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Abstract

Background: The mortality rate of hepatocellular carcinoma (HCC) remains high worldwide despite surgery and
chemotherapy. Immunotherapy is a promising treatment for the rapidly expanding HCC spectrum. Therefore, it is
necessary to further explore the immune-related characteristics of the tumour microenvironment (TME), which plays
a vital role in tumour initiation and progression.

Methods: In this research, 866 immune-related differentially expressed genes (DEGs) were identified by integrating
the DEGs of samples from The Cancer Genome Atlas (TCGA)-HCC dataset and the immune-related genes from
databases (InnateDB; ImmPort). Afterwards, 144 candidate prognostic genes were defined through weighted gene
co-expression network analysis (WGCNA).

Results: Seven immune-related prognostic DEGs were identified using the L1-penalized least absolute shrinkage
and selection operator (LASSO) Cox proportional hazards (PH) model, and the ImmuneRiskScore model was
constructed on this basis. The prognostic index of the ImmuneRiskScore model was then validated in the relevant
dataset. Patients were divided into high- and low-risk groups according to the ImmuneRiskScore. Differences in the
immune cell infiltration of patients with different ImmuneRiskScore values were clarified, and the correlation of
immune cell infiltration with immunotherapy biomarkers was further explored.

Conclusion: The ImmuneRiskScore of HCC could be a prognostic marker and can reflect the immune
characteristics of the TME. Furthermore, it provides a potential biomarker for predicting the response to
immunotherapy in HCC patients.
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Background
Hepatocellular carcinoma (HCC) is one of the most
common malignancies [1, 2]. With a 5-year survival rate
of 18%, HCC is the second most lethal tumour after
pancreatic cancer [3] and the fourth leading cause of
cancer-related mortality worldwide [4, 5]. HCC is the
main type of primary liver cancer, and its increasing
mortality rate is receiving growing concern. However,
conventional treatments such as radiotherapy and
chemotherapy do not significantly prolong overall sur-
vival (OS) in HCC patients [6].
Immunotherapy with immune checkpoint inhibitors

(ICIs) is also an important treatment option. These ther-
apies are revolutionizing the clinical treatment pattern
of multiple tumours, most notably advanced melanoma
[7–13], non-small-cell lung cancer [14, 15] and renal cell
carcinoma (RCC) [16, 17]. Since HCC benefits from pro-
grammed cell death protein 1 (PD-1) pathway blockade
[18], approved ICIs may be used in alternative HCC
treatment strategies in the near future [6, 19, 20]. Al-
though significant progress has been achieved with ICIs,
only a small number of patients can benefit from them
[21]. Therefore, there is an urgent need for new,
immune-based biomarkers to identify HCC patients who
may have better prognoses after immunotherapy.

Immune cells play an important role in the HCC
microenvironment and show clinicopathological signifi-
cance in predicting prognosis and treatment efficacy
[22–24]. The characteristics of the tumour microenvir-
onment (TME) and their functional impact on immuno-
therapy are actively being studied.
In this study, we made full use of The Cancer Genome

Atlas (TCGA) data and an a priori set of immune-
related genes to construct a prognostic immune risk
score using weighted gene co-expression network ana-
lysis (WGCNA) and the least absolute shrinkage and se-
lection operator (LASSO) Cox model. We also analysed
the correlation between the ImmuneRiskScore and the
infiltration level of different immune cells to clarify po-
tential mechanisms for the formation of the microenvir-
onment. Finally, we explored its relevance to other
immune biomarkers and its potential to identify patients
eligible for immunotherapy to improve the therapeutic
effects. The overall process is shown in Fig. 1.

