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Autologous saphenous veins are the most commonly used conduits in revascularization 
of the ischemic heart by coronary artery bypass graft surgery, but are subject to 
vein graft failure. The current mini review aims to provide an overview of the role of 
mechanotransduction signalling underlying vein graft failure to further our understanding 
of the disease progression and to improve future clinical treatment. Firstly, limitation of 
damage during vein harvest and engraftment can improve outcome. In addition, cell cycle 
inhibition, stimulation of Nur77 and external grafting could form interesting therapeutic 
options. Moreover, the Hippo pathway, with the YAP/TAZ complex as the main effector, is 
emerging as an important node controlling conversion of mechanical signals into cellular 
responses. This includes endothelial cell inflammation, smooth muscle cell proliferation/
migration, and monocyte attachment/infiltration. The combined effects of expression 
levels and nuclear/cytoplasmic translocation make YAP/TAZ interesting novel targets in 
the prevention and treatment of vein graft disease. Pharmacological, molecular and/or 
mechanical conditioning of saphenous vein segments between harvest and grafting may 
potentiate targeted and specific treatment to improve long-term outcome.

Keywords: vein graft disease, saphenous vein, CABG, mechanobiology, mechanotransduction, YAP, shear stress, 
strain

intRoDuCtion

Autologous saphenous veins (SVs) are the most commonly used conduits in revascularization of the 
ischemic heart by coronary artery bypass graft surgery (CABG), due to their availability, accessibility 
for harvesting and easy handling when making anastomoses. Continuous improvements in surgical 
techniques have improved clinical outcome and short-term graft patency; on the other hand, the long 
term SV grafts have a cumulative 10 year patency of 60% due to graft disease (VGD), and are still 
outperformed by arterial grafts (1–6). In VGD, three subsequent phases are distinguished: thrombosis, 
which occurs typically within the first month, intima hyperplasia, which occurs up to 1 year after 
surgery, and finally atherosclerosis, which becomes predominant several years following CABG. SV 
graft patency is affected by many factors, ranging from surgical technique and SV preservation before 
implantation, to SV quality, patient comorbidities and medication, and is associated with quality 
of life (7–10). The role of mechanosensing in the progression of graft failure has been recognized 
and is predictive for later graft patency. However, the effects of individual factors remain hard to 
determine, due to the difficulty of addressing mechanical cues in experimental systems and in vivo 
(11, 12). In the circulation, blood vessels are exposed to several mechanical stimuli simultaneously, 
including shear stress on endothelial cells (ECs), luminal pressure and circumferential stretch, both 
of which exert their effect mainly on smooth muscle cells (SMCs), and longitudinal stretch. These 
conditions vary widely throughout the circulation, and regulate blood pressure, vascular permeability, 
and attraction and invasion of inflammatory cells. The interplay of all these factors determines the 
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local vascular microenvironment, and dictates physiological and 
pathological remodelling of blood vessels. This is particularly 
relevant in VGD, when SVs are exposed to challenging conditions 
that are widely different from their native environment. Therefore, 
the current review aims to provide an overview of the role of the 
mechanobiology underlying VGD, with a focus on pathways 
participating in detection of physiologic and pathologic mechanical 
stress, in an attempt to further our understanding of the disease 
progression and to improve future clinical treatment.

vein HARvest AnD enGRAftMent

Both the surgical procedure and the new hemodynamic conditions 
have pervasive consequences for structure as well as function of 
the SV. Harvesting of the vein inevitably results in denervation 
and loss of external blood supply through vasa vasorum, inducing 
ischemia and potentially changing vasomotor tone and potentiating 
vasospasm (13). Subsequently, high-pressure distension is routinely 
performed to check for leakage and to reduce vasospasm. Together 
with ischemia and reperfusion injury after engraftment, this causes 
damage and loss of ECs and SMCs through oxidative stress and 
cytotoxic activation (14–17). The extent of damage is dependent on 
the type of harvesting; endoscopic techniques are associated with 
a lower rate of leg infection, whereas open vein harvesting (OVH) 
seems to be superior in terms of long-term patency. However, 
results from different studies have not been conclusive (18–21). The 
same limitations are true for traditional versus no touch harvesting, 
where the no touch technique seems better for graft patency by 
(i) leaving the peri-adventitial tissue, (ii) providing physical 
support, and (iii) maintaining the integrity of both endothelial 
and adventitial cells (4, 22, 23). Vessel damage during harvest and 
engraftment complicates the SV recovery and adaptation capacity 
to the new conditions, and the combination of SV excision and 
arterialization results in increased vasoconstriction and reduced 
endothelium-mediated vasodilation (24, 25).

