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Background. Dysbiosis of intestinalmicrobiotamay be linked to pathogenesis of obesity andmetabolic disorders.Objective.,is study
compared the gutmicrobiome of obese,ai children with that of healthy controls and examined their relationships with host lifestyle,
adiposity, and metabolic profiles. Methods. ,is cross-sectional study enrolled obese children aged 7–15. Body composition was
evaluated using bioelectrical impedance analysis. Stool samples were analyzed by 16S rRNA sequencing using the Illumina MiSeq
platform. Relative abundance and alpha- and beta-diversity were compared with normal-weight ,ai children from a previous
publication using Wilcoxon rank-sum test and ANOSIM. Relationships of gut microbiota with lifestyle activity, body composition,
and metabolic profiles were assessed by canonical correlation analysis (CCA) and Spearman correlation. Results. ,e study enrolled
164 obese children with a male percentage of 59%. Mean age was 10.4± 2.2 years with a BMI z-score of 3.2± 1. ,e abundance of
Bacteroidetes and Actinobacteria were found to be lower in obese children compared to nonobese children. Alpha-diversity indices
showed no differences between groups, while beta-diversity revealed significant differences in the family and genus levels. CCA
revealed significant correlations of the relative abundance of gut microbial phyla with sedentary lifestyle and certain metabolic
markers. Univariate analysis revealed that Actinobacteria and Bifidobacterium were positively correlated with HDL-C and negatively
correlated with body weight and screen time. Additionally, Actinobacteria was also negatively associated with fasting insulin and
HOMA-IR. Lactobacillus showed positive correlation with acanthosis nigricans and adiposity. Cooccurrence analysis revealed 90
significant bacterial copresence and mutual exclusion interactions among 43 genera in obese children, whereas only 2 significant
cooccurrences were found in nonobese children.Conclusions.,e composition and diversity of gut microbiota in obese,ai children
were different from those of their normal-weight peers. Specific gutmicrobiota were associated with lifestyle, adiposity, andmetabolic
features in obese children. An interventional study is needed to support causality between specific gut microbiota and obesity.
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1. Introduction

Obesity is a major health concern with a dramatic increase in
both developed and developing countries. According to the
World Health Organization (WHO), over 1.6 billion adults
are overweight, and more than 400 million adults are obese
[1]. ,e worldwide prevalence of obesity in children and
adolescents is also rapidly rising. In,ailand, 7.6%, and 9.0%
of children and adolescents aged 3 to 18 years are overweight
and obese, respectively [2]. Obese children are predisposed
to develop severe comorbidities including type 2 diabetes,
dyslipidemia, metabolic syndrome, and cardiovascular
diseases [3].

While it is generally accepted that the development of
obesity is caused by gene-environment interactions, phys-
iological and environmental predispositions underlying
obesity, and associated metabolic disorders are still unclear.
Recent studies have suggested that intestinal microbiota is
possibly linked to host-microbe interactions regarding en-
ergy harvest and regulation and plays a crucial role in the
pathogenesis of obesity [4, 5]. ,e fundamental role of gut
microbiota in regulation and pathogenesis of metabolic
disorders has attracted great research interest in recent years.

Differences in gut microbial communities are correlated
with obesity, which can lead to a reduction in the diversity of
gut microbiota [5, 6]. Previous studies showed that obesity
was associated with a specific profile of gut microbiota,
including an increased Firmicutes/Bacteroidetes ratio [7, 8].
Other studies revealed significant associations between an
increase in some bacterial groups, such as Lactobacillus [9]
and Faecalibacterium prausnitzii, and obesity [10]. In
contrast, Bifidobacterium was associated with leanness
[10, 11]. Previous reports also detected gut microbial shifts in
obese children. Gut microbiota composition was signifi-
cantly different between obese Korean children and their
healthy counterparts [8]. It was also demonstrated that the
gut microbiota composition of obese and normal-weight
Chinese children differed [7, 12]. Moreover, the associations
between some gut bacterial phylum and genus with clinical
features were reported [7, 8, 12]. ,e extensive diversity of
gut microbiomes in racial groups could be explained by
various factors including diet, lifestyle, genetic background,
and geological locations [7, 13]. To the best of our knowl-
edge, there are no such data for obese ,ai children.

In the present study, we aimed to determine the com-
position and diversity of gut microbiota in obese ,ai
children compared to those of nonobese children. A sec-
ondary aim was to identify associations of composition and
diversity of the microbiota with children’s body composi-
tion, metabolic profiles, and lifestyle activity.

2. Methods

2.1. Subjects. ,is investigation was a cross-sectional study
conducted from August 2017 to July 2020. ,e inclusion
criteria were (1) children aged 7 to 15 years and (2)
BMI>median + 2 SD based upon WHO growth reference
[14]. ,e exclusion criteria were syndromic obesity and
endocrine causes of obesity (e.g., hypothyroidism and

