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One key task in virtual screening is to accurately predict the binding affinity (△G) of protein-
ligand complexes. Recently, deep learning (DL) has significantly increased the predicting
accuracy of scoring functions due to the extraordinary ability of DL to extract useful
features from raw data. Nevertheless, more efforts still need to be paid in many aspects, for
the aim of increasing prediction accuracy and decreasing computational cost. In this study,
we proposed a simple scoring function (called OnionNet-2) based on convolutional neural
network to predict△G. The protein-ligand interactions are characterized by the number of
contacts between protein residues and ligand atoms in multiple distance shells. Compared
to published models, the efficacy of OnionNet-2 is demonstrated to be the best for two
widely used datasets CASF-2016 and CASF-2013 benchmarks. The OnionNet-2 model
was further verified by non-experimental decoy structures from docking program and the
CSAR NRC-HiQ data set (a high-quality data set provided by CSAR), which showed great
success. Thus, our study provides a simple but efficient scoring function for predicting
protein-ligand binding free energy.

Keywords: protein-ligand binding, deep learning, onionnet, residue-atom distance, structure-based affinity
prediction

1 INTRODUCTION

Protein-ligand binding is the basic of almost all processes in living organisms Du et al. (2016) thus
predicting binding affinity (△G) of protein-ligand complex becomes the research focus of
bioinformatics and drug design Guedes et al. (2018); Guvench and MacKerell (2009); Ellingson
et al. (2020). Theoretically, molecular dynamics (MD) simulations and free energy calculations (for
instance, thermal integration method and free energy perturbation can provide accurate predictions
of △G relying on extensive configurational sampling and calculation, leading to a large demand in
computational cost Ellingson et al. (2020); Michel and Essex (2010); Gilson and Zhou (2007); Hansen
and Van Gunsteren (2014). Therefore, developing simple, accurate and efficient scoring methods to
predict protein-ligand binding will greatly accelerate the drug design process Liu and Wang (2015).
To achieve this, several theoretical methods (scoring functions) have been proposed. Typically, the
scoring functions are based on calculations of interactions between protein and ligand atoms Du et al.
(2016); Liu and Wang (2015); Huang et al. (2010); Grinter and Zou (2014). This includes quantum
mechanics calculations, molecular dynamics simulations (electrostatic interaction, van der Waals
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interaction, hydrogen-bond and etc.), empirical-based interacting
models. Du et al. (2016); Huang et al. (2010); Grinter and Zou
(2014); Huang et al. (2006).

In recent years, approaches based on machine learning (ML)
have been applied in scoring functions and demonstrated great
success Lo et al. (2018); Vamathevan et al. (2019); Shen et al.
(2020a); Lavecchia (2015). For instance, RF-Score Ballester and
Mitchell (2010) and NNScore are two pioneering ML-based
scoring functions Durrant and McCammon (2010). Compared
with classical approaches, these ML-based methods allow higher
flexibility in selecting configurational representations or features
for protein and ligand. More importantly, these methods have
been demonstrated to perform better and more effective than
classical approaches Ain et al. (2015); S Heck et al. (2017).
Recently, the deep learning (DL) approaches have provided
alternative solution. Compared with ML, the DL models
perform better at learning features from the raw data to
extract the relationship between these features and labels.
Wang and Gao (2019); Gawehn et al. (2016); Chen et al.
(2018) Thus, DL algorithms have been introduced to model
the structure-activity relationships Yang et al. (2019); Winter
et al. (2019); Ghasemi et al. (2018). One of the most popular
methods of DL is the convolutional neural network (CNN),
which is a multi-layer perceptron inspired by the neural
network of living organisms Lavecchia (2019).