ADAPtAtion to A new HeMoDYnAMiC 
enviRonMent

Immediately after engraftment, SVs are challenged with 
hemodynamic conditions to which they need to adapt. Under 
native conditions, SVs experience low pressure loads (5–10 
mmHg) and quasi-steady flow patterns with low shear stresses  
(0.1–0.6 Pa). By contrast, after CABG, SVs are subjected to high 
pulsatile pressure (120/80 mmHg) with a circumferential strain of 
10–15%, a mean flow rate up to 250 ml/min, and a high wall shear stress  
(0.75–2.25 Pa) (26, 27). Opposite to arteries, SVs are anisotropic 
and become incompliant at high pressures (28). The increases in 
flow and shear stress together with wall tension, result in additional 
loss of ECs, damage to SMCs and extracellular matrix (ECM) 
alterations (29, 30). Stretching of SMCs disrupts actin bundles 
and results in a structure with scattered pores, followed by loss 
of SMC nuclei and actin filaments, inducing SMC proliferation 
(31). Subsequently, deposition of platelets and fibrin takes place, 

and leukocytes from the circulation infiltrate the vessel wall. Next, 
growth factors are released from platelets, SMCs and macrophages, 
which leads to SMC proliferation and migration to the intima, as 
well as ECM deposition, leading to intima hyperplasia (14, 29, 30).

untAnGlinG MeCHAniCAl fACtoRs

The new hemodynamic environment exposes the SV to various 
different mechanical factors simultaneously, which can act either 
synergistically or antagonistically. Mechanical static deformations 
and stresses, increased pulsatile deformations and stresses, and 
altered shear stress, require the vein graft to acquire an artery-like 
structure with geometric remodelling and wall stiffening, but also 
induce intima hyperplasia and inflammation, which may induce 
failure in the long term (32).

Exposure to a combination of increased flow, pressure and shear 
stress leads to rearrangement of SMCs, both ex vivo and in vivo 
(31, 33). To untangle the separate effects of flow and pressure, 
several ex vivo perfusion models have addressed single or combined 
mechanical factors on SV adaptation and pathophysiology. 
Under continuous laminar flow, an increase in flow reduces 
intimal hyperplasia, while an increase in pressure induces intimal 
accumulation. When flow and pressure increase simultaneously, 
apoptosis becomes apparent in the vessel wall after day 1, resulting 
in lower cell density and media thinning. Some ex vivo models 
find intima accumulation after 1 week, but this is not completely 
consistent between models (33–39).