Methods
Data download and processing
We downloaded the RNA sequencing (RNA-seq) expres-
sion profile (count and fragments per kilobase of tran-
script per million mapped reads (FPKM) format) and

Fig. 1 Overview of the experiments
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clinical data of the TCGA-HCC dataset from the Uni-
versity of California, Santa Cruz (UCSC) Xena data por-
tal (https://xena.ucsc.edu/), which contains information
on 50 normal samples and 374 tumour samples. An
immune-related gene set containing 1052 immune genes
was downloaded from InnateDB (https://www.innatedb.
ca/) (Table S1), and a gene set containing 1811 immune-
related genes was downloaded from ImmPort [25]
(https://www.immport.org) (Table S2). Expression profil-
ing data and clinical data were obtained from the
GSE14520 by the GEOquery [26] package of Bioconduc-
tor in R-3.5.2. GSE14520 contains 162 tumour samples
after removing the normal samples. The microarray
probe IDs were mapped to gene symbols based on the
GPL3921 platform (Affymetrix HT Human Genome
U133A Array) and incorporated in the dataset matrix
for each dataset. Eventually, the average of multiple
probes that correspond to a single gene for each dataset
was calculated individually using in-house R scripts. The
tumour mutation burden (TMB) data was downloaded
from the PanCancer Atlas (https://www.cell.com/
consortium/pancanceratlas).
To further verify the predictive performance of the

ImmuneRiskScore on immunotherapy, we collected the
gene expression profiles and clinical response informa-
tion of 33 RCC patients who received ICI therapies [27].
In addition, we collected the RNA-seq data of 65 melan-
oma patients treated with anti-PD-1 or anti-PD-L1 ther-
apies [28, 29]. For each dataset, we standardized the
transcriptome data across patients by max-min
normalization.

Differentially expression genes
Limma [30] packages in R-3.5.2 were employed to iden-
tify differentially expressed genes (DEGs) between tissue
adjacent to cancerous (n = 50) and cancer (n = 367) pa-
tients based on the raw counts for HCC gene expression
from the TCGA. The empirical Bayes method was ap-
plied in the limma package to select significant DEGs.
Here, the standard comparison mode was employed, and
the threshold was treated as p-value < 0.05 and |log2-
fold change| > = 1.5.

Gene ontology (GO) and pathway enrichment analysis of
DEGs
In this research, the clusterProfiler package [31] was
used to identify and visualize the GO terms (including
biological process, cellular component, and molecular
function terms) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways enriched for DEGs. We set
a p-value < 0.01 as the cut-off criterion and BH as the
significant adjustment method; the cut-off for the q-
value was also set as 0.01.

WGCNA
The transcript FPKM data was used for WGCNA [32].
First, the original data was preprocessed to identify sam-
ples with missing data and exclude outliers. Second, the
soft-thresholding power was selected with the pickSoft-
Threshold package, which can calculate the scaleless
topological fitting index for several powers and provide
the appropriate soft-thresholding power for network
construction. Third, we performed one-step automatic
network construction and module detection. Adjacent
relationships were converted into topological overlaps to
measure the network connectivity of a gene as the sum
of its connectivity to its neighbours and to all other
genes to generate a network. A hierarchical clustering
function was used to divide genes with similar expres-
sion profiles into several modules [33]. Next, key mod-
ules related to OS were selected and visualized by
Cytoscape [34]. In the present study, we calculated the
correlation between module eigengenes and the clinical
traits survival events and survival time to determine the
relevant module. Then, through linear regression ana-
lysis of gene expression and clinical information, we de-
fined gene significance (GS) as the log10 transformation
of the P-value (GS = lgP). In a module, the module sig-
nificance (MS) was defined as the average GS for all the
genes. Hub genes were identified as those with high clin-
ical trait significance (> 0.1) and high intramodular con-
nectivity (> 0.5) in relevant modules, and they were
selected as candidate genes for further analysis and
validation.

Gene set enrichment analysis of hub genes
Gprofiler2 (https://CRAN.R-project.org/package=
gprofiler2) was used to perform overrepresentation ana-
lysis on input HCC hub genes [35]. It maps these im-
mune genes to known sources of functional information
and detects significantly enriched terms. We included
pathways from KEGG (https://www.genome.jp/kegg/),
Reactome (https://reactome.org/), and CORUM (http://
mips.helmholtz-muenchen.de/corum/). This method can
obtain p-values by the hypergeometric test and perform
false discovery rate (FDR) correction for multiple testing.