Inspired by the great success of DL and CNN techniques,
several models applying CNN to predict protein-ligand
interaction have been reported Jiménez et al. (2017); Gomes
et al. (2017); Öztürk et al. (2018); Stepniewska-Dziubinska et al.
(2018); Jiménez et al. (2018); Torng and Altman (2019a); Zheng
et al. (2019); Morrone et al. (2020); Torng and Altman (2019b).
For example, Öztürk and co-workers reported a DeepDTA
model based on one-dimensional (1D) convolution, which
took protein sequences and simplified molecular input line
entry specification (SMILES) codes of ligand as inputs to
predict drug-target △G Öztürk et al. (2018). Using 3D CNN
model, two independent groups developed scoring functions,
named Pafnucy Stepniewska-Dziubinska et al. (2018) and Kdeep

Jiménez et al. (2018), to model the complex in a cubic box
centered on the geometric center of the ligand to predict the△G
of protein-ligand complex. More interestingly, Russ et al.
employed Graph-CNNs to automatically extract features
from protein pocket and 2D ligand graphs, and
demonstrated that the Graph-CNN framework can achieve
superior performance without relying on protein-ligand
complexes Torng and Altman (2019a). Our group has
proposed a 2D convolution-based predictor, called OnionNet,
based on element-pair-specific contacts between ligands and
protein atoms Zheng et al. (2019). As is shown, these DL and
CNN based approaches, achieved higher accuracy in △G
prediction than most traditional scoring functions, such as
Auto Dock Morris et al. (1998); Huey et al. (2007), X-Score.
Wang et al. (2002) and KScore. Zhao et al. (2008).

Physically, the dominating factors for overall binding
affinity involve electrostatic interactions, van der Waals
interactions, hydrogen bonds, hydration/de-hydration during
complexation. Instead, for DL scoring functions, how to treat

with the high-dimensional structural information encoded in
the 3D structures and convert to the low-dimensional features for
ML (or DL) training is critical. For most structure-based ML/DL
models, the features are usually derived from the atomic
information of proteins and ligands, such as the element type
and spatial coordinates of the atom and even other atomic
properties Stepniewska-Dziubinska et al. (2018); Jiménez et al.
(2018). In our OnionNet model, we characterized the protein-
ligand interactions by the number of element-pair-specific contacts
in multiple distance shells. Zheng et al. (2019); Song et al. (2020).

As we all know, the same elements in different residues have
quite different physical and chemical properties, which might
greatly affect the protein-ligand binding event. Therefore, it
may be insufficient enough to characterize the intrinsic physical
and chemical properties of proteins by dividing the protein into
eight types of atoms. Considering that the twenty types of
amino acids can be treated as intrinsic classification of protein
compounds which involve lay features of them, like polar,
apolar, aromatics, and etc. It may be more reasonable to
characterize the physicochemical properties of proteins
through individual residues. Especially the residues in the
binding pocket, they directly participate in the construction
of the binding environment, which plays a decisive role in
ligand binding events. It is undeniable that using residues as the
basic unit actually “coarse-grained” the protein, which will lose
part of the structural information, but this may also help to
improve the generalization ability of the model itself. In view of
these, we anticipate that it may be more beneficial to encode
protein as residues instead of atoms in developing DL scoring
functions.

In this work, we proposed a simple OnionNet-2—a 2D CNN
based regression model to predict protein-ligand △G, which
adopts the rotation-free residue-atom-specific contacts in
multiple distance shells to describe the protein (residues) -
ligand (atoms) interactions. The model was trained on the
PDBbind database Li et al. (2014a) and tested by the
comparative assessment of scoring function (CASF)
benchmarks, where CASF-2016 Su et al. (2018) is employed
as the primary benchmark. When the total number of shells was
62, OnionNet-2 achieved the best performance with the Pearson
correlation coefficient (R) reaching 0.864 and a root-mean-
squared error (RMSE) of 1.164. When applied to the earlier
version of CASF-2013, Li et al. (2014a), Li et al. (2014b), Li et al.
(2018) our present model achieved R of 0.821 and RMSE of
1.357. An additional high-quality data set, the CSAR NRC-HiQ
data set (consisting of two subsets) Dunbar et al. (2011) was also
used to verify OnionNet-2. Our model achieved R of 0.89 for
NRC-HiQ subset 1 (55 complexes) and 0.87 for NRC-HiQ
subset 2 (49 complexes). The performance is indeed higher
than two previous ML scoring models, RF-Score (R � 0.78 and
0.75, respectively) and Kdeep (R � 0.72 and 0.65, respectively).
We demonstrated that, our present method can significantly
improve the prediction power by about 3.7% than previous
models, thus providing an efficient and accurate approach for
predicting protein-ligand interactions and uncover a new trend
of using DL technique for massive biological structures training
for drug design.
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2 METHODS

