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Abstract: A visible-light-induced external catalyst-free decarboxylation of dioxazolones was realized
for the bond formation of N=P and N–C bonds to access phosphinimidic amides and ureas. Various
phosphinimidic amides and ureas (47 examples) were synthesized with high yields (up to 98%) by
this practical strategy in the presence of the system’s ppm Fe.
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1. Introduction

Nowadays, the development of clean, environmentally friendly, and efficient chemical
processes has become one of the goals of sustainable chemistry [1–4]. Visible light, as a safe,
abundant, and renewable natural energy source, has promoted many feasible and valuable
transformations [5–8]. Photocatalytic strategies were widely recognized as an attractive
“green synthesis pathway” in organic transformations, which are promising from the
standpoint of an environmentally friendly and sustainable perspective [9–18]. Despite the
simple operation and mild reaction conditions, a precious metal complex or a synthetically
elaborate organic dye is usually required [19–22]. It is of great significance to develop
cleaner and greener photochemical pathways in the external catalyst-free protocol [23–27].

Nitrene intermediates have attracted great interest from chemists, due to their high
reactivity [28–36]. Nitrene-based transformations allow the direct installation of nitrogen-
containing building blocks into molecular backbones to build structurally complex com-
pounds [37–40]. In the past few decades, a series of nitrene precursors were reported,
such as organic azides [41,42], iminoiodinanes [43,44], amide N-O compounds [45,46],
dioxazolones [47–50], and so on. Among them, dioxazolones are highly attractive because
of their high activity, stability, convenience, and high coordination ability [51–53]. Herein,
we present a visible-light-induced strategy to build N=P and N–C bonds for the generation
of phosphinimidic amides and ureas from the reaction of dioxazolones and triarylphos-
phines or secondary amines (Scheme 1). The transformations are realized without any
other catalyst or additive at room temperature. The ppm Fe in the reactants, confirmed by
ICP-MS, might play an important role in this reaction.
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Scheme 1. The construction of N=P and N–C bonds from dioxazolones.
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2. Results and Discussion
Optimization of the Reaction Conditions

We commenced our study with the model reaction between 3-phenyl-1,4,2-dioxazol-5-
one (1a) and triphenylphosphine (2a) under visible light and N2 atmosphere. The results
are shown in Table 1. Initially, the reaction was carried out by employing DCE as the solvent
under irradiation of 10 W 430 nm blue LED at room temperature, and the desired product
N-(triphenyl-λ5-phosphinylidene)benzamide (3a) could be detected in 11% yield (entry 1).
Afterwards, the solvent effect on the yield was investigated (entries 2–8). Different solvents,
such as 1,4-dioxane, CH3OH, acetone, CH3CN, DMF, THF, and CH2Cl2, were surveyed,
and the reaction exhibited excellent reaction performance in CH2Cl2 to provide the target
product in 81% yield (entry 8). Further examination of the wavelengths of LED and
substrate ratios showed no more positive results (entries 9–14). Control reactions confirmed
that nearly no amidation product 3a was detected at room temperature in the absence
of visible light (entry 15). Moreover, when the reaction was carried out in the air, only a
trace amount of the product 3a was detected (entry 16). Therefore, the optimized reaction
conditions were illustrated as follows: 1a (0.1 mmol); 2a (0.1 mmol); and CH2Cl2 (1 mL)
in a N2 atmosphere under the irradiation of 430 nm blue LED (10 W) for 24 h at room
temperature (entry 8).

Table 1. Optimization of reaction conditions a.
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Entry Solvent Wavelength Yield (%)

1 DCE 430 nm 11
2 1,4-dioxane 430 nm 23
3 CH3OH 430 nm 14
4 Acetone 430 nm 23
5 DMF 430 nm 22
6 CH3CN 430 nm 26
7 THF 430 nm 0
8 CH2Cl2 430 nm 81
9 CH2Cl2 460 nm 22

10 CH2Cl2 390 nm 63
11 b CH2Cl2 Green LED 0
12 c CH2Cl2 White LED 0
13 d CH2Cl2 430 nm 61
14 e CH2Cl2 430 nm 67
15 f CH2Cl2 – 0
16 g CH2Cl2 430 nm <5

a Reaction conditions: 1a (0.1 mmol), 2a (0.1 mmol) in solvent (1 mL) at room temperature for 24 h under the
irradiation of 10 W 430 nm blue LED. Yield is determined by 31P NMR; b Green LED (10 W); c White LED (10 W);
d 1a (0.2 mmol); e 2a (0.2 mmol); f Without light; g Reaction in air.

With the optimized conditions in hand, the scope of the organophosphorus compounds
and dioxazolones 1 was investigated (Scheme 2). To our delight, various 3-phenyl dioxa-
zolones bearing different electron-donating groups (-CH3, -tBu, and -OCH3) or electron-
withdrawing groups (-CF3, -F, -Cl, and -CN) on the phenyl ring at different positions could
react smoothly with 2a to produce the desired products (3a–3n) in moderate to excellent
yields (42–98%). Among these cases, a slight steric hindrance effect was observed, and para-
substituted 3-phenyl dioxazolones (3a–3h, 63–98%) showed higher reaction reactivities than
those of ortho-substituted 3-phenyl dioxazolones (3m–3n, 42–47%). Moreover, the desired
products 3o and 3p, which contain the skeletons of thiophene and furan, could also be
successfully obtained in 43% and 50% of the yields, respectively. Additionally, electron-poor
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and electron-rich triphenylphosphine derivatives were all applicable to this transformation
to access the desired products (3q–3v) in 51–91% yields. In addition, the phosphorus ligand,
1.1′-binaphthyl-2.2′-diphenylphosphine (BINAP), was also a suitable substrate to react with
1a, providing the corresponding product 3w in 51% yield.
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Reaction conditions: 1a (0.2 mmol); 2a (0.2 mmol) in solvent (2 mL) at room tempera-
ture for 24 h under the irradiation of 10 W 430 nm blue LED. Isolated yields were given.

Then, we expanded the photocatalytic decarboxylation reaction of dioxazolones to
the synthesis of unsymmetrical urea compounds (Scheme 3). To our delight, a wide range
of 3-phenyl dioxazolones all reacted efficiently with diisopropylamine 4a to furnish the
corresponding aryl ureas (5a–5m) in moderate to excellent yields (37–98%). In these cases, 3-
phenyl dioxazolones bearing electron-donating groups (-CH3, -tBu, and -OCH3) showed a
better reaction efficiency than those of 3-phenyl dioxazolones bearing electron-withdrawing
groups (-CF3, -F, -Cl). Moreover, the broad scope of the commercially available secondary
amines all reacted smoothly in this transformation, adding to the formation of desired
ureas (5n–5v) in good to excellent yields (80–96%). In addition, the primary amine, such as
aniline, was also a suitable substrate for reaction with 1a, providing the corresponding
product 5w in 52% yield. However, cyclohexylamine (4l) and benzylamine (4m) were not
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suitable in this transformation to react with 1a to access the corresponding products 5x
and 5y. Compared with the previous report [32], our method effectively avoids the harsh
conditions of high temperature, showing good sustainability.
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Scheme 3. Substrate scope for the synthesis of ureas. Reaction conditions: 1a (0.2 mmol),
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blue LED. Isolated yields were given; b 20 h.