Construction and validation of an immune-related
prognostic model
The univariate Cox proportional hazards (PH) regression
model in the ‘survival’ package was used to calculate the
hazard ratio (HR) for DEGs of the HCC cohort. DEGs
with significance (p-values < 0.05) were analysed, and
their survival risks were recalculated using the Cox re-
gression model from the glmnet R package [35] so that
the most important prognostic genes were selected. The
regularization path of the LASSO method was calculated
by setting the regularization parameter lambda to 1. To
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predict patient survival, the formula for the ImmuneR-
iskScore model was established as follows:

ImmuneRiskScore ¼
X�

Normalized expression value of gene Gi

�LASSO cox coefficient of gene Gi
�

Subsequently, we obtained the ImmuneRiskScore of
367 TCGA HCC patients and determined the threshold
for the high- and low-risk groups based on the average.

Estimation of immune cell type fractions and ESTIMATE score
CIBERSORT [36] and LM22 reference gene expression
matrices were employed to quantify the cell composition
of different HCC samples. The normalized gene expres-
sion data were analysed using the CIBERSORT algo-
rithm with 1000 permutations. Afterwards, immune and
stromal scores were calculated with ESTIMATE, an al-
gorithm that provides information on the abundance of
these cell types in tumour tissues [37].

Statistical analysis
The survival curves of patients stratified according to
the expression of hub immune genes were generated via
the Kaplan-Meier method, and the statistical significance
of differences was determined by the log-rank test. Re-
ceiver operating characteristic (ROC) curves were

applied to assess the sensitivity and specificity of survival
prediction based on the ImmuneRiskScore, and the
pROC package was utilized to quantify the area under
the curve (AUC). The nonparametric Mann-Whitney-
Wilcoxon test was used to compare the data from differ-
ent groups, and Pearson’s chi-square test was performed
to measure the level of significance for associations
among variables. All statistical analyses were performed
using R-3.5.2. All reported p-values were two-tailed, and
p < 0.05 was considered to indicate statistical
significance.

Results
Identification of immune-related DEGs
From the TCGA database, we obtained the expression
profiles of 417 HCC samples, including 367 tumour
samples and 50 normal samples after data preprocessing.
A total of 7194 genes were identified as DEGs with the
threshold of p-value < 0.05 and |log2-fold change| > 1.5;
of the genes, 3657 were upregulated and 3537 were
downregulated (Fig. 2a, Table S3). The samples were
well clustered into normal and tumour groups when the
top 200 DEGs were selected for unsupervised hierarch-
ical clustering (Fig. 2b). To obtain the immune-related
DEGs for HCC samples, we had to select genes that
were both immune-related and differentially expressed

Fig. 2 Identification of DEGs in 417 HCC patients. a Volcano plot of 7194 DEGs. The upper-left brown and upper-right blue dots represent genes
that are down- and upregulated in HCC, respectively. b Unsupervised hierarchical clustering heatmap for the top 200 DEGs ranked by fold
change. Red: upregulated DEGs; navy blue: downregulated DEGs. c Venn diagram of immune genes and DEGs
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in the two groups. Thus, we collected 2542 human
immune-related genes (1811 immune-related genes from
ImmPort and 1052 innate immune-related genes from
InnateDB). We overlapped the DEGs with immune-
related genes and selected 866 immune-related DEGs
(Fig. 2c, Table S4) for further analysis.
The results of GO term enrichment analysis varied ac-