growth hormone deficiency). Children were recruited for an
obesity intervention trial at the King Chulalongkorn Me-
morial Hospital, Bangkok, ,ailand. ,e study was ap-
proved by the Institutional Review Board for Human
Subjects in the Faculty of Medicine, Chulalongkorn Uni-
versity (IRB 240/60). Written informed consent was ob-
tained from all participants and their legal guardians. We
compared the gut microbiota composition and diversity in
164 obese ,ai children from our study to previously
published data obtained from 45 nonobese ,ai children
[15]. ,e mean age of our cohort was 10.4± 2.2 years, and
59% of the subjects were male. ,emean age, weight, height,
and BMI for the nonobese children who lived in urban
area (Bangkok, n� 17) and in rural area (Buriram, n� 28)
were 10.5± 0.7 years, 45.6± 12.2 kg, 145.4± 11.1 cm, and
21.3± 4.0 kg/m2, respectively, and 9.8± 0.6 years, 34.4± 8.0 kg,
139.5± 7.4 cm, and 17.4± 2.9 kg/m2, respectively. Males were
81% and 43% of nonobese children in Bangkok and Buriram,
respectively. Microbiome analysis in the previous study was
completed on the variable region, V1–V2, of 16S rRNA se-
quencing using Illumina MiSeq v3 technology (Illumina Inc.,
San Diego, CA, USA).

2.2. Assessment of Dietary Intake, Physical Activity, and
Exercise. Dietary intake was evaluated by a dietician using
24-hour dietary recall. ,e daily energy, percentage of en-
ergy distributions, fiber intake, and nutrients intake were
calculated using INMUCAL-Nutrients Version 3 (the In-
stitute of Nutrition, Mahidol University Calculation soft-
ware) [16]. Physical activity and sedentary lifestyle were
assessed by questionnaires and interviews by a research
assistant.

2.3. Anthropometry and BodyComposition. Anthropometric
measurements, including body weight, height, waist, and hip
circumferences, were collected by trained personnel. BMI
was calculated as weight in kilograms divided by height
squared inmeters (kg/m2), and BMI z-scores were calculated
based on WHO 2007 growth reference using the WHO
AnthroPlus program [17]. Body composition was measured
by bioelectrical impedance analysis (BIA) using the InBody
770 (InBody Co., Ltd., Chungcheongnam-do, Korea). Fat
mass index (FMI) and fat-free mass index (FFMI) were
calculated in the same manner as BMI [18].

2.4. Metabolic Profiles. Venous blood was obtained after a
12-hour fast to evaluate biochemical parameters. Fasting
plasma glucose (FPG) was measured by the hexokinase
method (Glucose, Architect; Abbott Laboratories, Irving,
TX). Fasting insulin (FI) was measured using Immulite/
Immulite 1000 Insulin assay (Immulite Analyzer; Abbott
Laboratories). Serum total cholesterol, HDL-cholesterol
(HDL-C), and triglycerides were measured by enzymatic
colorimetric assay (Cholesterol, Architect; Ultra HDL, Ar-
chitect; and Triglyceride, Architect; Abbott Laboratories).
LDL-cholesterol (LDL-C) was measured by homogeneous
liquid selective detergent (Direct LDL, Architect; Abbott
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Laboratories). Serum alanine aminotransferase (ALT) was
determined according to the standard of International
Federation of Clinical Chemistry (Alanine Aminotransfer-
ase, Architect; Abbott Laboratories). Homeostatic model
assessment for insulin resistance (HOMA-IR) was calculated
from (FI× FPG)/22.5, where FI and FPGwere fasting insulin
concentration (mU/l) and fasting plasma glucose (mmol/l),
respectively [19].

2.5. Fecal Collection, DNA Isolation, and 16S PCR
Amplification. Participants were instructed to collect fecal
samples in their households. Sterile stool collection kits,
containers, and temperature-controlled packages were
provided. A fresh stool was placed into a half of 50ml sterile
container and double-sealed in a zip-lock bag. ,e sample
was stored in the freezer compartment of a home refrig-
erator, delivered to the laboratory within 24 hours, and
stored at −80°C until use. Fecal samples were resuspended in
InhibitEX Buffer (QIAGEN, Germany), incubated at 70°C
for 5min, and centrifuged at 20, 000 × g for 1min. Super-
natant was collected for DNA isolation using QIAamp fast
DNA Stool Mini Kit (QIAGEN, Germany) according to the
manufacturer’s instructions. DNA integrity and concen-
tration were quantitated using the Qubit dsDNA HS assay
(Life Technologies, USA) on a Qubit 4 Fluorometer (Life
Technologies, USA). ,e V3–V4 hypervariable region of the
16S ribosomal RNA (rRNA) gene was PCR-amplified using
specific primers [20]. ,e PCR products were subjected to
gel purification using the NucleoSpin Gel and PCR Clean-
Up Kit (Macherey-Nagel, Germany) according to the
manufacturer’s instructions.

2.6. 16S Sequencing and Data Analysis. ,e DNA amplicon
of the bacterial 16s rRNA gene was PCR-amplified using a
specific primer targeting the V3–V4 region. ,e PCR
products were run on agarose gel electrophoresis followed
by gel extraction, and purification using the NucleoSpin Gel
and PCR Clean-Up Kit (Macherey-Nagel). ,e Illumina’s
indices were added to both ends of the PCR products to
allow for multiplexing samples. Indexed PCR products were
then cleaned using Agencourt AMPure XP beads (Beckman
Coulter Inc.). DNA concentration was quantitated using a
Qubit dsDNA HS Assay Kit (Life Technologies). ,e exact
size of indexed libraries was checked with QIAxcel capillary
electrophoresis (QIAGEN, Germany) before library pooling,
and sequencing using paired-ends (2× 301 bp) on Illumina
MiSeq with Illumina V3 Reagent Kit.

