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Accumulating evidence suggests that DNA methylation has essential roles in the
development of renal cell carcinoma (RCC). Aberrant DNA methylation acts as a vital
role in RCC progression through regulating the gene expression, yet little is known about
the role of methylation and its association with prognosis in RCC. The purpose of this study
is to explore the DNA methylation-driven genes for establishing prognostic-related
molecular clusters and providing a basis for survival prediction. In this study, 5,198
differentially expressed genes (DEGs) and 270 DNA methylation-driven genes were
selected to obtain 146 differentially expressed DNA methylation-driven genes
(DEMDGs). Two clusters were distinguished by consensus clustering using 146
DEMDGs. We further evaluated the immune status of two clusters and selected 106
DEGs in cluster 1. Cluster-based immune status analysis and functional enrichment
analysis of 106 DEGs provide new insights for the development of RCC. To predict
the prognosis of patients with RCC, a prognostic model based on eight DEMDGs was
constructed. The patients were divided into high-risk groups and low-risk groups based on
their risk scores. The predictive nomogram and the web-based survival rate calculator
(http://127.0.0.1:3496) were built to validate the predictive accuracy of the prognostic
model. Gene set enrichment analysis was performed to annotate the signaling pathways in
which the genes are enriched. The correlation of the risk score with clinical features,
immune status, and drug susceptibility was also evaluated. These results suggested that
the prognostic model might be a promising prognostic tool for RCC and might facilitate the
management of patients with RCC.
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INTRODUCTION

Renal cell carcinoma (RCC) is the most common urologic cancer
type. There were an estimated nearly 65,340 new cases and 14,970
deaths worldwide in 2020 (Hsieh et al., 2018). With the
advancement of diagnostic approaches, an increasing number
of RCC could be diagnosed at early-stage (Alonso-Gordoa et al.,
2019). Early diagnosis of RCC is essential for prolonging the
overall survival (OS) of patients (Porta et al., 2016). Currently, the
most curative treatment for localized RCC is still considered to be
surgical resection (Ljungberg et al., 2010). Nowadays, there are
already many surgical methods to remove tumors, including
nephron-sparing surgery, radical nephrectomy, and
laparoscopic surgery (Ljungberg et al., 2010). However, the
treatment options are still limited for unresectable and
metastatic RCC (Li et al., 2016; Shinder et al., 2017). Early and
accurate diagnosis of RCC has been regarded as a research
priority (Porta et al., 2016). Recently, with biomedical research
progresses, molecular prognostic biomarkers have become one of
the basic ideas of precision medicine. Unfortunately, early-stage
diagnosis for RCC by molecular prognostic biomarkers has many
challenges due to the lack of biomarkers for the prediction of
progression (Li et al., 2018). For this reason, more molecular
biomarkers are urgently needed to screen for RCC diagnosis.

Modifications of the epigenome, such as DNA methylation,
play a crucial role in the development of many diseases (Shen
et al., 2010). The correct methylation pattern is very important for
normal biological functions, and aberrant methylation is one of
the drivers for the progression of several diseases, especially
cancer (Jeltsch and Jurkowska, 2016). Numerous prior studies
suggested that hypermethylated and hypomethylated DNA
always show different activities (Park et al., 2011). Abnormal
methylation always occurs in cancer cells, leading to some genes
being aberrantly activated and some genes being aberrantly
silenced (Vasanthakumar et al., 2013). Hypomethylation of
proto-oncogenes or tumor suppressor gene methylation is
considered one of the leading mechanisms of tumorigenesis in
many cancer types (Hayslip and Montero, 2006; Ding et al.,
2020). Therefore, the detection of the methylation pattern
alteration of specific genes can aid the cancer diagnosis.
Silencing of tumor suppressor genes caused by promoter
hypermethylation provides new ideas for inquiring about the
molecular mechanisms of RCC (Torres-Ferreira et al., 2017). The
aberrant methylation is involved in the progression of RCC. Some
studies found that DNA methylation in RCC silenced the von
Hippel–Lindau (VHL) tumor suppressor gene (Grech et al.,
2015). In addition, RCC can be genotyped based on DNA
methylation mutations (Tian et al., 2014).

There have been many studies focused on DNA methylation or
gene expression. However, RCC prognostic models based on DNA
methylation-driven genes have barely been explored. In this study,
we established a prognostic model to accurately predict patient
survival. In addition, we divided RCC samples into two clusters
according to 146 DEMDGs and further explored the relationship
between the tumor immune status and clusters of RCC. The results
we distilled will ultimately contribute to improving the diagnostic
accuracy and efficacy in immunotherapy.