To our satisfaction, this method is also suitable for the reaction between 3-(p-tolyl)-
1,4,2-dioxazol-5-one 1b and 1,3-diphenylpropane-1,3-dione 6 to give the corresponding
amide product in 58% yield (Scheme 4a), which was previously reported in the presence of
additional FeCl3 catalyst [29]. To verify the practicability of this synthetic protocol, the gram-
scale synthesis of 3a was carried out (for details, see the Supplementary Materials). When
the reaction was performed at a 5 mmol scale, the desired product 3a was isolated in
80% yield, indicating that this approach has a good practicability and application prospect
(Scheme 4b).
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Furthermore, we also evaluated the sensitivity of the reaction of 1a and 2a. Compared
with the standard conditions, the changes in concentration, temperature, oxygen level,
water level, light intensity, and scale were measured. The yields were measured by 31P
NMR and the yield deviation was calculated (for details, see the Supplementary Materials).
Among them, light intensity and oxygen levels are important parameters for the reaction.
Moreover, this transformation is moderately sensitive to water. Other parameters, such as
concentration and temperature, can be regarded as random errors, which have a negligible
impact on reaction efficiency (Figure S4, Supplementary Materials).

Next, we calculated the E-factor [54,55] and EcoScale scores [56,57] of the chemical pro-
cess to evaluate the safety, economic, and ecological properties of the method. The results
are summarized in Tables S2–S5, Supplementary Materials. As can be seen, the E-factor is
extremely low at 0.38 and 0.82, respectively, and the EcoScale penalty is also low, at 21.5 and
15.5. Both parameters reflect the excellent green chemistry metrics of the protocol.

To understand the mechanism of this transformation, a set of control experiments were
performed (Scheme 5). The phosphorylation of 4-methylbenzamide 8 with triphenylphos-
phine 2a was performed to determine whether the N=P bond was formed through the
amide intermediate. However, 4-methyl-N-(triphenyl-λ5-phosphaneylidene) benzamide
3b was not detected (Scheme 5a). Moreover, intermolecular competition experiments of
1a and 8 were conducted, and only product 3a was obtained with 48% yield (Scheme 5b).
These results demonstrated that the phosphorylation of dioxazolones was not conducted
through amide intermediates. Furthermore, various radical trapping experiments were
conducted (Scheme 5c). When (2,2,6,6-tetramethylpiperidine-1-yl)oxidanyl (TEMPO) was
added to the model reaction under standard conditions, the reaction was significantly
inhibited. The TEMPO-trapped acyl nitrene adducts were detected by high-resolution
mass spectrometry (HRMS), with peaks at 277.1922 m/z. Subsequently, when another
radical scavenger, 2,6-di-tert-butyl-4-methylphenol (BHT), was subjected under standard
conditions, the reaction was also severely suppressed, indicating a radical process in the
phosphorylation of dioxazolone with triphenylphosphine. Then, the radical trapping ex-
periments of 1a and 4a were conducted (Scheme 5c). The decreased yields of product 5a
indicated that the transformation also involved a radical process.

In 2021, Yu and Bao et al., disclosed that FeCl3 (15 mol%) was required for the imidiza-
tion of phosphines with dioxazolones under visible light irradiation [29]. While in our
case, the transformations worked very well without any other additives. Considering the
contamination issues in coupling reactions [58], we reasoned that some iron contamination
might be possible in the manufacture of the starting materials. Therefore, the model reac-
tion mixture was analyzed with inductively coupled plasma mass spectrometry (ICP-MS).
Consequently, it is found that the Fe content of the reactions for the preparation of phos-
phinimidic amide (3a) and urea (5a) is approximately 27 ppm and 3 ppm, respectively (for
details, see the Supplementary Materials). ICP-MS experiments were also performed on the
starting materials of the model reactions (dioxazolone, PPh3, and amine), and the results
showed that the iron contents of the dioxazolone, PPh3, and amine were 123 ppm, 420 ppm,
and 0.9 ppm, respectively (for details, see the Supplementary Materials). It is reasoned that
iron contamination issues in commercial chemicals are unavoidable during the production
and transportation processes. When additional iron catalyst FeCl3 (5 mol%) was added
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to the model reaction under standard conditions, the reaction time was shortened and
the yield was increased. These results confirmed that this reaction could be facilitated by
iron catalysis (for details, see the Supplementary Materials). These results suggest that,
although it is not a real transition-meta-free system, it is still a synthetically useful proce-
dure for the synthesis of phosphinimidic amides and ureas, especially from an industrial
chemistry standpoint.
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Scheme 5. Control experiments.

Based on these control experiments and previous literature reports, a plausible reaction
pathway is proposed in Scheme 6. Initially, the N atom of dioxazolones 1 coordinates
with the Fe center to form complex B, which is excited by visible light to generate the
highly active iron-aminyl radical C with the release of CO2. Subsequently, radical C
reacts with triphenylphosphine 2a to form the complex D, followed by a reduction and
elimination process to obtain product 3. On the other hand, intermediate C underwent
Curtius rearrangement to form intermediate E, which further reacts with secondary amines
4 to obtain product 5.
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3. Experimental Section
3.1. General Information

All nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance
400 MHz in CDCl3 at room temperature (20 ± 3 ◦C), by using tetramethylsilane as the
internal standard. High-resolution mass spectra (HRMS) were conducted on a 3000-mass
spectrometer, using Waters Q-Tof MS/MS system with the ESI technique.

Photochemical reactions were carried out under visible light irradiation by a blue LED
at 25 ◦C. The RLH-18 8-position Photo Reaction System manufactured by Beijing Roger
Tech Ltd. was used in this system (Figure S1, Supplementary Materials). Eight 10 W blue
LEDs were equipped in this photochemical reactor. The wavelength for blue LED is 430 nm,
peak width at half-height is 18.4 nm (Figure S2, Supplementary Materials). The distance
from the light source to the irradiation vessel was approximately 15 mm.

3.2. General Experimental Procedures for the Synthesis of (3a–3w)

In a 25 mL reaction tube, dioxazolones 1 (0.2 mmol, 1.0 equiv), organic phosphine
substrate 2 (0.2 mmol, 1.0 equiv) in 1 mL CH2Cl2 were allowed to stir with irradiation of
10 W blue LED under N2 atmosphere at room temperature for 24 h. After the reaction,
the solvent was evaporated under vacuum, and the residue was purified by column
chromatography on silica gel to afford the desired products 3a–3w.