2.7. Sequencing Data and Taxonomic Analysis. Readings
from Illumina paired-end sequencing were trimmed,
merged, filtered, and subsequently assigned to taxonomic
classes using the QIIME2 platform release 2020.8 [21]. Initial
quality screening was performed using FastQC [22] to
identify the number of base positions with low confidence.
,e first 10 positions of all reads, the last 30 positions of
forward reads, and the last 70 positions of reverse reads were
trimmed. Reads with more than two expected errors in

either the forward or reverse strand and reads that could be
mapped to multiple origins (chimeric reads) were removed
using the DADA2 [23] module in QIIME2. On average, 30%
of the 267,000 reads in each sample passed the quality fil-
tering step and 24.75% passed the chimera screening. We
found that trimming more or fewer read positions both led
to significantly less number of reads that passed the whole
quality filtering pipeline. While trimming reads more ag-
gressively yielded reads with higher quality (40% passed the
quality filtering step), many reads became so short that the
forward and reverse fragments did not overlap (only 10%
passed the merging step). Conversely, trimming fewer base
positions generated reads with unacceptable quality (only
15% passed the quality filtering step). ,e DADA2 module
also clustered reads into 7,211 representative sequences.

2.8. Taxonomic Class Assignment. Representative sequences
that passed the quality filtering were assigned to taxonomic
classes using the silva-132-99-nb pretrained Naı̈ve Bayes
model available on QIIME2. ,is classifier was trained using
full-length 16S rRNA sequences from SILVA database [24].
,e confidence threshold was set at 0.7 as default. We also
built a custom taxonomic classifier using only the V3–V4
hypervariable regions of 16S rRNA to assign sequences to
taxa but did not observe any noticeable differences from the
results obtained using the prebuilt model. Overall, more
than 98% of the 7,211 representative sequences could be
mapped at phylum, class, order, and family levels, while 87%
could be mapped to a genus and 35% could be mapped to a
species. Our subsequent statistical analyses focused on the
phylum and genus levels.

2.9. TaxonomicComposition andDiversityAnalysis. Analysis
of composition of microbiomes (ANCOM) [25] was used to
test whether taxonomic compositions at the phylum, family,
and genus levels differed significantly between obese and
nonobese ,ai children [15]. ANCOM evaluates multiple
per-taxon Wilcoxon rank-sum tests simultaneously to ad-
dress the fact that changes in abundance of one taxon would
affect the abundance of others because taxonomic compo-
sition sums to one. Analysis of similarities (ANOSIM) [26]
was used to test whether beta-diversities between obese and
nonobese children significantly differed as measured by
Bray–Curtis dissimilarity. To identify the most appropriate
dataset of nonobese ,ai children to be compared with our
obese cohort using the described ANCOM and ANOSIM
methods, several past gut microbiome studies of ,ai
children were examined, and the Kisuse et al. study [15] was
selected because it showed no significant difference in phyla
profiles from our dataset.

2.10. Diversity Calculations. ,e sample-taxa frequency ta-
ble was re-summarized at the phylum and genus levels by
summing read counts belonging to the same phylum or
genus together. Operational taxonomic units (OTUs) with
unassigned phylum or genus were discarded from further
analyses at the respective levels (i.e., OTUs with unassigned

Journal of Nutrition and Metabolism 3



genus but assigned phylum were included in the analyses at
the phylum level). Shannon, Simpson, and Chao1 alpha-
diversity indices were calculated for each sample based on
their mathematical definitions [27]. To evaluate beta-di-
versity structure, a phylogenetic tree containing all identified
taxa was reconstructed using the phylogeny module in
QIIME2. UniFrac distances between samples were calcu-
lated using the diversity-lib module in QIIME2.

2.11. Cooccurrence Network Reconstruction. For cooccur-
rence analysis, rare genera with average abundance of less
than 0.1% were excluded because they are typically identified
with very few reads, and their abundances may not be
sufficiently estimated by our sequencing data. ,is filter
reduced the number of genera from 296 to 72, respectively.
Cooccurrence of two genera across 164 patient samples was
calculated using Jaccard index which is the ratio of the
number of samples that contain both genera to the number
of samples that contain at least one of the genera. A
hypergeometric model [28] was then used to test whether
cooccurrence of each pair of phyla or genera was significant.
A Bonferroni adjusted P value cutoff at 0.05 was applied.

2.12. Statistical Analysis. Descriptive data analysis was
performed using SPSS Statistics version 23 (SPSS Inc.,
Chicago, IL, USA). ,e normality of data was tested using
the Shapiro–Wilk test. Normally distributed data were
presented as means with SD, while non-normally distributed
data were reported as medians with quartiles (Q1, Q3). A P

value of less than 0.05 was considered as statistically sig-
nificant. Spearman rank correlations were calculated be-
tween the abundances of each taxon and the values of each
clinical variable across 164 samples. P values for each
correlation value were estimated using a permutation test
(5,000 shuffle) against the null hypothesis in which there was
no association between the two variables. ,e overall false
discovery rate was controlled within 5% by Benjami-
ni–Hochberg procedure. Partial Spearman correlations were
calculated for comparisons between taxa and metabolic
profiles adjusted for effects from age, sex, and BMI using the
partial_corr function in the pingouin Python library. Ca-
nonical correlation analyses (CCA) between microbial
abundances and clinical variable groups were performed
using CCA function in scikit-learn Python library [29].
Significance of each CCA component was evaluated using
Wilks’ lambda [30] which tests the null hypothesis that the
n-th canonical correlation and all subsequent correlations
are zero. CCA were performed on the clinical and metabolic
variable groups.