MATERIALS AND METHODS

Date Collection
A total of 28 RNA-seq transcriptional profiling of normal samples
were downloaded from the GTEx (Genotype-Tissue Expression)
dataset (https://gtexportal.org/). A total of 1021 RNA-seq
transcriptome profiling (128 normal samples and 893 RCC
samples), 872 DNA methylation data (205 normal samples
and 667 tumor samples), and corresponding clinical
information of RCC were downloaded from TCGA (The
Cancer Genome Atlas) dataset (https://gdc.cancer.gov/).

Differentially Expressed Genes Screening in
RCC and Heatmap Plotting
We standardized RNA-seq transcriptional profiling by using the
“limma” R package, and the Wilcoxon rank-sum test was utilized
to identify DEGs (Ritchie et al., 2015; Zhang et al., 2020). The false
discovery rate (FDR) < 0.05 and |log2 fold change (FC)| > 2 were
taken advantage of as cutoff criteria. The “pheatmap” R package
was used to plot the heatmaps (Li et al., 2020).

Integrated Analysis of Gene Methylation
Data and Gene Expression Data
Gene expression data and DNA methylation data were
standardized by using the “limma” R package (Ritchie et al.,
2015). DNA methylation-driven genes (MDGs) were identified
using the “methylMix” R package (Gevaert, 2015; Zhang et al.,
2020). DNA methylation data and paired gene expression data
were integrated and analyzed jointly to identify the DNA
methylation status negatively correlated with the gene
expression of a particular gene, indicating that the gene is a
DNA methylation-driven gene (Cedoz et al., 2018). Inclusion
criteria were set to the correlation of methylation data and
corresponding gene expression data of DEGs less than −0.3, |
log2FC| > 0 and adjust p < 0.05. The differentially expressed DNA
methylation-driven genes (DEMDGs) were obtained by
intersecting MDGs and DEGs for further analysis (Zhang
et al., 2020).

Construction of the PPI Network
The PPI network was established by the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) database
(https://string-db.org/) and visualized by Cytoscape software
(v3.8.2) (Shannon et al., 2003). To generate an interaction
network, 146 DEMDGs were uploaded to the STRING
database. The obtained networks were downloaded in a tabular
format and uploaded to Cytoscape for network visualization.

Evaluation of the Immune Status and
Boxplot Plotting
The immune cell infiltration levels in the samples were evaluated
by the “CIBERSORT” R package, and the inclusion criteria were
p < 0.05 (Newman et al., 2015). The stromal score and immune
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score were also estimated by the “estimate” R package (Jia et al.,
2018). Boxplots were plotted using the “ggpubr” R package
(Whitehead et al., 2019).

Consensus Clustering Analysis
We capitalized on the k-means clustering algorithm in the
“ConsensusClusterPlus” R packet to perform clustering
(Wilkerson and Hayes, 2010). Here, we performed the
partition around medoids clustering algorithm and Euclidean
distance. The cluster number was tested from 2 to 9, and the
optimal one was selected to produce the most stable consensus
matrix and the least overlapping cluster assignments across
permuted clustering runs. We implemented it with the R
package ConsensusClusterPlus.

Construction of the Prognostic Model and
Validation
Utilizing the “glmnet” R package, “survival” R package, and
“survminer” R package, the prognostic model was constructed
(Armbruster et al., 2019;Wang et al., 2021; Xi et al., 2021). The risk
scores were calculated according to a linear combination of the
gene expression levels weighted by the regression coefficients from
the multivariate Cox regression analysis (Wei et al., 2020). The
“survivalROC”R package was utilized to validate the stability of the
prognostic model (Huang et al., 2017). The Kaplan–Meier survival
curves were carried out to assess the survival time between high-
and low-risk score RCC patients (Lawrie et al., 1982).We validated
the accuracy of the optimal cut-off value by the principal
component analysis (Kim et al., 2021). The Human Protein
Atlas database (https://www.proteinatlas.org/) was explored to
investigate the expression level of the prognostic genes.

Total RNA Extraction and Real-Time
Quantitative PCR
To evaluate the expression level of mRNA, total RNA was
extracted from the cell using TRIzol (Invitrogen). One
microgram of total RNA was used as a template for cDNA
synthesis using a PrimeScript RT Reagent Kit (Takara). Real-
time quantitative PCR (qRT-PCR) was performed in a reaction
mixture containing SYBR Green (Takara) with the CFX96 Touch
real-time PCR detection system (Bio-Rad). The expression level
of related mRNAs was calculated using 2−ΔΔCT, and the related
GAPDH mRNA expression was used as an endogenous control.
The primer sequences involved in this study are shown in
Supplementary Table S1. Each PCR reaction was performed
in triplicates.