N-(triphenyl-λ5-phosphanylidene)benzamide (3a):
White solid (59.7 mg, 78%). 1H NMR (400 MHz, Chloroform-d) δ 8.45–8.38 (m, 2H),

7.94–7.85 (m, 6H), 7.62–7.55 (m, 3H), 7.54–7.41 (m, 9H); 13C NMR (101 MHz, Chloroform-
d) δ 176.3 (d, JC-P = 8.0 Hz), 138.7 (d, JC-P = 20.6 Hz), 133.2 (d, JC-P = 10.0 Hz), 132.3 (d,
JC-P = 2.9 Hz), 130.7, 129.6 (d, JC-P = 2.6 Hz), 128.7 (d, JC-P = 12.4 Hz), 128.4 (d, JC-P = 99.7 Hz),
127.7; 31P NMR (162 MHz, Chloroform-d) δ 20.71;

4-methyl-N-(triphenyl-λ5-phosphanylidene)benzamide (3b):
White solid (69.0 mg, 87%). 1H NMR (400 MHz, Chloroform-d) δ 8.30 (d, J = 8.2 Hz,

2H), 7.92–7.85 (m, 6H), 7.62–7.55 (m, 3H), 7.53–7.47 (m, 6H), 7.24 (d, J = 7.9 Hz, 2H),
2.42 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 176.5 (d, JC-P = 8.1 Hz), 140.9, 135.9 (d,
JC-P = 20.5 Hz), 133.2 (d, JC-P = 9.7 Hz), 132.2 (d, JC-P = 2.9 Hz), 129.6 (d, JC-P = 2.6 Hz),
128.7 (d, JC-P = 12.1 Hz), 128.5 (d, JC-P = 99.6 Hz), 128.4, 21.6; 31P NMR (162 MHz,
Chloroform-d) δ 20.47;

4-(tert-butyl)-N-(triphenyl-λ5-phosphanylidene)benzamide (3c):
White solid (55.0 mg, 63%). 1H NMR (400 MHz, Chloroform-d) δ 8.33 (d, J = 8.5 Hz,

2H), 7.92–7.84 (m, 6H), 7.61–7.55 (m, 3H), 7.53–7.45 (m, 8H), 1.38 (s, 9H); 13C NMR
(101 MHz, Chloroform-d) δ 176.4 (d, JC-P = 8.1 Hz), 153.9, 136.0 (d, JC-P = 20.5 Hz), 133.2 (d,
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JC-P = 10.1 Hz), 132.2 (d, JC-P = 2.9 Hz), 129.4 (d, JC-P = 2.6 Hz), 128.7 (d, JC-P = 12.4 Hz),
128.5 (d, JC-P = 99.3 Hz), 124.6, 34.9, 31.4; 31P NMR (162 MHz, Chloroform-d) δ 20.24;

4-methoxy-N-(triphenyl-λ5-phosphanylidene)benzamide (3d):
White solid (79 mg, 96%). 1H NMR (400 MHz, Chloroform-d) δ 8.35 (d, J = 8.8 Hz, 2H),

7.91–7.84 (m, 6H), 7.60–7.54 (m, 3H), 7.52–7.46 (m, 6H), 6.94 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H);
13C NMR (101 MHz, Chloroform-d) δ 176.1 (d, JC-P = 7.8 Hz), 161.8, 133.2 (d, JC-P = 9.9 Hz),
132.2 (d, JC-P = 2.9 Hz), 131.5, 131.4 (d, JC-P = 2.5 Hz), 128.7 (d, JC-P = 12.2 Hz), 128.5 (d,
JC-P = 99.6 Hz), 112.8, 55.3; 31P NMR (162 MHz, Chloroform-d) δ 20.30;

4-(trifluoromethyl)-N-(triphenyl-λ5-phosphanylidene)benzamide (3e):
White solid (87.6 mg, 94%). 1H NMR (400 MHz, Chloroform-d) δ 8.49 (d, J = 8.1 Hz,

2H), 7.91–7.84 (m, 6H), 7.69 (d, J = 8.1 Hz, 2H), 7.64–7.57 (m, 3H), 7.56–7.49 (m, 6H); 13C
NMR (101 MHz, Chloroform-d) δ 174.8 (d, JC-P = 7.7 Hz), 142.0 (d, JC-P = 21.0 Hz), 133.2 (d,
JC-P = 10.3 Hz), 132.5 (d, JC-P = 2.9 Hz), 132.2 (q, JC-F = 32.0 Hz), 129.8 (d, JC-P = 2.5 Hz),
128.8 (d, JC-P = 12.4 Hz), 127.9 (d, JC-P = 99.7 Hz), 124.7 (q, JC-F = 3.8 Hz), 124.3 (q,
JC-F = 272.4 Hz); 31P NMR (162 MHz, Chloroform-d) δ 21.40; 19F NMR (376 MHz, Chloroform-
d) δ −62.47;

4-fluoro-N-(triphenyl-λ5-phosphanylidene)benzamide (3f):
White solid (57.5 mg, 73%). 1H NMR (400 MHz, Chloroform-d) δ 8.38 (dd, J = 8.7,

5.9 Hz, 2H), 7.90–7.82 (m, 6H), 7.61–7.56 (m, 3H), 7.55–7.46 (m, 6H), 7.08 (t, J = 8.8 Hz, 2H);
13C NMR (101 MHz, Chloroform-d) δ 175.3 (d, JC-P = 8.0 Hz), 164.7 (d, JC-F = 249.4 Hz),
134.9 (d, JC-P = 20.1 Hz), 133.2 (d, JC-P = 10.1 Hz), 132.3 (d, JC-P = 2.9 Hz), 131.8 (dd, JC-F = 8.9,
JC-P = 2.3 Hz), 128.7 (d, JC-P = 12.3 Hz), 128.2 (d, JC-P = 99.7 Hz), 114.4 (d, JC-F = 21.4 Hz); 31P
NMR (162 MHz, Chloroform-d) δ 20.87; 19F NMR (376 MHz, Chloroform-d) δ −110.66;

4-chloro-N-(triphenyl-λ5-phosphanylidene)benzamide (3g):
White solid (81.8 mg, 98%). 1H NMR (400 MHz, Chloroform-d) δ 8.33 (d, J = 8.5 Hz,

2H), 7.91–7.82 (m, 6H), 7.62–7.55 (m, 3H), 7.54–7.48 (m, 6H), 7.39 (d, J = 8.5 Hz, 2H);
13C NMR (101 MHz, Chloroform-d) δ 175.2 (d, JC-P = 7.9 Hz), 137.2 (d, JC-P = 21.2 Hz),
136.8, 133.2 (d, JC-P = 9.7 Hz), 132.4 (d, JC-P = 2.9 Hz), 131.1 (d, JC-P = 2.3 Hz), 128.8 (d,
JC-P = 12.4 Hz), 128.1 (d, JC-P = 99.7 Hz), 127.8; 31P NMR (162 MHz, Chloroform-d) δ 21.05;

4-cyano-N-(triphenyl-λ5-phosphaneylidene)benzamide (3h):
White solid (57.6 mg, 71%), mp 185.5–187.1 ◦C. 1H NMR (400 MHz, Chloroform-

d) δ 8.44 (d, J = 8.1 Hz, 2H), 7.89–7.80 (m, 6H), 7.70 (d, J = 8.3 Hz, 2H), 7.64–7.57 (m,
3H), 7.56–7.49 (m, 6H); 13C NMR (101 MHz, Chloroform-d) δ 174.2 (d, JC-P = 8.1 Hz),
142.8 (d, JC-P = 21.3 Hz), 133.1 (d, JC-P = 9.7 Hz), 132.6 (d, JC-P = 3.0 Hz), 131.6, 130.0 (d,
JC-P = 2.3 Hz), 128.9 (d, JC-P = 12.4 Hz), 127.7 (d, JC-P = 99.8 Hz), 119.1, 113.8; 31P NMR
(162 MHz, Chloroform-d) δ 21.79. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C26H20N2OP,
407.1308; found, 407.1309;