3. Results

3.1. Participants’ Demographic Data, Dietary Intake, Physical
Activity, andMetabolicProfiles. A total of 164 obese children
were enrolled in this study.,e demographic data are shown
in Table 1. Mean age and BMI z-score were 10.4± 2.2 years
and 3.2± 1.0, respectively. Males represented 59% of par-
ticipants. Acanthosis nigricans was detected in 80% of

children, and 63.6% were at Tanner stage 1. Mean fat mass
index (FMI), fat-free mass index (FFMI), and body fat
percentage were 11.8± 2.9, 16.1± 2.1 kg/m2, and 41.7± 5.1%,
respectively. Mean energy intake was 1,450± 537.9 kcal/day.
Dietary fiber intake was about 2.8 g/1000 kcal. Caloric dis-
tribution was 48% carbohydrate, 16% protein, and 36% fat.
,e participants were classified into participating in high
(49%), moderate (40%), and low (8%) intensity exercise
regimens. Only 3% of participants did not report doing any
exercise.,e questionnaire on lifestyle patterns revealed that
the median time spent for screen time, such as watching
television or using electronic devices, was 7 (Q1 2, Q3 8)
hours/day during weekdays, and 8 (4, 10) hours/day during
weekends. Median sedentary activity was 4 (2, 7) hours/day.
,e prevalence of high SBP, hypercholesterolemia, high
LDL-C, low HDL-C, and hypertriglyceridemia was 9%, 37%,
42%, 10%, and 11%, respectively.

Table 1: Demographic data of obese participants (n� 164).

Parameters
Age, years 10.4± 2.2
Male gender (%) 59
Total nutrient intake

Energy intake (kcal/day) 1,450± 537.9
Protein intake (g/kg/day) 1.6± 0.6
Dietary fiber (g/1,000 kcal) 2.8± 2
Fat intake (g/day) 56.1± 25
Energy distribution (%C : P : F) 48 :16 : 36

Exercise
Low intensity (min/wk)1 75 (0, 150)
Moderate intensity (min/wk)2 60 (5.5, 150)

Sedentary activity (hr/day) 4 (2, 7)
BMI for age z-score 3.2± 1
Waist circumference (cm) 89.7± 10.7
SBP (mmHg) 116± 10
Acanthosis nigricans (%) 80
Body composition (BIA)

FMI (kg/m2) 11.8± 2.9
FFMI (kg/m2) 16.1± 2.1
Body fat percentage (%) 41.7± 5.5
Trunk FMI (kg/m2) 5.7± 1.4
VFA (cm2) 129.4± 40.3

Metabolic profiles
Total cholesterol (mg/dL) 189.6± 31.7
LDL-C (mg/dL) 128.9± 31.6
HDL-C (mg/dL) 51.2± 9.6
Triglyceride (mg/dL) 101.6± 41.8
ALT (U/L) 30.4± 24.9
FPG (mg/dL) 82.6± 5.9
FI (mU/L) 14.5± 13.4
HOMA-IR 3.0± 2.7

Data shows means± SD, median (Q1, Q3), or %. 1Low intensity (min/wk)
was walking from home to school or walking from one place to another for
at least 10 minutes. 2Moderate intensity (min/wk) was brisk walking or
riding a bicycle continuously for at least 10 minutes. Sedentary activity was
defined as a type of lifestyle involving little or no physical activity. ALT:
alanine aminotransferase; BIA: bioelectrical impedance analysis; C: cho-
lesterol; FPG: fasting plasma glucose; FI: fasting insulin; FMI: fat mass
index� fat mass (kg)/height (m2); FFMI: fat-free mass index� fat-free mass
(kg)/height (m2); HDL-C: high density lipoprotein cholesterol; HOMA-IR:
Homeostatic Model Assessment for Insulin Resistance; LDL-C: low density
lipoprotein cholesterol; SBP: systolic blood pressure; VFA: visceral fat area.
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3.2. Gut Microbiota Composition and Diversity in Obese#ai
Children. Stool samples were collected from 164 partici-
pants and underwent 16S rRNA sequencing and analyses.
,e alpha-diversity indices (Shannon, Simpson, and Chao1
index) showed no significant differences between obese and
nonobese children. For beta-diversity evaluation, PCoA
based on Bray–Curtis dissimilarity tests was performed and
showed no significant differences at the phylum levels be-
tween obese and nonobese children (Figure 1(a)). ,ere
were significant differences in gut microbial community
structures at the family and genus levels between obese and
nonobese children (P � 0.012 and P � 0.003) (Figures 1(b)
and 1(c)). It should be noted that some of these observa-
tional differences could be due to differences in sample
processing and choice of hypervariable regions between our
study and the comparison study.