Independence of the Prognostic Model
From Clinical Features
We used the “survival” R package to evaluate the independence of
the prognostic model from clinical features via univariate and
multivariate Cox regression analyses (Qi et al., 2021). The
significant levels were set to p < 0.05, and hazard ratios (HRs)
with 95% CIs were also calculated.

Construction of the Nomogram and the
Dynamic Nomogram
The nomogram was constructed utilizing the “rms” R package
(Pond et al., 2014). The web-based survival rate calculator was
established using the “shiny” and “DynNom” R packages to
predict cancer-specific survival rates dynamically (Sun et al.,
2020; Bakin et al., 2021). Calibration curves, which plot the
average Kaplan–Meier evaluation according to the
corresponding nomogram for 1-, 3-, or 5-year predicted
overall survival, are provided to estimate the accuracy of the
nomogram.

Gene Set Enrichment Analysis and Column
Diagram Plotting
Gene set enrichment analysis (GSEA) was performed using
GSEA4.0 (https://www.gsea-msigdb.org/gsea/index.jsp/). The
annotated gene set files (c2.cp.kegg.v7.4. symbols.gmt gene set
and c5.go.bp.v7.4. symbols.gmt) were considered as the reference
gene set. The inclusion criteria were p < 0.05 and FDR < 0.25. The
column diagrams were plotted by GraphPad Prism 7 (Elzein et al.,
2021).

Functional and Pathway Enrichment
Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis were performed using the
“enrichplot” R package, “org.Hs.eg.db” R package, and
“clusterProfiler” R package (Yu et al., 2012; Zhang et al.,
2019). The inclusion criteria were set to p < 0.05 and q < 1.
The results were visualized by the “ggplot2” R package (Sun et al.,
2011).

Statistical Analysis
All statistical tests were performed by R statistical software (version
4.0.3) (http://www.r-project.org/) using Mann-Whitney testing for
continuous data and Fisher’s exact testing for categorical data. The
correlation between two continuous variables was measured by
Pearson’s correlation coefficient. The hazard ratio (HR) and 95%
confidence intervals (CI) were estimated by a Cox regressionmodel
using the survival package. Survival analysis was carried out using
Kaplan–Meier methods. Differential methylation was calculated
from mean (β-value-cancer)—mean (β-value- normal). The
differences in variables among different groups were compared
by means of the Student’s t-test. p < 0.05 was considered to be
statistically significant.

RESULTS

Identification of 146 DEMDGs in RCC
The research process of the study was shown in Figure 1. Based
on the Wilcoxon rank test, a total of 5,198 DEGs were selected
from 28 RNA-seq transcriptome profiling of normal samples in
the GTEx dataset and 1021 RNA-seq transcriptome profiling (893
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RCC samples and 128 normal samples) in TCGA dataset (FDR
<0.05 and |log2FC| > 2). The heatmap shows the expression of
DEGs between RCC samples and normal samples (Figure 2A).
We screened the 270 methylation-driven genes (MDGs), whose
methylation status negatively correlated with expression levels
(Cor < −0.3, |log2FC| > 0 and adjust p < 0.05) (Supplementary
Table S2). The heatmap shows the expression of MDGs between
RCC samples and normal samples (Figure 2B). Then, 270 MDGs
and 5,198 DEGs were intersected to obtain 146 DEMDGs for
further analysis (Figure 2C). We further visualized the
methylation levels (Figure 2D) and gene expression levels
(Figure 2E) of 146 DEMDGs in RCC samples and normal
samples. The comprehensive landscape of DEMDG
interactions and DEMDG connection for RCC patients was
depicted with the DEMDG network (Figure 2F). The
aforementioned results found 146 DEMDGs in RCC and

normal samples. These abnormal DEMDGs were
interconnected and may be involved in the occurrence and
development of RCC.