3-methoxy-N-(triphenyl-λ5-phosphanylidene)benzamide (3i):
White solid (62.4 mg, 76%). 1H NMR (400 MHz, Chloroform-d) δ 8.05 (d, J = 7.6 Hz,

1H), 7.93–7.83 (m, 7H), 7.61–7.55 (m, 3H), 7.54–7.47 (m, 6H), 7.35 (t, J = 7.9 Hz, 1H),
7.06–7.01 (m, 1H), 3.88 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 176.1 (d, JC-P = 8.1 Hz),
159.3, 140.2 (d, JC-P = 20.5 Hz), 133.2 (d, JC-P = 9.7 Hz), 132.3 (d, JC-P = 2.9 Hz), 128.7 (d,
JC-P = 12.5 Hz), 128.3 (d, JC-P = 99.2 Hz), 122.3 (d, JC-P = 2.6 Hz), 117.4, 113.8 (d, JC-P = 2.9 Hz),
55.4; 31P NMR (162 MHz, Chloroform-d) δ 20.70;

3-(trifluoromethyl)-N-(triphenyl-λ5-phosphanylidene)benzamide (3j):
White solid (65.1 mg, 73%). 1H NMR (400 MHz, Chloroform-d) δ 8.67 (s, 1H),

8.57 (d, J = 7.7 Hz, 1H), 7.92–7.84 (m, 6H), 7.72 (d, J = 8.1 Hz, 1H), 7.64–7.58 (m, 3H),
7.57–7.50 (m, 7H); 13C NMR (101 MHz, Chloroform-d) δ 174.7 (d, JC-P = 7.7 Hz), 139.5 (d,
JC-P = 21.2 Hz), 133.2 (d, JC-P = 10.2 Hz), 132.8, 132.4 (d, JC-P = 3.0 Hz), 130.1 (q, JC-F = 32.2 Hz),
128.8 (d, JC-P = 12.4 Hz), 128.2, 128.0 (d, JC-P = 99.8 Hz), 127.1 (q, JC-F = 3.8 Hz), 126.5 (q,
JC-F = 3.5 Hz), 123.0 (q, JC-F = 272.2 Hz); 31P NMR (162 MHz, Chloroform-d) δ 21.62;
19F NMR (376 MHz, Chloroform-d) δ −62.33;

3-fluoro-N-(triphenyl-λ5-phosphanylidene)benzamide (3k):
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White solid (48.7 mg, 61%), mp 154.6–156.5 ◦C. 1H NMR (400 MHz, Chloroform-
d) δ 8.14 (d, J = 7.7 Hz, 1H), 8.10–8.05 (m, 1H), 7.91–7.82 (m, 6H), 7.63–7.56 (m, 3H),
7.55–7.48 (m, 6H), 7.42–7.34 (m, 1H), 7.19–7.13 (m, 1H); 13C NMR (101 MHz, Chloroform-d)
δ 175.0 (d, JC-P = 7.4 Hz), 162.6 (d, JC-F = 244.8 Hz), 141.2 (d, JC-F = 21.3 Hz), 133.2 (d,
JC-P = 10.0 Hz), 132.4 (d, JC-F = 2.9 Hz), 129.1 (d, JC-P = 7.7 Hz), 128.8 (d, JC-P = 12.4 Hz),
128.1 (d, JC-P = 99.8 Hz), 125.1 (d, JC-P = 2.8 Hz), 117.5 (d, JC-P = 21.6 Hz), 116.4 (dd,
JC-F = 22.2, JC-P = 2.6 Hz); 31P NMR (162 MHz, Chloroform-d) δ 21.13; 19F NMR (376 MHz,
Chloroform-d) δ −114.38. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C25H20FNOP, 400.1261;
found, 400.1261;

3-chloro-N-(triphenyl-λ5-phosphanylidene)benzamide (3l):
Colorless liquid (56.7 mg, 64%). 1H NMR (400 MHz, Chloroform-d) δ 8.40–8.36 (m, 1H),

8.23 (d, J = 7.8 Hz, 1H), 7.90–7.82 (m, 6H), 7.63–7.57 (m, 3H), 7.55–7.48 (m, 6H), 7.46–7.41 (m, 1H),
7.37–7.32 (m, 1H); 13C NMR (101 MHz, Chloroform-d) δ 174.9 (d, JC-P = 8.0 Hz), 140.6 (d,
JC-P = 21.2 Hz), 133.7, 133.2 (d, JC-P = 10.2 Hz), 132.4 (d, JC-P = 2.6 Hz), 130.6, 129.8 (d,
JC-P = 2.7 Hz), 129.0, 128.8 (d, JC-P = 12.0 Hz), 128.0 (d, JC-P = 99.8 Hz), 127.6 (d, JC-P = 2.2 Hz);
31P NMR (162 MHz, Chloroform-d) δ 21.40. HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C25H20ClNOP, 416.0966; found, 416.0963;

2-fluoro-N-(triphenyl-λ5-phosphanylidene)benzamide (3m):
White solid (37.5 mg, 47%). 1H NMR (400 MHz, Chloroform-d) δ 8.22–8.16 (m, 1H),

7.93–7.84 (m, 6H), 7.61–7.55 (m, 3H), 7.53–7.47 (m, 6H), 7.41–7.34 (m, 1H), 7.18–7.06 (m,
2H); 13C NMR (101 MHz, Chloroform-d) δ 174.1 (dd, JC-P = 7.9 Hz, JC-F = 3.6 Hz), 161.9 (d,
JC-F = 255.2 Hz), 133.2 (d, JC-P = 10.1 Hz), 132.4 (dd, JC-P = 2.3 Hz, JC-F = 2.2 Hz), 132.3 (d,
JC-P = 2.9 Hz), 131.7 (d, JC-F = 8.8 Hz), 128.7 (d, JC-P = 12.4 Hz), 128.0 (d, JC-P = 99.3 Hz),
127.5 (dd, JC-P = 21.4 Hz, JC-F = 9.9 Hz), 123.3 (d, JC-F = 3.8 Hz), 116.5 (d, JC-F = 23.4 Hz); 31P
NMR (162 MHz, Chloroform-d) δ 20.39; 19F NMR (376 MHz, Chloroform-d) δ −111.60;

2-chloro-N-(triphenyl-λ5-phosphanylidene)benzamide (3n):
White solid (35.0 mg, 42%), mp 196.6–197.8 ◦C. 1H NMR (400 MHz, Chloroform-d)