cording to GO classification and differences in the ex-
pression of immune-related DEGs. In terms of biological
processes, the upregulated genes were significantly
enriched in cell chemotaxis, positive regulation of cyto-
kine production, leukocyte migration, etc., and the
downregulated genes were enriched in the hormone-
mediated signalling pathway, the steroid hormone medi-
ated signalling pathway, etc. Regarding cellular compo-
nents, upregulated immune-related DEGs were
significantly enriched on the external side of the plasma
membrane, major histocompatibility complex (MHC)
protein complex, cytoplasmic vesicle lumen, vesicle
lumen etc., and the downregulated DEGs were signifi-
cantly enriched in the RNA polymerase II transcription
factor complex, nuclear transcription factor complex,
and transcription factor complex. In terms of molecular
function, the upregulated immune-related DEGs were
significantly enriched in receptor ligand activity, cytokine
activity, etc. and the downregulated DEGs were signifi-
cantly enriched in receptor ligand activity, steroid hor-
mone receptor activity, and nuclear receptor activity.
More detailed GO enrichment analysis results are shown
in Fig. 3a, b and Table S5. These significantly enriched
pathways and terms help us better understand the role
of DEGs in the HCC immune microenvironment.
Ten significantly enriched KEGG pathways for the up-

regulated genes are shown in Fig. 3c and Table S6:
cytokine-cytokine receptor interaction, viral protein
interaction with cytokine and cytokine receptor, natural
killer (NK) cell-mediated cytotoxicity, the chemokine
signalling pathway and rheumatoid arthritis. The top 10
KEGG and GO enrichment results for the up- and
downregulated DEGs are detailed in Fig. 3d, and most of
the genes enriched in the top five KEGG pathways and
GO terms were upregulated genes. As shown in Fig. 3d,
168 upregulated DEGs and 11 downregulated DEGs
were enriched in cytokine-cytokine receptor interactions,
which indicated that there may be a complicated mo-
lecular mechanism in the HCC immune
microenvironment.

Weighted co-expression network construction and key
modules identification
The 866 immune-related DEGs from 367 HCC tumour
samples were used to construct the gene co-expression
network. After handling the missing values, we detected
the outlier samples by hierarchical clustering (Figure

S1), and the dendrogram showed the 5 outlier samples
that were removed from the analysis.
performed network topology analysis for thresholding

powers from 1 to 20, and 4 was the lowest power with a
scale-free topology fit index of 0.85 (Fig. 4a). We ob-
tained a gene clustering tree using hierarchical clustering
of topological overlap measure (TOM)-based dissimilar-
ity and identified 6 modules (Fig. 4b, Table 1). To select
the clinically significant modules, we used WGCNA to
calculate the correlations between the external clinical
information and gene modules. As shown in Fig. 4c, the
green module was the most associated with OS, and the
green and brown eigengenes were highly relevant (Figure
S2).
We visualized the green module as a network by

Cytoscape and selected the top 50 gene pairs by sorting
the weight of gene pairs. As shown in Fig. 4d, some
genes, such as PDLIM7, EHHADH, DMGDH, and
CYP8B1 are represented with larger circles indicating
higher node degrees. Finally, we screened 144 immune
hub genes with high significance in terms of OS events
and OS time (> 0.1) and high relevance to the green
module (> 0.5) (Table S7).
Gene set enrichment analysis was performed on 144

immune hub genes to find overrepresented functions in
the context of biological pathways, such as those in the
KEGG and Reactome databases, and in the context of
complexes in CORUM. The results showed that the im-
mune hub genes were significantly enriched in 52 path-
ways and complexes (p < 0.05) (Fig. 4e; Table S8), such
as the TNF signalling pathway, tyrosine metabolism,
IGF2R − PLAUR − PLAU complex, etc. These findings
suggest that these hub genes not only affect the metabol-
ism, apoptosis, cell survival, inflammation and immunity
of HCC but also play a pivotal role in regulating the pro-
tein complexes of immune cells.