Exposure of SVs to arterial shear stress under low pressure 
induced expression and activity of matrix metalloproteinase 
(MMP)−2 and MMP-9, tissue inhibitor of metalloproteinase-1, 
as well as expression of plasminogen activator inhibitor-1 and 
osteopontin. Venous marker Ephrin B4 on the other hand, 
was attenuated under arterial shear stress (40, 41). Endothelial 
cells harbour a multitude of sensors on their apical, junctional, 
and basal surfaces to sense mechanical signals from the blood, 
which have key roles during developmental, physiological, and 
pathological processes. Mechanosensing molecules include 
junctional proteins, receptor kinases, integrins, focal adhesions, 
G-proteins and G-protein-coupled receptors, ion carriers, actin 
cytoskeleton, primary cilia, and the glycocalyx, enabling the 
vasculature to respond to changing demands within seconds or 
during the course of several days. The pathways through which 
the different sensors transduce the physical signals remains elusive, 
but integrins seem to play an important role. The mechanisms 
of shear stress sensing and transduction are reviewed extensively 
elsewhere (42–44). The effects of shear stress are mainly mediated 
by ECs. However, exposure of SMCs to shear stress cannot be 
excluded, due to increased pressure and fenestration, and in 
particular due to endothelial denudation early after engraftment 
(45). What is important to distinguish in the context of VGD, is 
the difference between the effects of laminar flow and disturbed 
flow on the ECs. In fact, laminar flow results in EC alignment, 
stress fiber formation, low proliferation, and elevated Krüppel-
like Factor 2 expression, whereas NF-κB activation, expression of 
adhesion molecules ICAM-1 and VCAM-1, high EC turnover, and 
production of reactive oxygen species are the result of disturbed 
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flow (43). SMCs are sensitive to deformations and strain induced by 
arterial pressure. Increases in pressure are associated with elevated 
vasoconstriction and attenuated nitric oxide-mediated dilatation 
(46). Veins perfused for 7 days under high pressure exhibited 
enhanced expression of transforming growth factor (TGF)-β1 
and upregulation of microRNAs-138/200b/200 c, suppression of 
tissue inhibitor of metallo-protease-1, and equal or more intima 
hyperplasia than veins exposed to low pressure (40, 47). In vitro 
straining of isolated human cells has revealed that cyclic stretch of 
SMCs induces the number of cells and DNA synthesis, collagen, 
fibronectin and TGF-β expression, and MMP2 activity, while 
reducing αSMA and p27kip1 expression, resulting in a proliferative 
SMC phenotype (29, 48–50). These effects were detected in cells 
derived from SVs, but absent in cells from the internal thoracic 
artery (48, 49). Moreover, cellular responses are specific for the 
type of strain, indicated by Asanuma et al., who found that static 
but not cyclic stretch induced MMP-9 mRNA levels and MMP-2 
mRNA, protein content and secretion (51). Interestingly, in rat 
SMCs, cyclic strain attenuated SMC proliferation and upregulated 
VEGF secretion, which could be beneficial for re-endothelialisation 
of SV grafts (52).

The role of adventitial cells in the development of VGD is 
acknowledged in animal models (53, 54), but remains elusive in 
the human pathology (55, 56). Ex vivo, CABG-like oxygen levels, 
i.e., high luminal oxygen levels, and deprivation of adventitial 
oxygen due to severing of the vasa vasorum, induced proliferation 
of adventitial microvasculature even before SMC proliferation, and 
resulted in neovascularization (57, 58). The adventitia of human 
SVs harbours CD34-positive cells, which display multilineage 
differentiation capacities, and were able to induce neovascularization 
in mice (59, 60). Study of the effects of mechanical factors on 
adventitial cell function is needed to elucidate the relevance of 
these cells in physiologic and pathologic remodelling in VGD. Key 
experimental findings in mechanotransduction relevant for VGD 
are summarized in Table 1.

As in all vascular remodelling events, inflammatory mediators 
are involved in VGD. Both systemic and local inflammatory 
markers are associated with SV remodeling and VGD (64–69). 

Since these factors are, at the moment, only indirectly connected 
to mechanosensing, they fall beyond the scope of this review.

YAP/tAZ siGnAllinG

The Hippo pathway is a growth control signalling pathway first 
described in the context of developmental biology, but has since 
emerged as an important factor in uncontrolled cell growth in cancer. 
Yes-associated protein (YAP) and transcriptional co-activator with 
PDZ-binding motif (TAZ) are the main downstream effectors of the 
Hippo pathway regulating cell survival, proliferation and apoptosis. 
Activity of the YAP/TAZ complex is confined to cells exposed to 
stiffness of the surrounding extracellular matrix, localization at 
edges and curvatures, or cells undergoing mechanical straining 
(70). YAP and TAZ exert their effect by nuclear translocation and 
binding to transcriptional enhancer associate domain (TEAD), 
which induces YAP target gene transcription. Currently, evidence 
is accumulating that YAP and TAZ are involved in vascular 
remodelling and cardiovascular disease, such as pulmonary 
hypertension, atherosclerosis and restenosis (71). This may also 
implicate a role for YAP/TAZ in VGD.