2.1 Evaluation Metrics
We used Pearson correlation coefficient R, RMSE and Standard
Deviation (SD) to evaluate the scoring power of the model which
are defined as:

R � ∑n
i xi − �x( ) yi − �y( )���������������������∑n

i xi − �x( )2
����������∑n

i yi − �y( )2√√ (1)

RMSE �
������������
1
n
∑n
i�1

yi − xi( )2√
(2)

SD �
����������������∑n

i yi − a + bxi( )[ ]2
n − 1

√
(3)

where xi is the predicted pKd for ith complex; yi is the
experimental pKd of this complex; �x and �y are the averages of
all predicted values and experimental values; a and b are the
intercept and the slope of the regression line, respectively Su et al.
(2018).

2.2 Preparation of Dataset
We mainly used the protein-ligand complexes of PDBbind
database v.2019 (http://www.pdbbind-cn.org/) for training.
This database consists of two overlapping subsets, the general
set and the refined set. The general set includes all available
complexes and the refined set comprises protein-ligand
complexes with high-quality structure and binding
information selected from the general set. For each structure
of the protein-ligand complex, the corresponding binding affinity
is represented by the negative logarithms (pKd) of the dissociation
constants (Kd), inhibition constants (Ki) or half inhibition
concentrations (IC50). In order to evaluate the predictive
ability and compare with other scoring functions, OnionNet-2
was evaluated on the CASF-2016 test set (core set v.2016) Su et al.
(2018) and CASF-2013 test set (core set v.2013) Li et al. (2014a),
Li et al. (2014b), Li et al. (2018). It should be noted that the CASF-
2016 test set is the latest update of CASF-2016, which contains
285 high-quality complexes. While for core set v.2013, it is a
subset of the PDBbind database v.2013, consisting of 195 protein-
ligand complexes classified in 65 clusters with binding constants
spanning nearly 10 orders of magnitude. Besides, a data set called
CSAR NRC-HiQ, consisting of two subsets containing 176 and
167 complexes respectively, Dunbar et al. (2011) was employed as
a third test set. For the previous models of Kdeep and RF-score,
55 and 49 complexes in two subsets were used as test data Jiménez
et al. (2018). To provide a direct comparison with Kdeep and RF-
score, we adopted the same data for the OnionNet-2 test.

In order to perform normal training and testing, it is necessary
to redistribute remaining complexes in PDBbind database v.2019.
First, we excluded the complexes contained in three test sets from
PDBbind database v.2019 (general set and refined set). Then, as a
common practice (Reference: Pafnucy Stepniewska-Dziubinska
et al. (2018) and OnionNet Zheng et al. (2019)), 1,000 complexes
were randomly sampled from v.2019 refined set (after filtering all
complexes used in the test sets described previously) as the

validating set. Finally, the remaining complexes (that is, the
complexes that are not included in the three test sets and
validating set) were adopted for the training set. This ensures
that there is no overlapping protein-ligand complex in the
training set, validating set and test sets.