,e relative abundance of the bacterial composition by
the phylum and family levels is illustrated in Figure 2(a). In
the obese children, the most abundant bacterial population
at the phylum level was Firmicutes with an average percent
richness of 47.1%. ,e average numbers of Bacteroidetes,
Proteobacteria, Actinobacteria, and Fusobacteria were
34.4%, 14.0%, 2.4%, and 1.0%, respectively. In comparison,
in nonobese children, the dominant gut bacteria were almost
equivalent between Firmicutes and Bacteroidetes at 46.0% of
the total bacterial population. Actinobacteria, Proteobac-
teria, and Fusobacteria were also detected in nonobese
children at relative abundances of 5.2%, 2.7%, and 0.8%,
respectively. ,e obese children had a significantly lower
relative number of Bacteroidetes and Actinobacteria than
the nonobese control (P< 0.001, Wilcoxon rank-sum test).
In contrast, obese children showed significantly greater
abundance of the average proportion of Proteobacteria and
Fusobacteria than the nonobese children at the significant
level (P< 0.001). No significant difference in Firmicutes was

observed between populations. ,e ratio of Firmicutes to
Bacteroidetes (F/B) was not significantly different in obese
children compared to nonobese children. However, the
ANCOM test demonstrated that there were significant
differences between obese and nonobese children in all
bacterial phyla (P< 0.0001).

Among genera-level taxa, the relative abundance of
Bifidobacterium was significantly higher in the nonobese
compared to the obese children (P< 0.0001), while the
abundance of Blautia and Lactobacillus was significantly
lower in the nonobese children (P � 0.0035 and P � 0.0053)
(Figure 2(b)). ,e relative abundance of Collinsella, Lach-
nospiraceae NK4A136 group, and Clostridioides in the
nonobese children was not significantly higher than in the
obese children.

3.3. Associations of Gut Microbiota with Dietary Intake,
Lifestyle Activity, Body Composition, and Metabolic Profiles.
,e association of gut microbiota composition in major
phyla with dietary intake, lifestyle activity, body composition,
and metabolic profiles was determined using CCA function.
,e results showed a significant correlation between the
relative abundance of gut microbial phyla and sedentary
lifestyle (r� 0.64, P< 0.0001) (Supplementary Figure S1(a)).
,e gut microbial phyla were also significantly associated
with certain metabolic markers, including FPG, TG, HDL-C,
LDL-C, and ALT (r� 0.31, P � 0.023) (Supplementary
Figure S1(b)). However, no significant relationship between
bacterial composition at the phylum levels with dietary in-
take, BMI z-score, and adiposity was observed.

Any significant correlation of gut microbial phyla,
family, and genus with patient-level variables was examined
by the univariate analysis. At the phyla level, Actinobacteria
was negatively associated with body weight and weekday
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Figure 1: Beta-diversity of bacterial phylum (a), family (b), and genus (c) in obese and nonobese children. PCoA based on Bray–Curtis
dissimilarity was performed with the observation showing no significant difference at the phylum level; however, there were significant
differences in gut microbial community structure at the family and genus levels between obese and nonobese children (P � 0.012 and
P � 0.003). It should be noted that parts of these observations could be due to differences in sample processing and choice of hypervariable
region between our study and previous works. Obese children are shown in orange; nonobese children are shown in blue. PCoA: principal
coordinate analysis.
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Figure 2: Continued.
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screen time (r� −0.16, P � 0.04; r� −0.46, P< 0.0001). No
correlations between any bacterial phyla and adiposity were
observed. After adjusting for the confounding effects from
age, sex, and BMI, Actinobacteria showed the strongest
correlations with metabolic profiles including HDL-C
(r� 0.15, P � 0.025), FI (r� −0.14, P � 0.044), and HOMA-
IR (r� −0.14, P � 0.042). Firmicutes was not correlated with
BMI z-score or any metabolic profiles.

At the genus level, Bifidobacterium was positively cor-
related with HDL-C (r� 0.18, P � 0.013 after accounting for
confounders) but negatively associated with body weight
(r� −0.16, P � 0.017), total energy intake (r� −0.15,
P � 0.021), and screen time (r� −0.40, P � 0.0002) (Fig-
ure 3). Blautia was positively associated with the proportion
of fat in the diet (r� 0.16, P � 0.020). Lactobacillus and
Collinsella showed significant positive correlations with
acanthosis nigricans (r� 0.17, P � 0.019; r� 0.24,
P � 0.001). ,e relationship of gut microbiota at the genus
level with body composition indices showed that Lactoba-
cillus was significantly and positively associated with fat
mass (FM) (r� 0.20, P � 0.009), fat mass index (FMI)
(r� 0.24, P � 0.0002), body fat percentage (r� 0.24,
P � 0.0004), trunk FMI (r� 0.25, P � 0.0002), and visceral
fat area (VFA) (r� 0.22, P � 0.002).

3.4. Cooccurrence Analysis. To explore the interactions be-
tween gut microbiota in obese and nonobese children, a
cooccurrence analysis was performed at the genus level. ,is
analysis revealed 90 statistically significant bacterial

copresence (positive) and mutual exclusion (negative) in-
teractions among 43 genera in obese children (Figure 4(a)
and Table 2). An abundance of genera belonging to Bac-
teroidetes and Firmicutes showed higher positive intra-
phylum cooccurrence in the obese children (P< 0.001,
Wilcoxon rank-sum test). ,e Lachnospiraceae NK4A136
group showed copresence with many other bacteria in obese
children. In contrast, the cooccurrence network at the genus
level for nonobese children showed only two statistically
significant bacterial cooccurrences of Ruminococcaceae
UCG-002 and Eubacterium coprostanoligenes group, and of
Erysipelatoclostridium and Tyzzerella (Figure 4(b)). Com-
pared with 10,000 random networks, bacterial cooccurrence
in the obese children was significantly clustered (P< 0.0001,
cluster coefficient� 0.46).