In ECs, YAP is a transcriptional regulator that transduces 
signals from VE-cadherin mediated endothelial cell-cell contact 
to the nucleus. ECs exposed to disturbed flow, display YAP/TAZ 
activation and nuclear translocation with subsequent target genes 
upregulation, including ankyrin repeat domain 1 (ANKRD1), 
cysteine-rich angiogenic inducer 61 (CYR61), and connective 
tissue growth factor (CTGF), resulting in increased proliferation 
and decreased apoptosis of ECs. On the other hand, laminar flow 
suppressed YAP/TAZ, with downregulation of YAP target genes 
ANKRD1, CYR61, CTGF, baculoviral IAP repeat-containing 
5, and angiopoietin-2. This suggests an atheroprotective role 
of the Hippo-kinase pathway that antagonizes the YAP/TAZ 
nuclear translocation by enhancing their phosphorylation 
levels (63, 72–75). In mice, EC-specific YAP/TAZ deletion 
led to a hyper-pruned vascular network, disrupted barrier 
integrity and reduced neovascularization (76). In accordance, 
YAP has been demonstrated to be critical in retinal angiogenesis 
(77, 78). Moreover, in vivo blockade of YAP/TAZ translation 
significantly suppressed endothelial inflammation and the size 
of atherosclerotic lesions in mice (79). YAP/TAZ inhibition in 
ECs suppressed c-Jun N-terminal kinase (JNK) signalling and 
downregulated expression of pro-inflammatory genes, reducing 
monocyte attachment and infiltration (79). In zebrafish, YAP 
nuclear translocation was shown to be transient, shuttling in 
or out of the nucleus within 10 min after starting or stopping 
flow. Interestingly, in this model, laminar flow induced nuclear 
translocation of YAP, even though this was during blood vessel 
formation (80).

In addition to shear-sensing ECs, YAP is implicated in 
SMC function, where YAP levels are consistently associated 
with proliferation, migration and a synthetic phenotype. In 
patient material, YAP was markedly lower in the aortic wall 
of patients with ascending aortic aneurysms compared with 
healthy aortic samples, while downregulation of YAP in SMCs 
was associated with ECM disorders of the media (81). In animal 

tABle 1 |  Key experimental findings of mechanotransduction relevant for VGD.

Year Main finding Reference

1989 Intima hyperplasia is associated with low flow 
velocity, whereas medial thickening is associated with 
increased circumferential strain in vivo.

 (32)

1996 Ex vivo perfusion of SV segments induces proliferation 
and intima hyperplasia.

(61)

2000 Mechanical strain induces ECM protein synthesis and 
MMP activity in vitro.

(29)

2012 YAP/TAZ mediates SMC phenotypic modulation and 
neointima formation in vitro and in vivo

(62)

2013 Arterial shear stress in SVs ex vivo induces expression 
of MMPs, PAI-1 and osteopontin, attenuates ephrin 
B4. Increased pressure is associated with increased 
vasoconstriction and reduced dilatation.

(40)

2016 CABG-like oxygen conditions induce adventitial 
neovascularization in SVs ex vivo.

(58)

2016 YAP/TAZ mediates EC proliferation and inflammation 
induced by flow.

(63)
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models of arterial injury, it was demonstrated that YAP levels 
are elevated in response to injury, correlating with a synthetic 
SMC phenotype (62, 82). In cultured rat cells, YAP knockdown 
impaired SMC proliferation and enhanced the expression of 
contractile SMC genes by upregulating myocardin expression 
(82). Overexpression of YAP induced SMC proliferation and 
migration, whereas genetic deletion of YAP attenuated the 
injury-induced phenotypic switch in SMCs and attenuated 
neointima formation in mice (62). In accordance, inhibition 
of YAP/TAZ function with RNA interference or Verteporfin 
significantly reduced vascular SMC proliferation (83). In breast 
cancer cell lines, the effect of YAP on proliferation is at least 
partially mediated by p27kip1, but this pathway has not yet been 
confirmed in vascular (mal)adaptation (84).