2.3 Descriptors
The features employed are the pair numbers of the specific
residue (protein)-atom (ligand) combination in multiple
distance shells. The minimum distances between any atom in
the ligand and any residue of protein are treated as the
representative distances. First, around each atom in the ligand,
we defined N continuously packed shells. The thickness of each
shell is δ, except that the first shell is a sphere with a radius of d0.
The boundary Ki of the ith shell is as follows

0<Ki < d0, i � 1
d0 + (i − 2)δ ≤Ki < d0 + (i − 1)δ, i≥ 2

Meanwhile, we classified atoms in the ligand into eight types,
namely C, H, O, N, P, S, HAL, and DU, where HAL represents the
halogen elements (F, Cl, Br, and I), and DU represents the
element types excluded in these seven types.

Te ∈ {C,H,O,N, P, S,HAL,DU}
When pre-processing the structure file, water and ions were

treated explicitly because crystal water molecules and ions could
affect the protein-ligand binding García-Sosa (2013); Spyrakis
et al. (2017). In addition to the twenty standard residues, we
added an expanded type named “OTH” to represent water, ions
and any other non-standard residues.

Tr ∈ {GLY,ALA,VAL, LEU, ILE,PRO,PHE,TYR,TRP, SER,

THR,CYS,MET,ASN,GLN,ASP,GLU, LYS,ARG,HIS,OTH}

It is worth mention that the residue-atom distance is defined
as the distance between the atom in the ligand and the nearest
heavy atom in the residue. A 2D visual representation is depicted
at the upper left of Figure 1. For any shell, the number of contacts
for each residue-atom pair is calculated and used as a feature.
Each shell has 8 × 21 � 168 residue-atom combinations, which
means that there are 168 features for a shell. Thus, if the total
number of shells is N, 168 × N features will be generated.

nTr,Te � ∑R
r�1

∑E
e�1

cir,e (4)

cir,e � 1, (i − 2)δ + d0 ≤ dr,e <(i − 1)δ + d0

0, otherwise
{ (5)

Here, R is the total number of residues in the protein, and E is
the total number of atoms in the ligand. The dr,e is the minimum
distance between the residue r in the protein and the atom e in the
ligand, and niTr,Te

is the number of contacts of the specific residue-
element combination in the ith shell. The cir,e is 1 when (i − 2)δ +
d0 ≤ dr,e < (i − 1)δ + d0, otherwise cir,e is 0. Following our previous
study, Zheng et al. (2019) we used d0 � 1 Å and δ � 0.5 Å.
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Interestingly such shell-like, or radial, representations of protein
environments, have been demonstrated to be superior features in
protein function prediction Torng and Altman (2019b). The
source code of OnionNet-2 is available at https://github.com/
zchwang/OnionNet-2/.

2.4 Architecture
We adopted a CNN model based on 2D convolution to learn the
relationship between the contact features and the△G. The model
was constructed using the Keras package in tensorflow Abadi
et al. (2016). The workflow architecture is shown in Figure 1.

The raw data is pre-processed before input into the CNN
model. Here, the features are standardized through the scikit-
learn package Pedregosa et al. (2011), and the processed features
confirmed the standard normal distribution. Considering the big
success of CNN model using 2D convolution in image
recognition, Pak and Kim (2017) the 1D vector containing the
protein-ligand interactions was converted into a 2D matrix to
mimic the feature images, which was used as the input of
CNN model.

CNNs usually consist of multiple layers with different
functions, and the convolution layer is the key part of CNN
models, which is to extract different features from input data
Lavecchia (2019). The filter, also called the convolution kernel, is
the core part of the convolutional layer, and the local features of
the input “picture” are extracted through the sliding of the filter
Gawehn et al. (2016); Angermueller et al. (2016). In the
OnionNet-2 model, we used three convolutional layers, with
32, 64, and 128 filters respectively and the filter sizes were all
set as 4, with strides as 1. The results of the last convolutional
layer need to be flattened before being passed to the fully

connected layers. The fully connected layers can integrate the
local features extracted by the convolutional layers to give the
prediction of pKd value. Increasing the width and length of the
fully connected layer can improve the complexity and nonlinear
expression ability of the model, but in practice, this may lead to
unexpected overfitting. In addition, increasing parameters will
significantly increase the computational cost. After preliminary
tests, two fully connected layers with 100 and 50 neurons are used
before the output layer, which is capable of capturing the
nonlinear relationship between the features and the pKd values.