Construction of a prognostic gene signature with the
LASSO Cox PH model
We revealed that 108 of the 144 immune hub genes were
significantly associated with OS through univariate Cox
regression analysis (Table S9). Subsequently, LASSO-
penalized Cox analysis was performed to further narrow
the scope of OS-related hub genes (Fig. 5a and b). As a
result, seven genes were identified to construct the
ImmuneRiskScore model for evaluating the prognosis of
HCC patients. The details of the seven genes and their
Cox coefficients are listed in Table 2. GO enrichment
analysis showed that these seven genes were enriched in
several molecular functions: asparaginase activity,
beta-aspartyl-peptidase activity, 6-phosphofructokinase
activity, glucose-6-phosphatase activity, and sugar-
terminal-phosphatase activity.
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Next, HCC patients were divided into high- and low-
score groups based on the LASSO Cox model-identified
hub genes and ImmuneRiskScore, and the optimal
threshold was obtained from the survminer package.
The results indicated that five genes (PLBD1, ETV4,
PFKP, GNAZ, ASRGL1) were risk factors, while SPP2
and G6PC were protective factors (Fig. 5c). In addition,
high-scoring samples had worse OS than low-scoring
samples. The prognostic accuracy of the ImmuneRisk-
Score (95% confidence interval (CI) for the HR: 0.48
(0.33–0.68), log-rank test p < 0.0001) is shown in the last
figure of Fig. 5c. Additionally, the results of multivariate
Cox regression analyses showed that the predictive value

of the ImmuneRiskScore was independent of common
clinical variables (Table S10).

Verification of the ImmuneRiskScore in another HCC
cohort
To further investigate the prognostic value of the Immu-
neRiskScore, we conducted a validation analysis in an-
other Gene Expression Omnibus (GEO) cohort
(GSE14520, n = 221). The samples were categorized into
two groups based on the ImmuneRiskScore, and the re-
sults indicated the significant prognostic value of the
ImmuneRiskScore in predicting OS as well as recurrence
(Fig. 6a and b). Figure 6c shows the prognostic accuracy

Fig. 3 Enrichment analysis of the immune-related DEGs. a GO results of upregulated immune-related DEGs. b GO results of downregulated
immune-related DEGs. c KEGG analysis of immune-related DEGs. Red bars represent upregulated DEGs, and blue bars represent downregulated
DEGs. d DEGs (y axis) significantly enriched in GO terms and KEGG pathways (x axis). Pink: GO terms enriched for the upregulated DEGs; purple:
GO terms enriched for the downregulated DEGs; orange: KEGG pathways enriched for the upregulated DEGs; green: KEGG pathways enriched for
the downregulated DEGs
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Fig. 4 WGCNA and enrichment analysis. a Scale-free fit index analysis for various soft-thresholding powers, cut-off > 0.85. The mean connectivity
analysis for various soft-thresholding powers. b The cluster dendrogram of DEGs. In the figure, each branch represents one gene, and each colour
indicates a co-expression module. The grey refers to genes that cannot be classified in any module. c Heatmap of the correlation between
module eigengenes and the clinical traits of HCC. The green module was most relevant to the OS events and OS time. d The top 50 hub genes
in the green module. The genes are represented as nodes; node size is related to connectivity of the gene by degree, and edge size is related to
weight. e Enrichment analysis of immune hub genes. Left: The x axis represents the functional terms that are grouped and colour-coded
according to data sources. The y-axis indicates the adjusted p-values on a negative-log10 scale. Every circle is one term and is sized according to
the term enrichment degree. Right: the table of interesting enrichment results
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of the ImmuneRiskScore, which was considered a con-
tinuous variable in this experiment. The AUC of the
ROC curve of the prognostic model for OS was 0.608 at
1 year, 0.614 at 3 years, and 0.620 at 5 years. These re-
sults suggest that the ImmuneRiskScore could be a po-
tential survival predictor.

Landscape of stromal and immune cell infiltration in
patients with high and low ImmuneRiskScore values
The infiltrating cells and tumour purity of tumour tis-
sues were assessed by ESTIMATE [37]. The stromal
score represented the presence of stromal cells in
tumour tissue, and the immune score indicated the infil-
tration of immune cells in tumour tissue. Both of them
were used for the determination of tumour purity (Table
S11). We then showed differences in terms of stromal
and immune scores in high-risk and low-risk HCC pa-
tients (Fig. 7a and b).
Both the immune score and stromal score of high-risk

patients were significantly higher than those of low-risk
patients (Wilcox, p < 0.05), indicating that immune and
stromal cell infiltration were associated with the
ImmuneRiskScore.
We further estimated the proportions of 22 immune