4. Discussion

,is present study determined the composition and diversity
of gut microbiota in obese ,ai children, compared to
nonobese ,ai children, and examined microbial associa-
tions with clinical and metabolic parameters.

4.1. Bacterial Community and Diversity. ,is study exam-
ined 164 stool samples from obese children and adolescents.
,e results showed that gut microbial alpha-diversity, an
index reflecting the variety of microbial species, from gas-
trointestinal tracts of obese children showed no difference
compared to nonobese children. ,is finding was consistent
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Figure 2: ,e relative abundance of bacterial compositions in obese and nonobese children at the phylum and family levels is shown in (a).
,e inner circle demonstrates the composition at the phylum level, and the outer circle demonstrates the composition at the family level. In
the obese children, the most abundant bacterial population at the phylum level was Firmicutes (47.1%). In the nonobese children, the
dominant gut bacteria contained Firmicutes and Bacteroidetes of about 46.0%.,e obese children contained significantly lower numbers of
Bacteroidetes and Actinobacteria than nonobese controls (P< 0.001, Wilcoxon rank-sum test). Obese children showed a greater average
proportion of Proteobacteria and Fusobacteria than nonobese children (P< 0.001). No significant difference in Firmicutes was observed
between obese and nonobese children. ,e compositional differences in obese and nonobese children at the genus level are shown in (b).
Orange lines indicate the median, and black boxes indicate the 1st–3rd interquartile range. Whiskers extend beyond the interquartile range
by 1.5 times, starting fromQ1 − 1.5∗ (Q3 − Q1) to Q3 + 1.5∗ (Q3 − Q1). Black circles indicate individual outlying data points.,e relative
abundance of Bifidobacterium was significantly higher in the nonobese children than in the obese children (P< 0.0001), but Blautia and
Lactobacillus in the nonobese children were significantly lower than those in the obese children (P � 0.0035 and P � 0.0053).
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with previous studies [7, 31]. However, the beta-diversity
analysis used to assess the heterogeneity of gut microbiota
between samples in each group found significant disparity.
Our PCoA based on a Bray–Curtis dissimilarity matrix
revealed a shifted gut microbiota profile between obese and
nonobese children at the family and genus levels, as in a
previous study [12]. ,is finding indicates that gut microbial
composition might be associated with the pathogenesis of
obesity. ,e subtle difference in beta-diversity that was
detected between both populations at the phylum level is in
contrast to the significant changes in microbial abundance
suggested by Wilcoxon rank-sum test and ANCOM test. As
a result, we further analyzed the relationships of all the
phenotypic data and gut microbiota at the phylum level. We
found sedentary lifestyle and metabolic profiles associated
with certain gut microbiota at the phylum level in obese
population. ,ese observations were supported by signifi-
cant differences in beta-diversity between the obese and
nonobese children at the family and genus levels.

,e results of the gut microbiota composition analysis
showed that the predominant phylum was Firmicutes fol-
lowed by Bacteroidetes, Proteobacteria, Actinobacteria, and
Fusobacteria in obese children, similar to studies in Italy and
Japan [32, 33]. Studies of obese Chinese children and ad-
olescents showed that both Firmicutes and Bacteroidetes
were the two major bacterial taxa with the same relative
abundance [7, 12]. Studies in western countries have ob-
served a similar pattern [31].

Our study revealed a difference in gut bacterial com-
position in obese children compared to nonobese children,
who had both Firmicutes and Bacteroidetes as the pre-
dominant taxa. A difference in Firmicutes abundance be-
tween obese and nonobese children was not found in our
study, as in previous studies [12, 34]. Although the F/B ratio
in the present study had a tendency to be higher in obese
children, it was not significantly different between obese and
nonobese children, similar to other studies [12, 35]. Other
researchers have previously demonstrated that the F/B ratio
significantly increases in obese children [36, 37]. ,ese
inconsistent findings may be explained by the impact of gut
microbiota on obesity being far more complicated than the
imbalance or interaction of only two phyla. We propose that
the F/B ratio might not be a good marker of gut microbiota
in pediatric obesity. Moreover, we found that obese children
had a lower abundance of Actinobacteria but had a higher
abundance of Proteobacteria compared to nonobese chil-
dren. Several microbial genera belonging to these two phyla
have crucial functions in the body, but these differences were
not reported in relevant previous studies in obese children
[8, 12]. In contrast, a study from Mexico showed that obese
children and adolescents had higher relative abundance of
both Actinobacteria and Proteobacteria [31]. ,ese incon-
sistent results may be due to differences in genetic, envi-
ronmental, and dietary factors. At the genus level,
Bifidobacterium was present in significantly lower abun-
dance in obese children, as found in a previous study [12].
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However, Lactobacillus and Blautia showed higher abun-
dance in obese children, as in the study fromMexico [31, 38].