In addition to ECs and SMCs, the YAP/TAZ pathway is involved 
in the cellular response to stretch in mesenchymal stem cells (85). 
Evidence suggests that YAP can expand stem cell pools and induce 
reprogramming of differentiated cells to stem cell-like progenitor 
phenotypes (86). Finally, YAP is linked to platelet function, since 
platelet-released thromboxane A2 (TXA2) induces YAP activation, 
facilitating wound healing in response to vascular injury (87). 
Together, these studies indicate the broad role of YAP signalling in 
the mechanosensing of vascular tissue relevant in the development of 
VGD, and may provide an opportunity for therapeutic intervention. 
However, it is still to be unveiled how mechanical signals lead to 
changes in YAP and TAZ localization, in the cell cytoplasm under 
pathologic conditions (88–90). On the other hand, very recent 
findings suggest that force generation by docking stress fibres to 
focal adhesion contacts and translation of this tension to nuclear 
deformation and opening of the nuclear pores promote YAP nuclear 
translocation, thus connecting directly mechanosensing and YAP-
dependent transcriptional circuitries (91, 92).

tHeRAPeutiC oPPoRtunities

As discussed elsewhere, the problem of SV graft patency remains a 
clinical priority (93, 94). A first improvement of clinical outcome 
may be obtained by limiting the initial damage to the SV. As 
discussed above, comparisons of open vs. endoscopic isolation, 
and traditional vs. no touch harvesting have not been conclusive, 
but are very relevant for future clinical practice. Open, no touch 
harvesting might be the least damaging technique, but this has to 
be confirmed by future research. However, a reduction of damage is 
not likely to prevent VGD completely. Therefore, additional therapy 
remains necessary with the clear primary outcome to increase the 
longevity of the vein grafts, and prevent re-interventions such as 
redo graft implantation or graft stenting, two risky procedures.

Since SMC hyperplasia is a hallmark of VGD, it seems 
worthwhile investigating the cell cycle. To support this notion, 
there are promising results from a single nucleotide polymorphism 
in the p27Kip1 gene. p27Kip1, together with other cyclin-dependent 
kinase inhibitors, is upregulated during vascular repair and 
negatively regulates growth of vascular SMCs in vivo (95, 96). 
The p27(kip1)−838AA genotype is associated with a reduction 
in coronary artery in-stent restenosis and improved patency 
of lower extremity bypass grafts, through inhibition of both 

SMCs and fibroblasts (55, 97, 98). Intervention in the cell cycle 
may be an interesting approach to inhibit SMC proliferation 
in VGD, and experience may be drawn from drug-eluting  
stent research (99).

Due to the complex nature of VGD, schematically represented 
in Figure 1, identification of therapies that target multiple cell 
types and/or are upstream from multiple processes, are most likely 
to lead to a robust inhibition of thrombosis, intima hyperplasia 
and/or atherosclerosis. Experimental evidence from vascular 
pathology, injury and adaptation suggests several options. 
Nuclear receptor Nur77 has demonstrated effects across multiple 
cell types in atherosclerosis, where it inhibits lesion formation 
by reducing SMC proliferation, reduces MMPs and attenuates 
macrophage accumulation and infiltration (100–103). In a rabbit 
model of in-stent restenosis, Nur77 activator 6-mercaptopurine 
(6-MP) inhibited intima hyperplasia, although this effect was 
not observed in a porcine model (104, 105). In addition, Nur77 
enhances EC survival and lowers vasoconstrictor endothelin-1 
(106, 107). Interestingly, Nur77 levels were elevated both by 
mechanical stretch of isolated venous SMCs, and by arterial 
pressure in vein segments, while activation of these receptors 
reduced SMC proliferation and elevated expression of contractile 
SMC markers (48). In contrast, in a rat carotid interposition 
model, Nur77 inhibition reduced intima hyperplasia (108). 
Therefore, more research is needed to establish the role and 
therapeutic potential of Nur77 in VGD.

An interesting approach, which might be beneficial in terms 
of both prevention and repair, is external stenting of SV grafts. 
Both in vitro and ex vivo, external stents consistently attenuated 
intima hyperplasia (109–112). In accordance, reduction of 
neointima formation was reported in a clinical study after 1 
year, however without significantly affecting SVG failure rate 
(113). These responses are mediated by both strain and shear 
stress; clinically, oscillatory shear rate was lower in the stented 
group, and correlated with the development of diffuse intima 
hyperplasia, whereas ex vivo work implicated wall tension, which 
was lower in the stented group, attenuating intimal hyperplasia, 
medial SMC apoptosis and subsequent medial fibrosis (110, 114). 
Additional clinical results are needed to evaluate the efficacy of this  
promising treatment.