cell types in HCC patients using CIBERSORT [36]
(Table S12). We compared the relative proportions of 22
immune cell types between patients with low and high
ImmuneRiskScore values and found significant differ-
ences in memory B cells, plasma cells, CD4 memory ac-
tivated T cells, regulatory T cells (Tregs), etc. (Fig. 7c).
Furthermore, we calculated the absolute immune infil-

tration score of these 22 immune cell types in combin-
ation with tumour purity. Afterwards, a similar
comparison of absolute proportions of these 22 immune
cell types was made between low and high ImmuneRisk-
Score patients. Significant differences were found in the
proportions of memory B cells, plasma cells, CD4
memory-activated T cells, etc. (Fig. 7c).
Both the relative and absolute proportions of several

immune cell types, including memory B cells, plasma
cells, CD4 memory-activated T cells, Tregs, resting NK
cells, M0 macrophages, resting dendritic cells, resting

mast cells, and neutrophils, were associated with the
ImmuneRiskScore. The results also demonstrate that the
changes in the proportions of immune cells may be in-
directly associated with the OS of HCC patients.

Correlations between the ImmuneRiskScore and immune
biomarkers
It is well documented that immune biomarkers in the
TME can effectively predict the clinical benefit of ICIs,
which are revolutionizing the clinical treatment land-
scape. We next introduced a few important immune bio-
markers, including PD-L1, PD-1, PD-L2, CTLA4,
cytolytic activity (CYT), and interferon-gamma (IFN-γ).
Among these biomarkers, the immune checkpoint genes
PD-L1, PD-1, PD-L2, and CTLA4 are co-expressed in
HCC [38]. The CYT value reflects the activity of cyto-
toxic T cells (CTLs) and NK cells due to their powerful
ability to lyse tumour cells [39]. A recent study found
that CYT-high HCC has stronger immunogenicity and a
more favourable TME than CYT-low HCC, which would
result in better clinical outcomes [40]. CYT is measured
based on the geometric mean of expression of granzyme
A (GZMA) and perforin (PRF1). IFN-γ is a key cytokine
that activates the PD-1 signalling axis by directly upreg-
ulating the ligands PD-L1 and PD-L2 in tumour cells
produced by activated T cells, NK cells and NK T cells
[41, 42]. The expression of the IFN-γ receptor can affect
the mechanism of escape from host immune surveillance
in HCC [43].
TMB is defined as the number of nonsynonymous mu-

tations per megabase sequenced. A high TMB is associ-
ated with an improved response to immune checkpoint
blockade in HCC [44], melanoma [45], and non-small-
cell lung cancer [46, 47]. Dysregulation of the transform-
ing growth factor beta (TGF-β) pathway plays a central
role in inflammation, fibrogenesis, and immunomodula-
tion in the HCC microenvironment [48, 49]. TGF-β sig-
nalling in fibroblasts is documented as a pleiotropic
cytokine associated with poor prognosis in multiple
tumour categories [50, 51] and is considered critical in
advanced cancers in terms of the promotion of immuno-
suppression, angiogenesis, metastasis, tumour cell epi-
thelial to mesenchymal transition (EMT), fibroblast
activation and desmoplasia [52–54].
We further explored the relationship between the

ImmuneRiskScore and these immune biomarkers (Table
S13, Table S14), which satisfied a bivariate normal distri-
bution (Pearson result in Table S15). As shown in Fig. 8,
the ImmuneRiskScore values were significantly positively
related to several immune inflammation biomarkers (PD-
L1: r = 0.31; p = 1.63e-09, 95% CI: 0.21–0.40; PD-1: r =
0.35; p = 8.45e-12, 95% CI: 0.25–0.43; PD-L2: r = 0.27; p =
1.02e-07, 95% CI: 0.18–0.37; CTLA-4: r = 0.42; p = 6.78e-
05, 95% CI: 0.33–0.50; CYT: r = 0.21; p = 5.41e-17, 95% CI:

Table 1 The number of genes in different modules

Module The number of genes

Blue 302

Brown 147

Green 139

Red 86

Turquoise 389

Yellow 139

Grey 254
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0.11–0.30, IFN-γ: r = 0.42; p = 0.00037, 95% CI: 0.17–0.36)
and Pan-F-TBRS (r = 0.27; p = 2.51e-07, 95% CI: 0.33–
0.50). The p-values of all these correlations were smaller
than 0.001, suggesting that the ImmuneRiskScore is corre-
lated with immune biomarkers. In addition, there was no
correlation between the ImmuneRiskScore and TMB, in-
dicating that the TMB is an independent factor mediating
the TME in these two groups.