δ 8.43–8.36 (m, 2H), 7.92–7.84 (m, 6H), 7.62–7.56 (m, 3H), 7.54–7.48 (m, 6H), 7.46–7.41 (m,
2H); 13C NMR (101 MHz, Chloroform-d) δ 176.4 (d, JC-P = 8.6 Hz), 138.6 (d, JC-P = 20.6 Hz),
133.2 (d, JC-P = 9.7 Hz), 132.3 (d, JC-P = 2.9 Hz), 130.7, 129.6 (d, JC-P = 2.3 Hz), 128.7 (d,
JC-P = 12.3 Hz), 128.4 (d, JC-P = 99.5 Hz), 127.7; 31P NMR (162 MHz, Chloroform-d) δ 20.72.
HRMS (ESI-TOF) m/z: [M + H]+ calcd for C25H20ClNOP, 416.0966; found, 416.0969;

N-(triphenyl-λ5-phosphanylidene)thiophene-2-carboxamide (3o):
Brown solid (33.3 mg, 43%). 1H NMR (400 MHz, Chloroform-d) δ 7.89–7.82 (m, 6H),

7.80 (dd, J = 3.6, 1.2 Hz, 1H), 7.62–7.56 (m, 3H), 7.53–7.47 (m, 6H), 7.40 (dd, J = 5.0, 1.2 Hz,
1H), 7.10–7.01 (m, 1H); 13C NMR (101 MHz, Chloroform-d) δ 171.1 (d, JC-P = 7.0 Hz), 145.2 (d,
JC-P = 24.3 Hz), 133.2 (d, JC-P = 9.7 Hz), 132.3 (d, JC-P = 2.9 Hz), 130.2 (d, JC-P = 2.8 Hz),
129.6, 128.7 (d, JC-P = 12.4 Hz), 128.1 (d, JC-P = 99.7 Hz), 127.3; 31P NMR (162 MHz,
Chloroform-d) δ 19.47;

N-(triphenyl-λ5-phosphanylidene)furan-2-carboxamide (3p):
White solid (37.2 mg, 50%). 1H NMR (400 MHz, Chloroform-d) δ 7.87–7.79 (m, 6H),

7.59–7.53 (m, 3H), 7.51–7.45 (m, 7H), 7.17 (d, J = 3.3 Hz, 1H), 6.44 (dd, J = 3.2, 1.7 Hz, 1H);
13C NMR (101 MHz, Chloroform-d) δ 168.0 (d, JC-P = 6.7 Hz), 152.8 (d, JC-P = 26.0 Hz), 144.0,
133.2 (d, JC-P = 10.1 Hz), 132.4, 128.7 (d, JC-P = 12.4 Hz), 127.9 (d, JC-P = 100.2 Hz), 114.3,
111.3; 31P NMR (162 MHz, Chloroform-d) δ 21.86;

N-(tri-p-tolyl-λ5-phosphanylidene)benzamide (3q):
White solid (77.1 mg, 91%). 1H NMR (400 MHz, Chloroform-d) δ 8.42 (d, J = 7.8 Hz,

2H), 7.79 (dd, J = 12.2, 7.7 Hz, 6H), 7.48–7.41 (m, 3H), 7.32 (dd, J = 8.3, 2.8 Hz, 6H), 2.43 (s, 9H);
13C NMR (101 MHz, Chloroform-d) δ 176.2 (d, JC-P = 8.0 Hz), 142.7 (d, JC-P = 2.9 Hz), 138.9 (d,
JC-P = 20.8 Hz), 133.2 (d, JC-P = 10.3 Hz), 130.6, 129.6 (d, JC-P = 2.3 Hz), 129.4 (d, JC-P = 12.9 Hz),
127.6, 125.4 (d, JC-P = 102.0 Hz), 21.7; 31P NMR (162 MHz, Chloroform-d) δ 20.63;

N-(tri-p-methoxyphenyl-λ5-phosphanylidene)benzamide (3r):
White solid (56.7 mg, 60%). 1H NMR (400 MHz, Chloroform-d) δ 8.40–8.34 (m, 2H),

7.78 (dd, J = 11.7, 8.8 Hz, 6H), 7.46–7.38 (m, 3H), 7.00 (dd, J = 8.9, 2.3 Hz, 6H), 3.85 (s,
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9H); 13C NMR (101 MHz, Chloroform-d) δ 176.1 (d, JC-P = 7.4 Hz), 162.6 (d, JC-P = 2.9 Hz),
139.0 (d, JC-P = 20.4 Hz), 135.0 (d, JC-P = 11.1 Hz), 130.5, 129.5 (d, JC-P = 2.3 Hz), 127.6, 119.9 (d,
JC-P = 106.5 Hz), 114.3 (d, JC-P = 13.3 Hz), 55.4; 31P NMR (162 MHz, Chloroform-d) δ 19.68;

N-(tris(4-fluorophenyl)-λ5-phosphanylidene)benzamide (3s):
White solid (44.2 mg, 51%). 1H NMR (400 MHz, Chloroform-d) δ 8.34–8.29 (m, 2H),

7.90–7.81 (m, 6H), 7.50–7.41 (m, 3H), 7.26–7.19 (m, 6H); 13C NMR (101 MHz, Chloroform-d)
δ 176.5 (d, JC-P = 8.1 Hz), 165.4 (dd, JC-F = 255.1 Hz, JC-P = 3.2 Hz), 138.1 (d, JC-P = 20.6 Hz),
135.6 (dd, JC-F = 11.7 Hz, JC-P = 8.8 Hz), 131.0, 129.5 (d, JC-P = 2.7 Hz), 127.8, 123.9 (dd,
JC-P = 103.9 Hz, JC-F = 3.3 Hz), 116.4 (dd, JC-F = 21.6 Hz, JC-P = 13.6 Hz); 31P NMR (162 MHz,
Chloroform-d) δ 18.98; 19F NMR (376 MHz, Chloroform-d) δ −105.30;

N-(tris(4-chlorophenyl)-λ5-phosphanylidene)benzamide (3t):
White solid (80.5 mg, 83%). 1H NMR (400 MHz, Chloroform-d) δ 8.36–8.30 (m,

2H), 7.79 (dd, J = 12.0, 8.4 Hz, 6H), 7.54–7.47 (m, 7H), 7.43 (dd, J = 8.1, 6.2 Hz, 2H);
13C NMR (101 MHz, Chloroform-d) δ 176.7 (d, JC-P = 8.0 Hz), 139.5 (d, JC-P = 3.6 Hz),
137.9 (d, JC-P = 20.5 Hz), 134.4 (d, JC-P = 11.0 Hz), 131.1, 129.5 (d, JC-P = 2.5 Hz), 129.4 (d,
JC-P = 12.8 Hz), 127.8, 126.2 (d, JC-P = 102.0 Hz); 31P NMR (162 MHz, Chloroform-d) δ 19.49;

N-(tris(3-methoxyphenyl)-λ5-phosphaneylidene)benzamide (3u):
White solid (48.5 mg, 52%), mp 146.3–147.7 ◦C. 1H NMR (400 MHz, Chloroform-d)