4.2. #e Relationship of Gut Microbiota with Lifestyle and
Metabolic Profiles in Obese Children. ,e relationship of gut
microbiota with lifestyle andmetabolic profiles was observed
in this study. Healthy dietary habits and physical activity
have been shown to impact obesity and metabolic outcomes
[39]. Recent studies have also demonstrated the beneficial
effects of exercise on reshaping microbiota composition in
animal and adult models [40] suggesting that increased
exercise and decreased sedentary activity in obese patients
would be a potential strategy to modulate intestinal bacterial
composition and improve metabolic status.

CCA results found significant correlations of certain gut
microbial phyla with sedentary activity and metabolic
profiles. ,ese findings could give crucial insight into the
host-microbe relationship. ,erefore, we further explored
the association between specific gut microbiota and those
variables by univariate analysis. A positive correlation of
Actinobacteria and HOMA-IR was consistent with a pre-
vious study [8]. ,is present study is the first to report on a

relationship between Actinobacteria and sedentary lifestyle.
Previous studies in obese children have reported a corre-
lation of Firmicutes and Bacteroidetes with obesity and
certain metabolic profiles, but no association with lifestyle
activity has been found.

,e associations at the genus level showed that Bifido-
bacterium was positively correlated with HDL-C, which was
compatible with Actinobacteria as it belongs to this phylum.
However, Bifidobacterium was negatively correlated with
body weight, total energy intake, and screen time. ,ese
results were consistent with a previous study showing that
Bifidobacterium decreased in obese individuals compared to
normal-weight people [41]. ,e researchers demonstrated
that a high-fat diet leads to a decrease in the number of
Bifidobacterium spp. and caused inflammation, obesity,
insulin resistance, while the number of Bacteroides and
Clostridium spp. increased with such a diet [42, 43]. ,e
present study found a negative correlation between Bifi-
dobacterium and total energy intake that might indirectly
result from high-fat intake by obese children.

Regarding lifestyle activity, the use of electronic devices
is becoming a major driver in the reduction of physical
activity in the context of pediatric obesity [3]. ,e present
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Figure 4: Cooccurrence analysis was performed to determine the interactions between gut microbiota at the genus level in obese (a) and
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Table 2: List of bacterial genera for Figure 4.

Obese children (Figure 4(a)) Nonobese children (Figure 4(b))
No. Bacterial genus No. Bacterial genus
1 [Eubacterium]_coprostanoligenes_group 1 [Eubacterium]_coprostanoligenes_group
2 [Eubacterium]_eligens_group 2 Erysipelatoclostridium
3 [Eubacterium]_hallii_group 3 Tyzzerella
4 [Eubacterium]_ventriosum_group 4 UCG-002
5 [Ruminococcus]_gauvreauii_group
6 [Ruminococcus]_gnavus_group
7 [Ruminococcus]_torques_group
8 Acidaminococcus
9 Acinetobacter
10 Agathobacter
11 Akkermansia
12 Alistipes
13 Alloprevotella
14 Anaerostipes
15 Bacteroides
16 Barnesiella
17 Bifidobacterium
18 Bilophila
19 Blautia
20 Butyricicoccus
21 CAG-352
22 Catenibacterium
23 Christensenellaceae_R-7_group
24 Clostridioides
25 Clostridium_sensu_stricto_1
26 Colidextribacter
27 Collinsella
28 Coprococcus
29 Desulfovibrio
30 Dialister
31 Dorea
32 Enterobacter
33 Erysipelotrichaceae_UCG-003
34 Escherichia-Shigella
35 Faecalibacterium
36 Flavonifractor
37 Fusicatenibacter
38 Fusobacterium
39 Haemophilus
40 Holdemanella
41 Incertae_Sedis
42 Klebsiella
43 Lachnoclostridium
44 Lachnospira
45 Lachnospiraceae_NK4A136_group
46 Lachnospiraceae_UCG-010
47 Lactobacillus
48 Megamonas
49 Megasphaera
50 Monoglobus
51 Muribaculaceae
52 NK4A214_group
53 Odoribacter
54 Oscillibacter
55 Parabacteroides
56 Paraprevotella
57 Parasutterella
58 Peptostreptococcus
59 Phascolarctobacterium

10 Journal of Nutrition and Metabolism



study found that the long-time use of electronic devices in
obese children averaged 6–8 hours a day. Increased use of
electronic devices was associated with a decrease in Bifi-
dobacterium. One study reported that electronic device
usage close to bedtime may disrupt sleep patterns, a factor
associated with obesity [44]. ,is underscores that all factors
including diet, lifestyle, and physical activity, not just
microbiota, should be taken into account in understanding
obesity [45].

We found that Lactobacillus was correlated with acan-
thosis nigricans and adiposity including FM, FMI, body fat
percentage, trunk FMI, and VFA with an increased relative
abundance of this genus in obese children.,ese results were
consistent with previous studies finding that Lactobacillus
was associated with weight gain in humans [9, 46, 47] and
animals [46]. Additionally, previous studies using probiotics
such as Lactobacillus spp. reported weight gain with the use
of L. rhamnosus. Some studies have shown an association
between L. reuteri and obesity [48, 49]. One possible reason
for this weight gain is that L. reuteri might improve the
ability to absorb and process nutrients in the gut [50]. In
contrast, some Lactobacillus species were associated with
weight loss both in obese humans and in obese animals
[51, 52], indicating that different Lactobacillus species
produce different effects on weight that may be host-specific.
Further studies are needed to clarify the role of Lactobacillus
in human energy harvest and weight regulation.

