
baetica N-26 decreased the cordycepin content.

The bacteria present in sclerotia of C. militaris sampled from Liaoning Province,
China, were identified using high-throughput sequencing technology. Pseudomonas
were more abundant in sclerotia of C. militaris isolated in Liaoning Province than in
C. militaris isolated in Yunnan Province, while Phyllobacterium, Mesorhizobium, and
Bradyrhizobium were less abundant in the former (Zhang et al., 2021). The relative
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abundance of Mesorhizobium, Bradyrhizobium, Sphingomonas, and Labrys in sclerotia
samples from Liaoning Province was lower than in samples from Yunnan Province
(Table 1). Pseudomonas, Pedobacter, Phyllobacterium, Mesorhizobium, Bradyrhizobium,
Sphingomonas, Variovorax, and Labrys were found in C. militaris samples from both Yunnan
Province (southwest China, 25.40 N, 102.92 E) and Liaoning Province (northeast China,
42.39 N, 124.26 E), but their relative abundances were different, which may be related to
differences of the insect host and environmental conditions (Yur et al., 2014). The bacteria
found in the sclerotia may be key microorganisms in the microenvironment of C. militaris
and perform important functions (Lemanceau et al., 2017). Functional prediction (Table 1)
showed that Pseudomonas, Pedobacter, Labrys, and Sphingomonas are chemoheterotrophic,
while Stenotrophomonas functions in the nitrogen cycle. Pseudomonas, Phyllobacterium,
Mesorhizobium, Bradyrhizobium, Pedobacter, Variovorax, and Sphingomonas belong to
the microbiome of the plant rhizosphere (Etesami ¢ Glick, 20205 Yin et al., 2020). These
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Table 1 Relative abundance and function prediction of bacterial composition in sclerotia of C. mili-

taris isolates.

Genus

C. militaris
from Yunnan

(Zhang et al., 2021)

C. militaris
from Liaoning

Predicted function

Pseudomonas
Pedobacter

Variovorax
Phyllobacterium
Labrys

Mesorhizobium

Sphingomonas

Bradyrhizobium
Serratia

Achromobacter

Rhodococcus

Pantoea

Luteibacter

Stenotrophomonas

Ochrobactrum

2.01%-15.00%

2.01%-15.00%

2.01%-15.00%
2.01%-15.00%
2.01%-15.00%

2.01%-15.00%

2.01%-15.00%

2.01%-15.00%

16.68%

10.81%

3.14%
1.69%
0.98%

0.05%

0.06%

0.02%
9.65%

6.26%

5.78%

4.06%

3.89%
1.82%

1.02%

aerobic chemoheterotrophy;
chemoheterotrophy;

aerobic chemoheterotrophy;
chemoheterotrophy;

None
None

aerobic chemoheterotrophy;
chemoheterotrophy;

nitrogen fixation;
aerobic chemoheterotrophy;
ureolysis; chemoheterotrophy;

aerobic chemoheterotrophy;
chemoheterotrophy;

None

fermentation; nitrate reduction;
chemoheterotrophy;
plant pathogen;

aerobic chemoheterotrophy;
nitrate respiration;

nitrate reduction;

nitrogen respiration;
chemoheterotrophy;

aromatic hydrocarbon degradation;
aromatic compound degradation;
aliphatic non methane
hydrocarbon degradation;
hydrocarbon degradation;
chemoheterotrophy; ligninolysis;
plant pathogen;

fermentation; mammal gut;
animal parasites or symbionts;
nitrate reduction;
chemoheterotrophy;

None

nitrate respiration;

nitrate reduction; nitreogen respiration;

aerobic chemoheterotrophy;
human pathogens; animal parasites
symbionts ; chemoheterotrophy;

None

or

Notes.

“~” means not mentioned in the literature; “None” means that there was no result when a function was predicted using

FAPROTAX.
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microorganisms may help to maintain plant hormone balance, control root development,
promote nutrient acquisition, prevent disease, improve plant growth, and maintain
plant health (Xu et al., 2018; Asaf et al., 2020). Such microorganisms are also ingested by
root-feeding insects. When Cordyceps spp. invade insects, the microorganisms in the insect
gut interact with the fungus (Lei et al., 2015; Zhong et al., 2014).

With regard to the potential ecological functions of the two strains we isolated,
Stenotrophomonas maltophilia, a parasitic bacterium of insects (Gandotra et al., 2018),
can promote the digestion and absorption of food by the host by secreting enzymes
such as cellulase, amylase, protease, and chitinase. These enzymes inhibit the integrity of
fungal hyphae and biofilm formation (Ali Huda, Hemeda & Abdelaliem, 2019; Jankiewicz
& Brzezinska, 2015; Rossi et al., 2014). In insects, S. maltophilia can inhibit the growth of
Beauveria bassiana (a fungus that parasitizes arthropods) (Zhou et al., 2018). Therefore, S.
maltophilia can play a protective role in an insect host. S. maltophilia participates in the
sulfur and nitrogen cycles, degrades complex compounds and pollutants, and promotes
plant growth and health (An & Berg, 2018). We conclude that S. maltophilia plays an
important ecological role in the sclerotia of C. militaris.