δ 8.41–8.36 (m, 2H), 7.52–7.47 (m, 3H), 7.46–7.34 (m, 9H), 7.12–7.07 (m, 3H), 3.79 (s, 9H);
13C NMR (101 MHz, Chloroform-d) δ 176.2 (d, JC-P = 7.9 Hz), 159.6 (d, JC-P = 15.4 Hz),
138.7 (d, JC-P = 20.6 Hz), 130.7, 129.9 (d, JC-P = 14.6 Hz), 129.6 (d, JC-P = 99.1 Hz), 129.5 (d,
JC-P = 2.4 Hz), 127.7, 125.4 (d, JC-P = 9.7 Hz), 118.4 (d, JC-P = 11.0 Hz), 118.1 (d, JC-P = 2.9 Hz),
55.4; 31P NMR (162 MHz, Chloroform-d) δ 21.38. HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C28H27NO4P, 472.1672; found, 472.1677;

N-(diphenyl(p-tolyl)-λ5-phosphanylidene)benzamide (3v):
White solid (71.1 mg, 90%). 1H NMR (400 MHz, Chloroform-d) δ 8.45–8.37 (m, 2H),

7.93–7.85 (m, 4H), 7.81–7.74 (m, 2H), 7.61–7.55 (m, 2H), 7.53–7.42 (m, 7H), 7.32 (dd, J = 8.3,
2.9 Hz, 2H), 2.43 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 176.3 (d, JC-P = 8.0 Hz),
142.9 (d, JC-P = 2.9 Hz), 138.7 (d, JC-P = 20.6 Hz), 133.3 (d, JC-P = 10.5 Hz), 133.2 (d,
JC-P = 9.5 Hz), 132.2 (d, JC-P = 3.0 Hz), 130.7, 129.6, 129.5 (d, JC-P = 10.0 Hz), 128.7 (d,
JC-P = 12.3 Hz), 128.6 (d, JC-P = 99.8 Hz), 127.7, 124.8 (d, JC-P = 101.3 Hz), 21.7; 31P NMR
(162 MHz, Chloroform-d) δ 20.67;

N,N’-([1,1′-binaphthalene]-2,2′-diylbis(diphenyl-λ5-phosphaneylylidene))dibenzamide (3w):
White solid (87.7 mg, 51%), mp 184.5–185.8 ◦C. 1H NMR (400 MHz, Chloroform-d) δ

8.18 (d, J = 7.1 Hz, 4H), 7.78–7.69 (m, 6H), 7.57–7.46 (m, 7H), 7.44–7.29 (m, 13H), 7.28–7.21
(m, 3H), 7.20–7.07 (m, 7H), 6.41 (dd, J = 8.3, 5.0 Hz, 2H); 13C NMR (101 MHz, Chloroform-
d) δ 175.9 (d, JC-P = 8.0 Hz), 159.6 (d, JC-P = 2.0 Hz), 138.8 (d, JC-P = 21.2 Hz), 135.1 (d,
JC-P = 7.1 Hz), 134.1 (d, JC-P = 2.6 Hz), 133.3 (d, JC-P = 10.5 Hz), 132.9 (d, JC-P = 10.3 Hz),
132.1 (d, JC-P = 3.0 Hz), 131.6 (d, JC-P = 2.4 Hz), 130.4, 129.4 (d, JC-P = 2.7 Hz), 128.5 (d,
JC-P = 12.5 Hz), 128.2 (d, JC-P = 12.6 Hz), 127.8 (d, JC-P = 104.7 Hz), 127.50, 127.45, 123.9 (d,
JC-P = 11.4 Hz), 121.0 (d, JC-P = 6.8 Hz), 119.2 (d, JC-P = 100.4 Hz); 31P NMR (162 MHz,
Chloroform-d) δ 19.95. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C58H43N2O2P2, 861.2794;
found, 861.2791.

3.3. General Experimental Procedures for the Synthesis of (5a–5w)

In a 25 mL reaction tube, dioxazolone 1 (0.2 mmol, 1.0 equiv.), and amine 4 (0.4 mmol,
2.0 equiv.) in 1 mL CH3OH were allowed to stir with irradiation of 10 W blue LED at room
temperature for 5 h. After the reaction, the solvent was evaporated under vacuum, and the
residue was purified by column chromatography on silica gel to afford the desired products
5a–5w.

1,1-diisopropyl-3-phenylurea (5a):
White solid (40.1 mg, 91%). 1H NMR (400 MHz, Chloroform-d) δ 7.39 (dd, J = 8.4,

1.3 Hz, 2H), 7.31–7.26 (m, 2H), 7.06–6.99 (m, 1H), 6.26 (s, 1H), 4.04–3.95 (m, 2H), 1.34 (d,
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J = 7.0 Hz, 12H); 13C NMR (101 MHz, Chloroform-d) δ 154.6, 139.4, 128.8, 122.6, 119.7,
45.5, 21.5;

1,1-diisopropyl-3-(p-tolyl)urea (5b):
White solid (44.9 mg, 96%). 1H NMR (400 MHz, Chloroform-d) δ 7.27 (d, J = 8.3 Hz,

2H), 7.09 (d, J = 8.4 Hz, 2H), 6.18 (s, 1H), 4.04–3.94 (m, 2H), 2.30 (s, 3H), 1.33 (d, J = 6.9 Hz,
12H); 13C NMR (101 MHz, Chloroform-d) δ 154.8, 136.8, 132.1, 129.3, 119.9, 45.4, 21.5, 20.7;

3-(4-(tert-butyl)phenyl)-1,1-diisopropylurea (5c):
White solid (49.1 mg, 89%), mp 115.1–116.7 ◦C. 1H NMR (400 MHz, Chloroform-d)

δ 7.33–7.29 (m, 4H), 6.17 (s, 1H), 4.05–3.96 (m, 2H), 1.34 (d, J = 6.9 Hz, 12H); 1.31 (s, 9H);
13C NMR (101 MHz, Chloroform-d) δ 154.9, 145.6, 136.7, 125.7, 119.7, 45.4, 34.2, 31.4, 21.6.
HRMS (ESI-TOF) m/z: [M + H]+ calcd for C17H29N2O, 277.2274; found, 277.2284;

1,1-diisopropyl-3-(4-methoxyphenyl)urea (5d):
White solid (49.0 mg, 98%). 1H NMR (400 MHz, Chloroform-d) δ 7.27 (d, J = 8.9 Hz,

2H), 6.83 (d, J = 9.0 Hz, 2H), 6.13 (s, 1H), 4.01–3.92 (m, 2H), 3.77 (s, 3H), 1.32 (d, J = 6.9 Hz,
12H); 13C NMR (101 MHz, Chloroform-d) δ 155.5, 155.1, 132.5, 122.0, 114.1, 55.5, 45.4, 21.5;

1,1-diisopropyl-3-(4-(trifluoromethyl)phenyl)urea (5e):
White solid (44.2 mg, 79%), mp 151.9–153.1 ◦C. 1H NMR (400 MHz, Chloroform-d)

δ 7.57–7.46 (m, 4H), 6.43 (s, 1H), 4.07–3.92 (m, 2H), 1.35 (d, J = 6.9 Hz, 12H); 13C NMR
(101 MHz, Chloroform-d) δ 154.0, 142.6, 126.1 (q, JC-F = 3.8 Hz), 124.4 (q, JC-F = 271.1 Hz),
124.2 (q, JC-F = 32.7 Hz), 118.9, 45.7, 21.5; 19F NMR (376 MHz, Chloroform-d) δ −61.81;
HRMS (ESI-TOF) m/z: [M + H]+ calcd for C14H20F3N2O, 289.1522; found, 289.1534;