Consensus Clustering Based on 146
DEMDGs and Immune Status Analysis of
Clusters
To select the optimized cluster number, we calculated the
k-means clustering algorithm with the ConsensusClusterPlus R
packet. K = 2 was identified with the optimal clustering stability
(Figures 3A–D). Then, we analyzed the methylation levels and
gene expression levels of 146 DEMDGs, as well as the clinical
features of paired patients. There were significant differences in
the methylation levels and gene expression levels between cluster
1 and cluster 2, and the clinical features were evenly distributed in

FIGURE 1 | Flow diagram. TCGA, The Cancer Genome Atlas; GTEx, genotype-tissue expression; DEGs, differentially expressed genes; MDGs, methylation-driven
genes; DEMDGs, differentially expressed methylation-driven genes; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology; K–M, Kaplan–Meier.
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two clusters (Figures 3E,F). The RCC patients in cluster 2 (n =
419) had better overall survival (OS) than the patients in cluster 1
(n = 435, p < 0.001) (Figure 3G).

Immune checkpoint inhibitors (ICIs) are administered for the
treatment of RCC. We investigated whether the two clusters were
related to ICI-related biomarkers. The results showed that cluster
1 was positively correlated with the high expression of LAG3 (p <
0.001), CD160 (p < 0.001), HAVCR2 (p < 0.001), CTLA4 (p <
0.001), and TIGIT (p < 0.001), and the stromal score and immune
score were significantly higher in cluster 1 than in cluster 2 (p <
0.001) (Figure 4A). The abundance of naive B cells (p < 0.001),
CD8 T cells (p < 0.001), CD4 memory-activated T cells (p <
0.001), follicular helper T cells (p < 0.001), gamma delta T cells
(p < 0.001), and macrophages M1 (p < 0.001) was significantly
higher in cluster 1 than in cluster 2 (Figure 4B). The higher
immune infiltration level corresponded to cluster 1, and the lower
immune infiltration level corresponded to cluster 2 (Figure 4C).
The RCC patients in high-immune score groups had a worse OS
than the patients in low-immune score groups (p < 0.001)
(Figure 4D). Furthermore, we accessed the correlation of
immune cells in cluster 1 and cluster 2. In cluster 1, the
positive correlation between CD8 T cells and follicular helper
T cells was the strongest, in which the correlation coefficient was

0.55. The correlation coefficient between CD8 T cells and
CD4 memory-resting T cells was −0.66, which was the lowest
negative correlation (Figure 4E). However, in cluster 2, the cells
with the strongest negative correlation were activated CD8 T cells
and macrophages M2, in which the correlation coefficient was
−0.46 (Figure 4F). These results showed that the two clusters
based on 146 DEMDGs were closely associated with prognosis
and immune status in RCC patients.

To explore the possible reasons causing worse OS in cluster 1,
we selected 106DEGs from two clusters (Cor< −0.3 and |log2FC| >
1). We used a heatmap visualizing the gene expression levels of 106
DEGs in RCC and normal samples (Supplementary Figure S1).
We performed GO and KEGG analysis to analyze underlying
functions and pathways of 106 DEGs (p < 0.05). Results of GO
analysis were significantly enriched in regulation of T-cell
activation, T-cell proliferation, positive regulation of leukocyte
proliferation, positive regulation of T-cell proliferation, positive
regulation of cell–cell adhesion, etc. (Figure 4G; Supplementary
Figures S2A, S2B). Results of the KEGG pathways were
significantly enriched in pathogenic Escherichia coli infection,
natural killer cell-mediated cytotoxicity, viral myocarditis, one
carbon pool by folate, cytokine–cytokine receptor interaction,
etc. (Figure 4H). The aforementioned results indicated that the

FIGURE 2 | Screening of 146 DEMDGs. (A) Heatmap of DEGs in normal samples and RCC samples. (B) Heatmap of MDGs in normal samples and RCC samples.
(C) Venn diagram for 146 DEMDGs in normal samples and RCC samples. The blue circle represents 5,198 DEGs, and the yellow circle represents 270 MDGs. (D)
Heatmap of methylation levels of 146 DEMDGs. (E) Heatmap of gene expression levels of 146 DEMDGs. (F) PPI network of 146 DEMDGs.
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106 DEGs were in close contact with the immune
microenvironment, which may be the cause for the OS
difference between the two clusters.