Pseudomonas has many functions, e.g., P. fluorescens secretes luciferin and inhibits the
growth of Escherichia coli in insects (Roberts et al., 2018), decomposes wood, synthesizes
multiple vitamins, and suppresses fungi in beetles (Peral-Aranega et al., 2020). P. aeruginosa
strain BGF-2 isolated from German cockroach could inhibit the growth of B. bassiana
(Huang et al., 2013). Pseudomonas has a flexible metabolism that allows it to synthesize a
wide range of antibiotics to ward off competitors, protect itself from predators, and produce
chemical signaling molecules that sustain intraspecies and interspecies interactions (Garze
& Stallforth, 2019).

The relative abundance of bacteria in insects may be related to growth stimulation by
parasitic fungi. For example, the biomass of P. fragi (a bacterium found in Thitarodes
and Hepialus ghost moths) increased after invasion by C. sinensis, and P. fragi became the
dominant bacterium and participated in the process of larval mummification (Wu ef al.,
2020). Both Stenotrophomonas and Pseudomonas have been reported to inhibit conidial
germination and mycelial growth of B. bassiana (Zhou et al., 2018). The two bacterial strains
tested in this study had a similar effect on the hyphae of C. militaris. These findings indicate
that the use of parasitic bacteria to inhibit fungal invasion is a protective mechanism of
insects.

In the present study, the biomass of C. militaris decreased after co-culture with strain
N-2 (S. maltophilia) or N-26 (P. baetica), so the cordycepin content in the culture medium
decreased accordingly. Several mechanisms could explain this effect. One is inhibition of
the expression of cordycepin-synthesis-related genes (cnsl, cns2, cns3, and cns4) (Zheng
et al., 2011); this can be verified by quantitative PCR in later study. Alternatively, (a) key
enzyme(s) involved in cordycepin synthesis may have been inhibited. It is also possible that
the mycelium structure was damaged in the co-culture process, which could be observed
by using cryo-electron microscopy after co-culture. Alternatively, cordycepin may be
produced at around the usual level but used by the co-cultured bacterium.
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Because cordycepin has antibacterial function (Jiang et al., 2019), we speculate that
its ecological role is to inhibit the growth of some bacteria, to create good conditions
for C. militaris and keep the insect host from decaying. Our data indicate that some
symbiotic bacteria may inhibit the production of cordycepin. We speculate that other
symbiotic bacteria may promote the production of cordycepin. Thus, we aim to isolate
other microorganisms from the sclerotia and further explore the relationships between
the isolates and C. militaris. When increasing numbers of interactions are revealed, the
ecological functions of microbes in the sclerotia will become clearer.

The biosynthetic potential of many bacterial and fungal strains is much greater than
previously thought. For example, in Pseudoalteromonas sp. MEBiC 03485 co-cultured with
Porphyridium cruentum UTEX 161, the content of sulfated polysaccharide was increased
(Han et al., 2020b). The mechanism may lie in the effect of some small-molecule elicitors
on the related transcription of secondary metabolite gene clusters (Pettit, 2011). The results
of a previous study suggest that the increased production of EPS in the present study
may be related to the protein phosphoglucomutase (Wang et al., 2021). However, it is
unclear whether the increase was in the original type of polysaccharide or in new types of
polysaccharide; this requires further study.

CONCLUSION

The microbiota of the sclerotia of C. militaris contains a diversity of bacteria, among
which Pseudomonas, Pedobacter, and Serratia are the dominant genera. This study reveals
the interactions between C. militaris and isolated strains of S. maltophilia and P. baetica;
these bacteria had inhibitory effects on the biomass and mycelial pellet diameter of

C. militaris, and increased its EPS content. Furthermore, P. baetica strain N-26 decreased the
cordycepin content in C. militaris. These results enrich the study of microbial interactions
in entomogenous fungal microenvironments and provide reference for improving the use

of metabolites.

Abbreviations

C. militaris Cordyceps militaris

S. maltophilia Stenotrophomonas maltophilia

P. baetica Pseudomonas baetica

O. sinensis Ophiocordyceps sinensis

VP test Voges-Proskauer test

MR test Methyl rea test

BLAST Basic local alignment search tool

NCBI National center for biotechnology information
HPLC High performance liquid chromatography
HEA N6-(2-hydroxyethyl)-adenosine

SE Scan Electron microscopic

EPS Extracellular polysaccharide

ddH,0 Double distilled water

LSD Least Significant Difference

ANOVA Analysis of Variance
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