3-(4-fluorophenyl)-1,1-diisopropylurea (5f):
White solid (36.7 mg, 77%), mp 134.5–135.7 ◦C. 1H NMR (400 MHz, Chloroform-d) δ

7.35–7.27 (m, 2H), 6.94 (t, J = 8.6 Hz, 2H), 6.31 (s, 1H), 4.03–3.86 (m, 2H), 1.30 (d, J = 6.9 Hz,
12H); 13C NMR (101 MHz, Chloroform-d) δ 158.6 (d, JC-F = 241.2 Hz), 154.8, 135.4 (d,
emphJC-F = 2.9 Hz), 121.8 (d, JC-F = 7.9 Hz), 115.2 (d, JC-F = 22.1 Hz), 45.6, 21.4; 19F NMR
(376 MHz, Chloroform-d) δ -120.90; HRMS (ESI-TOF) m/z: [M + H]+ calcd for C13H20FN2O,
239.1554; found, 239.1567;

3-(4-chlorophenyl)-1,1-diisopropylurea (5g):
White solid (49.8 mg, 98%). 1H NMR (400 MHz, Chloroform-d) δ 7.32 (d, J = 8.9 Hz,

2H), 7.22 (d, J = 8.8 Hz, 2H), 6.29 (s, 1H), 4.03–3.90 (m, 2H), 1.32 (d, J = 6.9 Hz, 12H); 13C
NMR (101 MHz, Chloroform-d) δ 154.4, 138.0, 128.7, 127.4, 121.0, 45.6, 21.5;

1,1-diisopropyl-3-(3-methoxyphenyl)urea (5h):
White solid (43.6 mg, 87%). 1H NMR (400 MHz, Chloroform-d) δ 7.20–7.14 (m, 2H),

6.85 (dd, J = 8.0, 1.2 Hz, 1H), 6.57 (dd, J = 8.2, 1.7 Hz, 1H), 6.27 (s, 1H), 4.05–3.95 (m, 2H),
3.81 (s, 3H), 1.33 (d, J = 6.9 Hz, 12H); 13C NMR (101 MHz, Chloroform-d) δ 160.2, 154.5,
140.7, 129.4, 111.7, 108.6, 105.1, 55.3, 45.4, 21.5;

1,1-diisopropyl-3-(3-(trifluoromethyl)phenyl)urea (5i):
White solid (21.3 mg, 37%), mp 151.2–152.7 ◦C. 1H NMR (400 MHz, Chloroform-d)

δ 7.67 (s, 1H), 7.62–7.55 (m, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.29–7.25 (m, 1H), 6.37 (s, 1H),
4.07–3.94 (m, 2H), 1.36 (d, J = 6.9 Hz, 12H); 13C NMR (101 MHz, Chloroform-d) δ 154.2,
139.9, 131.2 (q, JC-F = 271.6 Hz), 129.3, 122.7, 119.1 (q, JC-F = 3.7 Hz), 116.1 (q, JC-F = 4.0 Hz),
45.7, 21.5; 19F NMR (376 MHz, Chloroform-d) δ -62.64. HRMS (ESI-TOF) m/z: [M + H]+

calcd for C14H20F3N2O, 289.1522; found, 289.1536;
3-(3-fluorophenyl)-1,1-diisopropylurea (5j):
White solid (23.9 mg, 50%), mp 118.5–119.8 ◦C. 1H NMR (400 MHz, Chloroform-d)

δ 7.40–7.32 (m, 1H), 7.23–7.14 (m, 1H), 7.00 (dd, J = 8.3, 2.1 Hz, 1H), 6.72–6.64 (m, 1H),
6.39 (s, 1H), 4.03–3.89 (m, 2H), 1.32 (d, J = 6.6 Hz, 12H); 13C NMR (101 MHz, Chloroform-
d) δ 163.2 (d, JC-F = 243.5 Hz), 154.2, 141.1 (d, JC-F = 11.2 Hz), 129.7 (d, JC-F = 9.6 Hz),
114.7 (d, JC-F = 2.9 Hz), 109.0 (d, JC-F = 21.3 Hz), 106.9 (d, JC-F = 26.4 Hz), 45.6, 21.5; 19F NMR
(376 MHz, Chloroform-d) δ -112.35. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C13H20FN2O,
239.1554; found, 239.1564;

1,1-diisopropyl-3-(o-tolyl)urea (5k):
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White solid (43.0 mg, 92%), mp 136.8–138.7 ◦C. 1H NMR (400 MHz, Chloroform-d) δ
7.77 (dd, J = 8.1, 1.2 Hz, 1H), 7.23–7.14 (m, 2H), 7.04–6.96 (m, 1H), 6.07 (s, 1H), 4.11–3.99
(m, 2H), 2.28 (s, 3H), 1.36 (d, J = 6.9 Hz, 12H); 13C NMR (101 MHz, Chloroform-d) δ 154.8,
137.6, 130.3, 127.6, 126.7, 123.2, 122.3, 45.4, 21.5, 18.3. HRMS (ESI-TOF) m/z: [M + H]+ calcd
for C14H23N2O, 235.1805; found, 235.1816;

3-(2-fluorophenyl)-1,1-diisopropylurea (5l):
White solid (40.0 mg, 84%), mp 109.1–110.7 ◦C. 1H NMR (400 MHz, Chloroform-d) δ

8.24–8.16 (m, 1H), 7.13–7.02 (m, 2H), 6.99–6.90 (m, 1H), 6.58 (s, 1H), 4.12–4.03 (m, 2H), 1.35 (d,
J = 6.9 Hz, 12H); 13C NMR (101 MHz, Chloroform-d) δ 154.1, 152.3 (d, JC-F = 239.8 Hz),
128.0 (d, JC-F = 9.5 Hz), 124.5 (d, JC-F = 3.6 Hz), 122.0 (d, JC-F = 7.5 Hz), 121.1, 114.3 (d,
JC-F = 19.2 Hz), 45.3, 21.4; 19F NMR (376 MHz, Chloroform-d) δ -133.39. HRMS (ESI-TOF)
m/z: [M + H]+ calcd for C13H20FN2O, 239.1554; found, 239.1564;

3-(2-chlorophenyl)-1,1-diisopropylurea (5m):
White solid (49.6 mg, 95%). 1H NMR (400 MHz, Chloroform-d) δ 7.41–7.37 (m, 2H),

7.29 (d, J = 8.6 Hz, 1H), 7.06–6.98 (m, 1H), 6.27 (s, 1H), 4.05–3.95 (m, 2H), 1.34 (d, J = 6.9 Hz,
12H); 13C NMR (101 MHz, Chloroform-d) δ 154.6, 139.4, 128.8, 122.6, 119.7, 45.5, 21.5;

1,1-diethyl-3-phenylurea (5n):
White solid (36.8 mg, 96%). 1H NMR (400 MHz, Chloroform-d) δ 7.43–7.39 (m, 2H),