Construction and Evaluation of the
Prognostic Model
To determine the prognostic value of 146 DEMDGs, univariate
Cox regression analysis, LASSO, and multivariate Cox regression
analysis were used to identify them. Subsequently, the prognostic
model was constructed based on eight independent and prognostic
DEMDGs (including LCP2, PPP1R18, APOL1, FMNL1, CLDN7,
NMI, FAXDC2, and SHC1) (Figures 5A–D). We analyzed the
association between the gene expression and the survival of the
patients. The patients’ OS with high expressions of LCP2,
PPP1R18, APOL1, FMNL1, NMI, and SHC1 were worse than
the low-expression groups (p < 0.05), while the patients’ OS with
high expressions of CLDN7 and FAXDC2 were better than the
low-expression groups (p < 0.05) (Supplementary Figure S3). The
methylation levels of eight DEMDGs were inversely correlated
with their expression levels (p < 0.001) (Supplementary Figure
S4). The risk score was calculated as follows = LCP2 * (−3.619) +
CLDN7 * (−1.577) + FAXDC2*(-0.977) + APOL1*(1.365) + NMI

*(1.686) + PPP1R18 * (1.695) + SHC1 * (2.007) + FMNL1 * (2.313).
The coefficients of each gene are shown in Table 1.

RCC patients were split into high- and low-risk groups
according to the optimal cut-off value of the risk score (cutoff
= 1.78) (Figure 5E). The AUC of the ROC curves was 0.738,
0.673, and 0.703 within 1, 3, and 5 years, which demonstrated that
the risk score had a good prognostic value (Figure 5F). The
distributions of the risk score in high- and low-risk groups were
shown in Figure 5G. Patients’ mortality risk increased with
increasing risk scores (Figure 5H). The survival curve was
carried out to assess the survival time between high- and low-
risk score groups. The survival time of high-risk groups was
significantly worse than the low-risk groups (p < 0.001)
(Figure 5I). RCC samples were clearly structured in two
different groups by the principal component analysis, which
suggested our study could significantly reflect the prognosis
differences of RCC patients (Figure 5J).

Verification of the Expression Level of Eight
DEMDGs In Vitro
To verify the expression levels of eight DEMDGs in RCC cells,
we used RT-qPCR analysis to detect human embryonic kidney-

FIGURE 3 |Consensus clustering based on 146 DEMDGs. (A)CDF for RCC. (B) The area under the CDF curve in RCC. (C)Consensus clusteringmatrix for RCC at
k = 2. (D) Tracking plot for k from 2 to 9. (E) Heatmap of methylation levels of 146 DEMDGs in the two clusters, and the distribution of clinical features was compared in
the two clusters. (F)Heatmap of gene expression levels of 146 DEMDGs in the two clusters, and the distribution of clinical features was compared in the two clusters. (G)
The survival curves showed significant prognostic differences in the two clusters.
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FIGURE 4 | Immune status analysis of two clusters and functional enrichment analysis of 106 DEGs. (A) Expression of immune checkpoints in two clusters of
RCC. (B) The abundance of immune cells in two clusters of RCC. (C) The heatmap of the abundance of immune cells in two clusters. (D) The survival curves of high
and low immune score groups showed significant prognostic differences. (E) Correlation matrix of infiltrating immune cells in cluster 1. (F) Correlation matrix of
infiltrating immune cells in cluster 2. The numbers in the two matrices represent the Pearson correlation coefficient. The coral circle represents a positive
correlation, the blue circle represents a negative correlation, and the white circle represents no correlation between two kinds of cells. (G) GO term enrichment in
the biological process of 106 DEGs. (H) KEGG enrichment analysis of 106 DEGs. *p < 0.05; **p < 0.01; and ***p < 0.001.
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293 (HEK-293) and human RCC cell lines (786-O and OS-RC2
cells) (Figures 6A–H). Among them, six DEMDGs (LCP2,
PPP1R18, APOL1, FMNL1, NMI, and SHC1) were

upregulated in both RCC cells, combined with
Supplementary Figure S3; their high expression was
associated with poor survival, considering that they might

FIGURE 5 | Establishment and validation of the prognostic model based on 146 DEMDGs. (A) The hazard ratios (HR) and 95% confidence intervals (CI) of eight
DEMDGs in RCC were computed by univariate Cox regression analysis. (B) The changing trajectory of each independent variable. (C) Confidence intervals for each
optimal lambda. 10-fold cross-validation for the tuning parameter selection in the LASSO model. (D) The HR and 95% CI of eight DEMDGs in RCC were computed by
multivariate Cox regression analysis. (E) Risk score for 893 RCC samples; the maximum inflection point is the cut-off point accessed by the AIC. (F) The ROC curve
for 1-, 3-, and 5-year overall survival. (G, H)Distribution of the risk scores of RCC patients. (I) The survival curveswere plotted to show the survival difference based on the
risk score. (J) Principal component analysis was performed on RCC samples based on risk scores.
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play a role as proto-oncogenes. FAXDC2 was downregulated in
both RCC cells. However, CLDN7 was downregulated in 786-O
cells and upregulated in OS-RC2 cells. To determine the clinical
relevance of these eight gene expressions, HPA clinical
specimens were used to analyze the proteins’ expression
encoded by these eight genes (Figures 6I–O). Relative to its
expression level in normal kidney tissue, SHC1 were strongly
positive, while LCP2, PPP1R18, and NMI were moderately
positive in RCC tissues. FMNL1 and CLDN7 were not
detected in RCC tissues. APOL1 was expressed more
abundantly in the normal tissue than in malignant. FAXDC2
was not found on the website. However, our results on APOL1
are contrary to the database. Our team speculated that the main
reason was that the data from TCGA database came from all
pathological types of RCC, hence the inconsistent results.