Tumour immune dysfunction and exclusion (TIDE) is a
gene expression biomarker developed for predicting the
clinical response to immune checkpoint blockade (ICB)
therapy [55]. We obtained the TIDE score for the
GSE14520 dataset (Table S16) through an online webserver
(http://tide.dfci.harvard.edu/). There was a significant differ-
ence in TIDE scores between the high and low ImmuneR-
iskScore values (Wilcox test p = 4.588315e-05) (Fig. 9a).

Fig. 5 LASSO Cox regression analysis of immune-related genes in HCC. a The solution path plot of each independent variate. The lateral axis and
longitudinal axis represent the lambda value and independent variable coefficient, respectively. Each curve corresponds to a variable. b The
confidence interval for each lambda, including the cross-validation curve (red dotted line) and upper and lower standard deviation curves along
the λ sequence (error bars). The selected λ is shown by the vertical dotted lines. LASSO, least absolute shrinkage and selection operator. c
Analysis of the prognostic value of the selected LASSO cox hub genes and ImmuneRiskScore
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We further tested the predictive performance of the
ImmuneRiskScore on the efficacy of ICB treatment in four
public RNA-seq datasets (melanoma: HugoW_Cell_
anti.PD-L1/Gide_CancerCell_anti.PD-1; RCC: Miao_Sci-
ence_anti.PD-1/Miao_Science_multiTreat). The Immu-
neRiskScore model achieved AUCs of 0.71 and 0.60 in
predicting the response of melanoma patients treated with
anti-PD-1 and anti-PD-L1 antibodies, respectively. It also
achieved AUCs of 0.73 and 0.83 in predicting the response
of RCC patients treated with anti-PD-1 and anti-CTLA4
antibodies, respectively (Fig. 9b). These results indicate
that the ImmuneRiskScore might be a potential biomarker
for predicting the immunotherapy response.

Discussion
Increasing evidence indicates that immune-related bio-
markers are associated with the prognosis of various
cancer types [56–58]. However, biomarkers that can be
used directly to determine the efficacy of cancer im-
munotherapy and the prognosis of patients remain to be
explored.

Therefore, we propose the ImmuneRiskScore, which
can predict OS based on the TME of HCC. We per-
formed WGCNA, and identified 6 modules and found
that the green module was highly relevant to the OS
events and OS time. To identify clinically significant hub
genes in the green module, we then performed LASSO
Cox regression analysis and finally screened 7 genes:
SPP2, G6PC, PLBD1, ETV4, PFKP, GNAZ, and ASRGL1.
Then, a seven-gene risk scoring system was constructed,
and this system successfully classified 417 HCC patients
into two risk groups with significantly different survival
rates. The predictive performance of the risk scoring
model was successfully validated in an independent set
from the GEO. This suggests that the ImmuneRiskScore
based on these seven genes may be a promising prog-
nostic biomarker and play an important role in the TME
of HCC.
The pipeline constituted by WGCNA and LASSO Cox

regression analysis is effective for many cancer types,
such as glioblastoma [59], prostate [60], gastric cancer
[61], lung cancer [62] and bladder cancer [63]. To the
best of our knowledge, only two studies [64, 65] have
used this pipeline to study HCC, but these studies did
not focus on the immune microenvironment.
Generally, the ImmuneRiskScore is primarily a reflec-

tion of the constituents of the TME and accounts for the
complex interactions between cancer cells, stromal cells,
and immune cells. Thus, we aimed to further explore
the relationship between these components. We found
that the relative or absolute infiltration levels of memory
B cells, plasma cells, activated CD4 memory T cells,
Tregs, resting NK cells, M0 macrophages, resting den-
dritic cells, resting mast cells, and neutrophils were sig-
nificantly associated with the ImmuneRiskScore, which

Table 2 The result of LASSO regression

Genes Coef.