As discussed in the previous section, YAP levels and nuclear 
translocation play a central role in the translation of mechanical 
signals into cellular responses, not only in shear-sensing ECs and 
strain-sensitive SMCs, but also with a link to ECM components, stem 
cells and even the blood. Inhibition of YAP/TAZ signalling inhibits 
EC inflammation and SMC proliferation, and is associated with 
a contractile SMC phenotype and attenuation of atherosclerosis, 
which are all central elements in VGD. For therapeutic application 
of YAP inhibition, cancer research has identified several potent 
inhibitors, including Verteporfin, tyrosine kinase (TK) inhibitors 
and statins (115, 116). Simvastatin was associated with reduced 
neointima formation, which could partially be explained by 
inhibition of SMC proliferation and migration, and lowering of 
LDL levels and MMP-9 activity (117–119). In the CASCADE trial, 
statin therapy was associated with decreased intima accumulation 
after 1 year (120). The relation between statins and YAP however, 
was not investigated in these studies. Further research should 
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shed light on the feasibility and efficacy of YAP inhibition in the 
prevention of VGD.

Regardless of the therapeutic target selected for prevention 
of VGD, CABG offers a unique opportunity for topical delivery 
of pharmacological, molecular or mechanical therapy. Between 
harvest and grafting, the SV segment is maintained in a 
physiological solution. Ideally, for the patient this time is kept 
as short as possible, but can still allow a window for treatment, 
allowing exposure to specific drugs or gene expression interfering 
strategies, e.g., siRNAs, antagoMIRs or agoMIRs (121). For 
example, agomiR-33 and adenovirus-mediated microRNA-21 
gene transfer attenuated neointima formation in rat vein grafts  
(122, 123). Conversely, Smooth Muscle Enriched Long Noncoding 
RNA (SMILR) knockdown inhibited cell proliferation in vitro (124). 
As a different approach, more complex treatments can be considered, 
with a dedicated easy-to-use bioreactor, allowing mechanical 
preconditioning of the SV, exposure to different molecules/drugs 
on the luminal and adventitial side (58), or combinations thereof. 
For preconditioning or molecular/pharmacological pre-treatment, 
one could consider intervening in a mechanical event, in the 
cell cycle, in potential cell phenotypic modulation, in paracrine 
signalling, or in other processes. Depending on the putative target, 
the optimal delivery modality has to be devised. Pharmacological 
pretreatment seems a feasible approach and, from a technical point 
of view, is probably the least challenging method. It remains to be 
confirmed whether inhibition of YAP/TAZ signalling in this stage 
is beneficial. In this view, administration of Verteporfin, statins and 
TK inhibitors would provide a feasible and promising approach. 
In addition, oral statin treatment may be beneficial after CABG.

ConClusions

Clinical therapy to prevent or attenuate the development of VGD are 
necessary to improve long-term SV patency. Refinements in harvesting 
and grafting techniques can limit the damage, but are not sufficient to 
prevent VGD. A better understanding of the mechanotransduction 
signalling pathways underlying this condition may give rise to the 
development novel therapeutic strategies. Due to the complex nature 
of VGD, upstream targets that affect multiple mechanisms are most 
likely to form a robust therapy. Inhibition of YAP/TAZ signalling, 
responsive to both shear stress and mechanical strain, reduces not 
only EC inflammation and SMC proliferation and migration, but 
also monocyte attachment and infiltration, and may therefore be 
an effective therapy for VGD. Pharmacological and/or mechanical 
conditioning of the SV between harvest and grafting should be 
considered, since it allows for targeted and specific treatment.
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fiGuRe 1 |  Mechanotransduction and therapeutic targets in coronary vein graft disease. Mechanical factors are depicted on the left, vein graft disease on the 
right, and signalling pathways described in this review in between. Signalling nodes are marked in blue. Green arrows indicate activation, orange inhibition. Boxed 
factors are (partial) mediators. Potential therapeutic interventions are presented in yellow diamonds. Abbreviations are explained in the main text.
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