Enrichment Analysis of the Prognostic
Model
To further annotate functions enriched in the high- and low-risk
groups, GSEA was queried to confirm the signaling pathways in
which the genes are enriched. The results are represented in
Figures 7A–D. The following biological processes were
enriched in the high-risk groups: collagen fibril organization,
lymphocyte activation, negative regulation of B-cell activation,
regulation of the leukocyte apoptotic process, and regulation of
leukocyte proliferation. The following signaling pathways were
enriched in the high-risk groups: cytokine–cytokine receptor
interaction. To clarify the possible molecular mechanism of
eight prognosis-related DEMDGs, we also performed GO and
KEGG pathway analysis. Results of the GO analysis were
significantly enriched in the sterol metabolic process, Fc-
epsilon receptor signaling pathway, Fc receptor signaling
pathway, positive regulation of megakaryocyte differentiation,
interleukin-2 mediated signaling pathway, etc. (Figure 7E).
Results of KEGG analysis were significantly enriched in the
natural killer cell-mediated cytotoxicity, African
trypanosomiasis, Fc epsilon RI signaling pathway, prolactin
signaling pathway, and chronic myeloid leukemia
(Figure 7F). These results suggested that RCC patients’
prognosis might be impacted by the above biological
functions and signaling pathways.

The Predictive Accuracy of the Prognostic
Model
To determine whether the risk score could be presented as an
independent prognostic factor for RCC patients, we employed
univariate and multivariate Cox proportional hazard regression
analyses. In the univariate analysis and multivariate analysis, the
risk score, age, and M stage showed pronounced effects on the
RCC prognosis (p < 0.05) (Figures 8A, B). Furthermore, we
constructed a nomogram with the significant variables in the
multivariate analysis (Figure 8C). Results suggested that the risk
score had a significant influence on survival prediction. The 1-, 3-,
and 5-year predicted calibration curves also respectively
suggested that the model had a good prediction accuracy
(Figures 8D–F). We also established a dynamic web-based
survival rate calculator (http://127.0.0.1:3496), which could
individually predict the survival of patients according to their
clinical features and risk score. For example, the 3-year cancer-
specific survival rate was approximately 76% (95% CI 42–72%)
for patients with low risk, M0 stage, and aged <65 years
(Figures 8G, H).

Prognostic Model Correlated With
Tumor-Infiltrating Immune Cells and Drug
Susceptibility
To further analyze the relationship between the prognostic model
and tumor-infiltrating immune cells, we performed a detailed
Spearman correlation analysis, and the result was presented with
the lollipop shape (Figure 9A). High-risk groups were more
positively correlated with tumor-infiltrating immune cells,
including CD8+ T cells, macrophage M1, B cells, monocytes,
myeloid dendritic cells, regulatory T cells, and myeloid dendritic
cells. The detailed results are shown in Supplementary Table S3.
We also attempted to identify associations between the
prognostic model and the efficacy of six common
chemotherapeutic drugs for the treatment of RCC. The high-
risk score was associated with the lower half-maximal inhibitory
concentration (IC50) of chemotherapeutics such as temsirolimus
(p = 5.4e−15), sunitinib (p < 2.22e-16), pazopanib (p = 0.011),
sorafenib (p = 0.015), bleomycin (p = 0.00017), and axitinib (p =
2.2e−13) (Figures 9B–G). The aforementioned results showed
that this model closely correlated with tumor-infiltrating immune
cells and drug susceptibility.

DISCUSSION

RCC is one of the most common tumors of the urinary system
and is occult and insensitive to chemoradiotherapy. Previous
studies had described that RCC possesses a high number of
genetic alterations and epigenetic alterations (Wang et al.,
2017; Chhabra and Nanjundan, 2020). As the major epigenetic
modification, DNA methylation studies have become a research
hotspot in many cancers, specifically in RCC (Li and Qian, 2019).