To further increase the nonlinear ability of the model, a rectified
linear unit (RELU) layer was added after each convolutional layer
and fully connected layer. Also, a batch normalization layer was
used after the fully connected layer. The stochastic gradient descent
(SGD) optimizer was adopted and the learning rate was set as
0.001. To reduce overfitting, L2 regularization with weight decay
λ � 0.01 was used after each fully connected layer. The number of
samples processed per batch is 64.

To evaluate the performance of the OnionNet-2, we adopted
the loss function defined in the previous work Zheng et al. (2019).

loss � α(1 − R) + (1 − α)RMSE (6)

where R and RMSE represent Pearson correlation coefficient
(Eq. 1) and root-mean-squared error (Eq. 2), respectively. The
α(0 ≤ α ≤ 1) value is an adjustable factor for adjusting the weight
with R and RMSE, which was finally set to 0.7. For each
independent training task, we adopted early stopping (patience
� 20, that is, if the change of the loss value in the validating set is
less than 0.001 after 20 epochs, the training is terminated) and
save the model that performed best on the validating set. For the

FIGURE 1 | Workflow of OnionNet-2. The features based on the residue-atom contacts are converted into a 2D image and fed to the CNN architecture.

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 7530024

Wang et al. OnionNet-2 PL Binding Affinity Prediction

https://github.com/zchwang/OnionNet-2/
https://github.com/zchwang/OnionNet-2/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


prediction in each case, five independently trainings were
conducted to obtain the predicted mean value.

3 RESULTS AND DISCUSSIONS

3.1 The Predictive Power of OnionNet-2
Firstly, we explored the effect of shell number N on the
predictive capability of the OnionNet-2 model. A range of
the total shell number 10, ≤, N ≤ 90 was tested with interval
of 2. According to our definitions of distance shell, this covers a
separation between the residue and the atom from 0.55 to
4.55 nm. Figure 2 depicts the trend of the R value to shell
number N testing with core set v.2016. For N from 10 to 20, the
R quickly increases as the total number of shells increases. This
is expected because as the number of shells increases, the
interactions between ligand and protein were gradually
captured by the model. The R value reached the first peak
for N is 30. This means that OnionNet-2 can achieve high
prediction accuracy at a relatively low computational cost.
Then, R fluctuates in a range of 0.01 until reaches the global
maximum value when N � 62. Figure 3 summarized the mean
predicted value of each complex from five independent training,
with respect to experimental value, using N � 62, on the training
set, validating set and two testing sets, core set v.2016 and core
set v.2013. It shows that the predicted pKd and experimental pKd

are highly correlated for the two testing sets and validating set.
After this point, R decreases when N increase. We attribute this
to the enormous data that leads to the introduction of noise in
the training. Unless otherwise specified, we adopted N of 62 in
the following discussions. In addition, we also re-trained the

model with two elder versions (v.2016 and v.2018) of the
PDBbind database, and the R values of our re-trained models
are almost the same (Supplementary Figure S1 and
Supplementary Table S1).