7.31–7.25 (m, 2H), 7.02 (t, J = 7.3 Hz, 1H), 6.40 (s, 1H), 3.41–3.35 (m, 4H), 1.22 (t, J = 7.1 Hz,
6H); 13C NMR (101 MHz, Chloroform-d) δ 154.7, 139.4, 128.8, 122.8, 119.9, 41.6, 13.9;

3-phenyl-1,1-dipropylurea (5o):
White solid (35 mg, 80%). 1H NMR (400 MHz, Chloroform-d) δ 7.43–7.37 (m, 2H),

7.31–7.25 (m, 2H), 7.06–6.97 (m, 1H), 6.41 (s, 1H), 3.31–3.24 (m, 4H), 1.71–1.61 (m, 4H),
0.96 (t, J = 7.4 Hz, 6H); 13C NMR (101 MHz, Chloroform-d) δ 155.0, 139.4, 128.8, 122.7, 119.8,
49.4, 21.9, 11.4;

1,1-dibutyl-3-phenylurea (5p):
White solid (41.6 mg, 84%). 1H NMR (400 MHz, Chloroform-d) δ 7.44–7.38 (m, 2H),

7.30–7.25 (m, 2H), 7.05–6.99 (m, 1H), 6.38 (s, 1H), 3.34–3.28 (m, 4H), 1.65–1.58 (m, 4H),
1.43–1.34 (m, 4H), 0.98 (t, J = 7.3 Hz, 6H); 13C NMR (101 MHz, Chloroform-d) δ 155.0, 139.4,
128.8, 122.7, 119.7, 47.5, 30.8, 20.2, 13.9;

1-ethyl-3-phenyl-1-propylurea (5q):
Colorless liquid (34.0 mg, 83%), mp 56.3–57.6 ◦C. 1H NMR (400 MHz, Chloroform-d) δ

7.43–7.37 (m, 2H), 7.31–7.25 (m, 2H), 7.02 (t, J = 7.4 Hz, 1H), 6.39 (s, 1H), 3.42–3.34 (m, 2H),
3.30–3.24 (m, 2H), 1.71–1.61 (m, 2H), 1.22 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H); 13C
NMR (101 MHz, Chloroform-d) δ 154.9, 139.4, 128.8, 122.7, 119.8, 48.8, 42.1, 22.0, 13.8, 11.4;
HRMS (ESI-TOF) m/z: [M + H]+ calcd for C12H19N2O, 207.1492; found, 207.1499;

1-cyclohexyl-1-ethyl-3-phenylurea (5r):
White solid (44.0 mg, 89%), mp 123.5–124.7 ◦C. 1H NMR (400 MHz, Chloroform-d) δ

7.44–7.39 (m, 2H), 7.31–7.25 (m, 2H), 7.01 (t, J = 7.3 Hz, 1H), 6.41 (s, 1H), 4.14–4.03 (m, 1H),
3.33–3.25 (m, 2H), 1.85–1.76 (m, 4H), 1.72–1.64 (m, 1H), 1.47–1.33 (m, 4H), 1.25 (t, J = 7.2 Hz,
3H), 1.18–1.06 (m, 1H); 13C NMR (101 MHz, Chloroform-d) δ 154.8, 139.5, 128.8, 122.7,
119.9, 54.8, 36.9, 31.5, 26.0, 25.6, 16.1; HRMS (ESI-TOF) m/z: [M + H]+ calcd for C15H23N2O,
247.1805; found, 247.1815;

1,1-dicyclohexyl-3-phenylurea (5s):
White solid (54.0 mg, 90%). 1H NMR (400 MHz, Chloroform-d) δ 7.40–7.36 (m, 2H),

7.31–7.25 (m, 2H), 7.04–6.98 (m, 1H), 6.32 (s, 1H), 3.55–3.45 (m, 2H), 1.89–1.81 (m, 6H),
1.80–1.75 (m, 6H), 1.69 (d, J = 13.0 Hz, 2H), 1.42–1.31 (m, 4H), 1.22–1.11 (m, 2H); 13C NMR
(101 MHz, Chloroform-d) δ 154.9, 139.4, 128.8, 122.5, 119.7, 55.5, 31.9, 26.4, 25.6;

N-phenyl-3,4-dihydroisoquinoline-2(1H)-carboxamide (5t):
White solid (45.1 mg, 89%). 1H NMR (400 MHz, Chloroform-d) δ 7.46–7.42 (m, 2H),

7.32–7.27 (m, 2H), 7.25–7.17 (m, 3H), 7.15–7.10 (m, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.75 (s,
1H), 4.67 (s, 2H), 3.72 (t, J = 5.9 Hz, 2H), 2.91 (t, J = 5.9 Hz, 2H); 13C NMR (101 MHz,
Chloroform-d) δ 155.2, 139.2, 135.0, 133.3, 128.9, 128.4, 126.8, 126.5, 126.4, 123.1, 120.3, 45.8,
41.6, 29.0;
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1-benzyl-1-ethyl-3-phenylurea (5u):
Colorless liquid (42.8 mg, 84%). 1H NMR (400 MHz, Chloroform-d) δ 7.42–7.38 (m, 2H),

7.37–7.30 (m, 5H), 7.29–7.24 (m, 2H), 7.06–7.00 (m, 1H), 6.40 (s, 1H), 4.59 (s, 2H), 3.52–3.45
(m, 2H), 1.24 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, Chloroform-d) δ 155.4, 139.2, 137.7,
129.0, 128.8, 127.7, 127.1, 122.9, 119.9, 50.3, 42.5, 13.5. HRMS (ESI-TOF) m/z: [M + H]+ calcd
for C16H19N2O, 255.1492; found, 255.1500;

1-benzyl-1-isopropyl-3-phenylurea (5v):
White solid (48.8 mg, 91%), mp 108.8–109.9 ◦C. 1H NMR (400 MHz, Chloroform-d)

δ 7.45–7.37 (m, 4H), 7.37–7.32 (m, 1H), 7.25–7.19 (m, 4H), 7.02–6.96 (m, 1H), 6.36 (s, 1H),
4.86–4.73 (m, 1H), 4.47 (s, 2H), 1.24 (d, J = 6.8 Hz, 6H); 13C NMR (101 MHz, Chloroform-d)
δ 155.8, 139.3, 138.2, 129.2, 128.7, 127.8, 126.4, 122.8, 119.8, 46.4, 45.5, 20.8. HRMS (ESI-TOF)
m/z: [M + H]+ calcd for C17H21N2O, 269.1648; found, 269.1657;

1,3-diphenylurea (5w):
White solid (22.5 mg, 52%). 1H NMR (400 MHz, DMSO-d6) δ 8.7 (s, 2H), 7.5 (dd, J = 8.6,

1.2 Hz, 4H), 7.3–7.2 (m, 4H), 7.0–6.9 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ 153.0, 140.2,
129.2, 122.3, 118.6.

4. Conclusions

In conclusion, we have disclosed a visible-light-promoted external catalyst-free proce-
dure for the decarboxylation of dioxazolones to synthesize various phosphinimidic amides
and ureas. The method has the advantages of no additional transition metals, economic
raw materials, mild reaction conditions, and easy operation. It could be reasoned that the
ppm Fe in the reaction mixture played a significant role in this transformation.
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