Secreted Phosphoprotein 2 (SPP2) −0.27112

Glucose-6-Phosphatase Catalytic Subunit (G6PC) −0.12328

Phospholipase B Domain Containing 1 (PLBD1) 0.66909

ETS Variant Transcription Factor 4 (ETV4) 0.359013

Phosphofructokinase Platelet (PFKP) 0.402211

G Protein Subunit Alpha Z (GNAZ) 0.126409

Asparaginase And Isoaspartyl Peptidase 1 (ASRGL1) 0.795796

Fig. 6 Validation of the ImmuneRiskScore model in the HCC cohort. a The OS of the high-risk group was significantly shorter than that of the
low-risk group. b The recurrence rate of the high-risk group was higher than that of the low-risk group. c Time-dependent ROC curve analysis of
the ImmuneRiskScore
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also indicated the prognostic value of assessing these cell
types. The infiltration of macrophages in solid tumours
is associated with a poor prognosis and chemotherapy
resistance in most cancers [66]. It is noteworthy that
these cell types did not cover most of the T cell

compartment components, which are a key part of the
clinical response. In fact, other immune cells may also
contribute to antitumour immunity [67–69]. For ex-
ample, memory B cells also have a potential role in the
response to ICB treatment [70].

Fig. 7 Profile of the immune microenvironment between the low- and high-ImmuneRiskScore groups. a Difference in the distribution of immune
score values in the low- and high-ImmuneRiskScore groups. b Difference in the distribution of stromal score values in the low- and high-
ImmuneRiskScore groups. c The relative proportion of immune cell categories in the low- and high-ImmuneRiskScore groups. d The absolute
proportion of immune cell categories in the low- and high-ImmuneRiskScore groups. Comparisons between the two groups were performed
through the Wilcoxon rank-sum test. Each boxplot is labelled with asterisks indicating the p-values (*p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001)
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To validate the potential clinical benefits of asses-
sing the ImmuneRiskScore to guide ICI strategies, we
explored the status of active innate and adaptive im-
mune responses within the TME by gene expression
profiling. The predictive value of our immune relation
score was positively associated with PD-L1, PD-1, PD-
L2, CTLA-4, CYT, IFN-γ and Pan-F-TBRS. These
biomarkers are proinflammatory cytokine-related com-
ponents of the inflammatory microenvironment of tu-
mours [71, 72] and the TGF-β signalling pathway-

related immune-excluded microenvironment of tu-
mours [49].
Inflamed tumours contain proinflammatory cytokines

and a type-I IFN signature, indicating activation of the
innate immune response. TGF-β can drive the immune-
excluded phenotype in the TME because it influences
stromal cells and prevents T cells from penetrating into
the tumour centre [49]. These results indicate that anti-
tumour immunity is a bidirectional and dynamic system
in the TME. This biomarker analysis will help to unravel

Fig. 8 Correlation scatterplots between the ImmuneRiskScore and combined with a density plot of expression distribution. The ICB biomarkers
included PD-L1, PD-1, PD-L2, CTLA-4, CYT, IFN-γ, and Pan-F-TBRS
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the complexities of the interaction and molecular mech-
anisms between cancer and the host immune system.
We validated the predicted value of the ImmuneRisk-

Score by comparing it with that of the TIDE score. The
results showed that the ImmuneRiskScore could pos-
sibly predict ICB clinical response based on pre-
treatment tumour profiles. In addition, the predictive
performance of the ImmuneRiskScore on four ICB
treated cohorts indicate that it may be a potential
immune-related biomarker for pan-cancer.

Conclusions
In summary, we presented comprehensive insight into
TME of HCC and identified ImmuneRiskScore, a poten-
tial biomarker that can be used to predict the response
of immunotherapy for HCC patients, even for pan-
cancer patients.
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