The performance of some published scoring functions and
OnionNet-2 tested on CASF-2016 and CASF-2013 are
showed in Figures 4A,B, respectively. The corresponding
R and RMSE (or SD) achieved by these representative scoring
functions can be found in Supplementary Table S2. Firstly,
our OnionNet-2 model achieved highest R of 0.864 and RMSE
of 1.164 with the core set v.2016, and R � 0.821 and RMSE �
1.357 with the core set v.2013. These were significantly higher
than other scoring functions. The 2nd best scoring function
was AGL, which adopted the gradient boosting trees (GBTs)
algorithm, focusing on multiscale weighted labeled algebraic
subgraphs to characterize protein-ligand interactions
Nguyen and Wei (2019). For two 3D convolution-based
scoring functions Kdeep Jiménez et al. (2018) and Pafnucy
Stepniewska-Dziubinska et al. (2018), they adopted 3D voxel
representation to model the protein-ligand complex and
explicitly treated with physical properties of atoms such as
hydrophobic, hydrogen-bond donor or acceptor and
aromatic etc. into consideration. It is interesting to find
that although we only employed the residue-atom contact
to mimic the interactions between the protein and the ligand
in OnionNet-2, the predicting power is higher. This further
reveals that the selected features have a great impact on the
predictive power of the CNN-based scoring functions.
Secondly, as is expected, the introduction of ML/DL

FIGURE 2 | The Pearson correlation coefficient with respect to the shell
number N for OnionNet-2 testing with core set v.2016. The bars indicate the
standard deviations of the R values for five independent runs.

FIGURE 3 | Results of OnionNet-2 model (N � 62). Each point presents
the mean predicted pKd of each complex from five independent training with
respect to experimental determined pKd on training set, validating set, and
two test sets of core set v.2016 and core set v.2013.
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techniques into models has systematically enhanced the
predicting accuracy.

In order to explore the feature importance of different residue-
atom combinations to the total performance of the model, we
valuated the importance of combination features following our
previous strategy. In detail, we re-trained the model with missing
a certain residue-atom combination, then calculated the
performance change in loss (Δloss). Here, the Δloss is defined
as the difference between the loss of a model with missing a
certain feature and the loss of the best model. Therefore, larger
Δloss represents that this feature has higher importance. The
results are summarized in Figure 5. The most important
combination is “CYS_H”, which is mainly due to the high
occurrences of hydrogen bond between CYS and H atom of
ligand molecules. Also, “CYS_N” also showed relatively high
importance because N atom of ligand molecule acts as the donor
of hydrogen bonds. Besides, “ASN_Hal” is also recognized to be
an important feature to the protein-ligand binding affinity
prediction, which may be attributed to the formation of the
halogen bond between the halogen atom in the ligand and the
O atom in the ASN Cavallo et al. (2016). Generally, it is worth
mention that although we identified the different importance of
the combinations, missing of any residue-atom combination
indeed does not cause clear decreases in the overall
performance of the model. For instance, most Δloss are in the

range of 0.02–0.04 except that missing of the first 23
combinations caused a Δloss near 0.05, indicating the high
robustness of this model.

3.2 Evaluation of the Generalization Ability
of the Model on Different Test Sets
Generally, DL models display a good generalization behavior in
practical applications Neyshabur et al. (2017). To verify the
generalization ability of the OnionNet-2, the CSAR NRC-HiQ
data set provided by CSAR. Dunbar et al. (2011) was used as an
additional test set in this study. This data set contains two subsets
which contain 176 and 167 protein-ligand complexes,
respectively. For the two previous ML models, Kdeep and RF-
Score, the researchers used 55 and 49 complexes in two subsets
respectively as test data Jiménez et al. (2018). To provide a direct
comparison with them, we adopted the same data for the
OnionNet-2 test. It is worth mention that the two test subsets
from the CSAR NRC-HiQ only have two common complexes
with core set v.2013, namely 2jdy and 2qmj, and does not overlap
with the training set, validation set and core set v.2016. The
performance of Kdeep, RF-Score and OnionNet-2 on these two
subsets are shown in Table 1, and the scatter plots of the pKd

predicted by OnionNet-2 with respect to experimental pKd can be
found in Supplementary Figure S1.