In this study, we found that DNA methylation was associated
with specific clinical characteristics and hallmark features of

TABLE 1 | Multivariate Cox regression analysis of eight DEMDGs.

Id Coef HR HR.95L HR.95H p Value

CLDN7 −1.577 0.206 0.07 0.602 0.003
LCP2 −3.619 0.026 0.006 0.115 0.00E + 00
NMI 1.686 5.401 1.16 25.149 0.031
PPP1R18 1.695 5.449 1.664 17.839 0.005
APOL1 1.365 3.917 1.032 14.862 0.044
FMNL1 2.313 10.114 1.882 54.327 0.006
FAXDC2 −0.977 0.376 0.144 0.977 0.044
SHC1 2.007 7.444 1.106 50.104 0.039

Coef, coefficient; HR, hazard ratio; CI, confidence interval.
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FIGURE 6 | Verification of expression levels of eight DEMDGs in vitro. Verification of expression levels of eight DEMDGs in vitro (A–H) Expression levels of eight
DEMDGs in HEK-293 cells and RCC cells. (I–O) The representative protein expression of the eight DEMDGs in normal kidney tissue and RCC. Data were from the
Human Protein Atlas database. FAXDC2 was not found in the database. *p < 0.05, **p < 0.01, ***p < 0.001. ns, no sense.
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RCC. We selected 5,198 DEGs from normal samples and RCC
samples. Then, 270 MDGs of RCC were identified by using the
MethylMix algorithm. We identified 146 DEMDGs by
intersecting 5,198 DEGs and 270 MDGs. The consensus
clustering based on 146 DEMDGs could be used to predict the
prognosis of RCC, and the clusters were associated with the
immune microenvironment of RCC. The RCC patients were
successfully divided into two clusters based on the 146
DEMDGs, and patients of different clusters had different
clinical features, methylation levels, and gene expression levels.
The OS of patients in cluster 2 was significantly longer than those
in cluster 1. The immune status, immune score, immune
checkpoints, and infiltrating percentage of immune cells in

two clusters also showed significant differences. Two clusters
had different survival rates for the following possible reasons. 1)
Aberrant DNA methylation could contribute to tumor
progression due to gene aberrant transcriptional responses
(Yang et al., 2019). Aberrant DNA methylation patterns are a
feature of tumor development (Xu et al., 2012). 2) Tumor-
infiltrating immune cells of RCC could influence the prognosis
and progression of tumors (Xing et al., 2020). Additionally,
cluster 1 had the higher immune score and immune cell
infiltration. Studies were reporting that high immune scores,
as well as high infiltration of immune cells, were associated
with poor prognosis, which was similar to our results (Deng
et al., 2020). We identified 106 DEGs from cluster 1 to perform

FIGURE 7 | Enrichment analysis of 8 DEMDGs. (A) Biological processes enriched in the high-risk groups. (B) Biological processes enriched in the low-risk groups.
(C) Signaling pathways enriched in the high-risk group. (D) Signaling pathways enriched in the low-risk group. (E) GO enrichment analysis of 8 DEMDGs in biological
process. (F) KEGG enrichment analysis of 8 DEMDGs.
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further analysis. Many results of biological processes were
significantly enriched in immunity, including positive
regulation of I-kappa B kinase/NF-kappaB signaling and the
leukotriene D4 metabolic process. This provided further
evidence that the different immune statuses of two clusters
may be the possible cause for different survival statuses.

Subsequently, eight DEMDGs that were significantly
associated with the prognosis of patients with RCC were also
identified. We then constructed an eight DEMDG-related
prognostic model to predict the prognosis of stratified patients
with RCC. The identified signature was integrated with clinical
features to establish the composite prognostic nomogram, which