FIGURE 4 | Pearson correlation coefficient of different scoring functions on (A) CASF-2016 and (B) CASF-2013 benchmarks. The scoring functions marked with
an asterisk are based on ML/DL models. The purple column is the performance of our proposed model.
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As expected, our model achieved a higher performance than
Kdeep and RF-score. For subset 1, the present OnionNet-2
achieved R of 0.89, which is considerably higher than that of
Kdeep (0.72) and RF-Score (0.78). This is also true for subset 2.
Especially that, the R value ofKdeepmodel is only 0.65 for subset 2,
indicating weak predicting capability on these data. These results
effectively demonstrated that OnionNet-2 has a good
generalization ability.

3.3 Evaluations on Subsets of
Non-Experimental Decoy Structures
As all the training and validating sets are composed of well-
validated native structures in previous studies, it is largely
unknown whether the DL method is capable to distinguish
“bad data” that are incorporated in these integrated data sets,
for instance, non-native binding poses. To verify this, we tested
OnionNet-2 to deal with non-experimental structures (generated

by docking programs). Technically, non-native binding poses
(called decoys) were generated based on core set v.2016
complexes by AutoDock Vina Trott and Olson (2010); Forli
et al. (2016). The detailed information of the generation of decoys
can be found in the Supplementary Information. In CASF-2016
benchmark, the similarity between two binding poses is measured
by the root-mean-square deviation (RMSD) value. Following
previous studies by Allen et al. (2014), we adopted the
Hungarian algorithm to calculate RMSD between decoy ligand
and native structure which is implemented in spyrmsd Meli and
Biggin (2020). The treatment of decoy was as following:

1) For each receptor, up to 20 decoy ligands were generated by
AutoDock Vina. The actual number may be less than 20
because of limited size and shape of the binding pocket in the
target protein. For each decoy, the RMSD with respect to
native structure was calculated.

2) We used 10 RMSD intervals, [0 Å, 2 Å], [2 Å, 3 Å], [3 Å, 4 Å],
. . ., [9 Å, 10 Å] and [10 Å:].

3) For all ligands in every interval, we selected the decoy with the
smallest RMSD value to put into the corresponding subsets. 4.
Ten test subsets containing non-experimental complexes were
used for OnionNet-2 training.

The predicting accuracy was evaluated by calculating the
RMSE between the predicted pKd of the decoy complex and
the pKd of the corresponding native receptor-ligand complex
which is shown in Figure 6. It is clear that, the RMSE quickly

FIGURE 5 | Performance change (Δloss) due to missing features. Performance change (Δloss) when a certain residue-atom combination is removed. The Δloss is
defined as the difference between the loss of a model with missing a certain feature and the loss of the best model. The bars indicate the standard deviations of the Δloss
for five independent runs.

TABLE 1 | The performance of OnionNet-2, Kdeep and RF-Score achieved on
subsets from CSAR NRC-HiQ data set.

Subset 1 Subset 2

R RMSE R RMSE

OnionNet-2 0.89 1.50 0.87 1.21
Kdeep Jiménez et al. (2018) 0.72 2.09 0.65 1.92
RF-Score Jiménez et al. (2018) 0.78 1.99 0.75 1.66
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increased with increasing RMSD. This is expected because decoys
with larger RMSD result in more severe change of △G. These
results reveal that OnionNet-2 can accurately respond to changes
of the ligand binding poses and distinguish the native structure.

3.4 Effects of Hydrophobic Scale, Buried
Solvent-Accessible Area and Excluded
Volume Inside the Binding Pockets on the
Prediction Accuracy
Principally, the physical interactions between protein and ligand
determine the△G. The dominating factors for overall△G involve
electrostatic interactions, van der Waals interactions, hydrogen
bonds, hydration/de-hydration during complexation. However,
such mechanistic interactions were not directly input into DL
features. At molecular level, these involves the size and shape of
the binding pocket, and the nature of residues around the binding
pocket which determine its physicochemical characteristics Stank
et al. (2016). However, whether DL models can accurately
represent the structural specificity of the binding pocket is
poorly documented.

The entire CASF-2016 test set can be divided into three subsets
by each of three descriptors according to physical classifications
of the binding pocket on the target protein Su et al. (2018). The
three descriptors include H-scale (hydrophobic scale of the
binding pocket), △SAS (buried percentage of the solvent-
accessible area of the ligand after binding) and △VOL
(excluded volume inside the binding pocket after ligand
binding). Protein-ligand complexes in CASF-2016 were

grouped into 57 clusters, and the authors sorted all 57 clusters
in ascending order by each descriptor. Then, these complex
clusters were divided into three subsets according to the
chosen descriptor, labeled as H1, H2, and H3 or S1, S2, and
S3 or V1, V2, and V3. These subsets were used as validations of
our OnionNet-2 model. As comparison, previous scoring
functions were also tested on these three sets of subsets by Su
et al. (2018), and the results are summarized in Table 2.

As can be seen in Table 2, OnionNet-2 achieved higher
prediction accuracy compared with other soring functions
when tested on H, S, and V-series subsets. This indicates that
the feature based on the contact number of residue-atom pairs in
multiple shell is capable of capturing the hydrophobic scale of the
binding pocket. The number of contacts in different shells
(specifically the shells within the binding pocket) may be able
to reflect the buried solvent-accessible surface area and the
excluded volume of the ligand.

We noticed that, compared to other subsets, the R value of
OnionNet-2 on V2 subset is clearly lower than other subsets
(nevertheless it is still high than other scoring functions). This
may indicate that our model is less sensitive to medium-sized
binding pockets. Thus it may be still challenging for current
scoring functions to recognize the size and shape of the binding
pocket.

Furthermore, we plotted the detailed scatter plots of predicted
pKd and experimental pKd in Supplementary Figure S3
according to the specific H, S and V range. It is interesting to
find almost no dependence of pKd with the values of H, S, or V.
Thus we speculate that a more realistic descriptor for the ligand
characteristic in the binding pocket is essential to guide the
protein-ligand △G prediction.

3.5 Discussions of Screening Power
From the above results, we demonstrated that OnionNet-2 has
high efficiency in treating with protein-ligand binding affinity
prediction with simple calculations of structural features.
However, we noticed a work from Hou group reporting that
mostly developed ML models (including the OnionNet)
performed poorly in the virtual screening tasks Shen et al.
(2020b). In such screening power examinations, theoretical
models have to pick true binders from a lot of false “decoy”
molecules. It is not surprising that all ML models which were
trained soly on true binders (for example, PDBbind databases)
were not taught to distinguish decoy molecules from the true
binders. In order to improve the screening power of the ML/DL
based scoring functions, decoy molecules should be included in
the training sets. Such work is now being undertaken by us.

4 CONCLUSION

To summarize, a 2D convolution-based CNN model, OnionNet-
2, is proposed for prediction of the protein-ligand binding free
energy. The contacting pair numbers between the protein
residues and the ligand atoms were used as features for DL
training. Using CASF-2013 and CASF-2016 as benchmarks,
our model achieved the highest accuracy to predict △G than

FIGURE6 |RMSE between the predicted pKd of the decoy complex and
the pKd of the corresponding native receptor-ligand complex achieved by
OnionNet-2 on different protein-decoy complexes subsets. The bars indicate
the standard deviations of RMSE for five independent runs.
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previous scoring functions. In addition, when employing
different versions of PDBbind database for training, the
performance of OnionNet-2 is nearly the same. We also
evaluated the generalization ability of the model through
testing on the CSAR NRC-HiQ data set and the decoys
structures. Our result also indicates that OnionNet-2 has the
capability to recognize these physical natures (in detail,
hydrophobic scale of the binding pocket, buried percentage of
the solvent-accessible area of the ligand upon binding and
excluded volume inside the binding pocket upon ligand
binding) of the ligand-binding pocket interaction. This
systematic study also verified our initial hypothesis that is
using the intrinsic types residues as the basic units can better
characterize the physicochemical properties of the protein, which
will be beneficial to improve the performance of the protein-
ligand binding affinity prediction.
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