FIGURE 8 | Assessment of the accuracy of the prognostic model. (A, B)Univariate (A) andmultivariate (B)Cox regression analyses for the relationship between risk
score and clinical features. (C) Construction of the nomogram model. (D–F) The calibration curves of 1, 3, and 5 years in the nomogram. (G) Patients with low-risk, M0
stage, and aged <65 years, according to the web survival rate calculator (95% CI 69–83%). (H) 95% confidence interval according to the web survival rate calculator.
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reliably demonstrated accurate prognostic predictions for the
patients. Finally, we identified the clinical outcomes, immune
infiltration, and drug response features associated with the
prognostic signature. Further, qRT-PCR analysis validated the
eight DEMDG expressions’ tendency in RCC cell lines. To
determine the clinical relevance of eight DEMDGs, HPA
clinical specimens were used to analyze the proteins’
expression encoded by these eight genes. The risk score was
also calculated based on the gene expression and regression
coefficients of each gene. Patients were divided into high-risk
groups and low-risk groups based on their risk scores. Patients in
the low-risk groups had a longer overall survival than those in the
high-risk groups (p < 0.001). We used GSEA to confirm the
signaling pathways where the genes were enriched in the high-
and low-risk groups. The high-risk groups were mainly enriched
in immune-related processes. Then, we performed GO analysis
and KEGG analysis on the eight DEMDGs. We noted that the BP
group of GO analysis was mainly enriched in immune-related
processes. These results suggest a close relationship between the
prognosis and immune status in RCC. The multivariate Cox
regression analysis results indicated that our prognostic model
was unaffected by clinical features. We confirmed the prognostic
value of the prognostic model built with eight DEMDGs. The risk
score of the eight DEMDG-related prognostic model was a stable,

independent prognosis factor. Moreover, we established a
composite nomogram by integrating the eight DEMDG-related
prognostic model with traditional stratifying factors (age and M
stage). The dynamic nomogram showed improved prognostic
accuracy than the prognostic model. These results indicate that
the prognostic model is a powerful tool for predicting the
prognosis of patients with RCC.

We further explored the relationship between tumor-
infiltrating immune cells and the risk score with seven
common acceptable methods of estimating the infiltrating
immune cells, including TIMER (Bu F, 2021), CIBERSORT
(Bu et al., 2021), xCell (Oshi et al., 2021), quanTIseq
(Finotello et al., 2019), MCPcounter (Li et al., 2021), EPIC
(Zeng et al., 2021), and CIBERSORT-ABS (Tamminga et al.,
2020). The synthetical analysis showed that the risk score was
more positively related to tumor-infiltrating immune cells.

Finally, we investigated the relationship between the signature
and drug response to promote personalized treatment decisions. To
date, immune checkpoint inhibitors have been approved for RCC
treatment. However, due to the existence of a highly dynamic,
adaptive, and heterogeneous tumor microenvironment and due
to the glucose and lipid metabolism in RCC, this cancer may be
accompanied by various types of resistance to TKIs and ICIs.
Therefore, it is critical to find new biomarkers for appropriate

FIGURE 9 | Estimation of tumor-infiltrating cells and drug susceptibility by the prognostic model. (A) Spearman correlation analysis between risk score and tumor-
infiltrating immune cells. (B–G) The model had the potential to predict chemosensitivity because a high risk score was associated with a lower half-maximal inhibitory
concentration (IC50) of chemotherapeutics such as temsirolimus (p = 5.4e−15), sunitinib (p < 2.22e-16), pazopanib (p = 0.011), sorafenib (p = 0.015), bleomycin (p =
0.00017), and axitinib (p = 2.2e−13).
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patient selection for immunotherapy. The results showed patients
with low risk scores might benefit from these drugs. Our signature
may further aid the design of a more reasonable and effective
treatment regimen, contributing to precision therapy for
individual patients with different risk levels. Here, this study
demonstrated a novel prognostic model constructed by eight
DEMDGs that could predict prognosis for patients with RCC
and might help distinguish those who could benefit from
antitumor immunotherapy.

CONCLUSION

To summarize, our study found that DNA methylation was
associated with specific clinical outcomes and identified 146
DEMDGs in RCC. The eight DEMDGs that were significantly
associated with the prognosis of patients with RCC were also
identified. We utilized the eight DEMDGs to construct a new
OS-related prognostic model for early diagnosis of RCC, and the
risk score was significantly correlated with prognosis, immune
infiltration, clinical features, and drug sensitivity. The pathway
activation underlying the signature was also identified. This study
has several strengths. First, we took TCGA dataset and the GTEx
dataset together to perform analysis, overcoming the short plank of
smaller numbers of normal samples in TCGA dataset. Second, we
broke the limitations of previous studies by analyzing all pathological
types of RCC instead of the main pathological type. Third, we used
the web-based survival rate calculator to validate the predictive
accuracy of the prognostic model. However, our study has its
limitations as well. First, we used only two clinical characteristics
(age and M stage) to establish the composite nomogram. Then, the
response of immunotherapy and chemotherapy should be further
verified by clinical data in other cohorts. Finally, our findings still
need to be demonstrated by experimental methods to further
confirm the methylation level of eight mRNAs. We will
incorporate this work into future research.
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