Bacteria of the genus Collinsella were associated with
acanthosis nigricans in obese children in our study.,is genus
was demonstrated to be positively correlated with insulin [53]
and elevated in type 2 diabetes patients [54]. High levels of
Collinsellamight imply the possibility of insulin resistance in
obese childrenwhichwould support our findings.Blautiawas
associated with fat distribution of total energy intake in obese
children.A previous study found that this genuswas related to
a high-fat diet causing obesity in mice [55].

4.3. Cooccurrence of Gut Microbiota. Cooccurrence analysis
of gut microbiota revealed a significant difference between
obese and nonobese children. We found that obese children

had denser clustering of interactions between gut microbial
genera that were similarly observed in previous studies
[8, 31, 32]. Lachnospiraceae NK4A136 group, a member of
family Lachnospiraceae and phylum Firmicutes, showed the
highest number of positive interactions, which suggested
that this genus member has mutualistic relationships with
other bacteria. ,e previous report showed that the mem-
bers of the Lachnospiraceae family were correlated with type
2 diabetes and obesity [56, 57]. Moreover, a study showed
that Lachnospiraceae-co-abundance groups were associated
with increased risk of obesity [58]. Lachnospiraceae is
known to play a role in SCFA production [59]. Although
exogenous SCFA introduction could attenuate body fat
deposition while promoting fat oxidation, SCFAs derived
from gut microbiota could provide additional energy for the
host [60]. A previous study reported that fecal transplant
from obese to germ-free mice increased SCFA contents
associated with their body weight gain [11]. In lipid meta-
bolism, SCFAs could be the substrate of long-chain fatty
acids in triglyceride synthesis. Accordingly, it was not
surprising that our study demonstrated the presence of
Lachnospiraceae and others in the obese group compared to
the nonobese group. In fact, Lachnospiraceae could be
enriched by high-fat diets. An increase of this bacterial family
is likely to promote complex carbohydrate breakdown into
SCFAs [59]. In obese children, Lachnospiraceae may be
enriched by the host’s diet, especially high-fat contents,
leading to increased efficiency in SCFA production, and more
energy extraction to the host. Two negative interactions in-
dicating competition between microbial taxa were also
identified: one between Prevotellaceae UCG-003 and Tyz-
zerella and one between Coprococcus and Ruminococcus
gnavus. Similar to previous reports [8, 31, 32], nonobese
children showed only two cooccurrences and no mutual
exclusion interactions. ,is may be explained by the fact that
there is no common condition among the nonobese children
that would make specific microbial cooccurrence remarkable.
Moreover, large and dense networks may help a particular
group of microbiota gain ecological dominance for more
space and regulate host-microbe interactions inside the gut of
obese individuals.

Table 2: Continued.

Obese children (Figure 4(a)) Nonobese children (Figure 4(b))
No. Bacterial genus No. Bacterial genus
60 Prevotella
61 Romboutsia
62 Roseburia
63 Ruminococcus
64 Streptococcus
65 Subdoligranulum
66 Sutterella
67 Tyzzerella
68 UBA1819
69 UCG-002
70 UCG-003
71 Uncultured
72 Veillonella
Our taxonomy annotation database assigned Muribaculaceae as the genus names to member of this family.
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4.4. Strengths and Limitations of the Study. ,is study is the
largest investigation documenting the gut microbiota
composition in obese children. Since it is limited to only,ai
children, the study is less influenced by ethnicity and some
environmental factors. In addition to comparing the
microbiota composition and diversity between obese and
nonobese children, the relationships of microbial compo-
sition to clinical data, dietary intake, lifestyle activity, body
composition, and metabolic profiles analyzed through both
CCA and univariate analysis were determined. We also
presented the results of a cooccurrence analysis of the gut
microbiota in obese and nonobese children that can lead to
an increased understanding of mutualistic relationships
between bacterial genera. ,e limitations of this study in-
clude a small sample of nonobese children from the other
study with some limitations due to the difference in
hypervariable regions analyzed. Some children lived in the
same area, but some did not. In addition, since the study
employed a cross-sectional study design, support for any
notion of causality is limited. ,erefore, an interventional
study to normalize dysbiosis of gut microbiota as a thera-
peutic target of pediatric obesity and its complications is
warranted.

5. Conclusions

,e composition of gut microbiota in obese ,ai children
differed from that in nonobese children. ,e beta-diversity
also showed significant differences in gut microbial com-
munity structure between obese and nonobese children. Our
study found significant mutualistic relationships between
bacterial genera in the gut microbiomes of obese children
that are completely absent in nonobese children. In obese
children, Actinobacteria had a negative association with
clinical features linked to obesity, sedentary lifestyle, and
metabolic profiles related to insulin resistance, which was
compatible with the specific genus Bifidobacterium. Lacto-
bacillus also showed a positive relationship with insulin
resistance, acanthosis nigricans, and adiposity. Restoring gut
microbial dysbiosis could be part of a therapeutic strategy to
target pediatric obesity. Any interventions to modulate
beneficial microbes and their metabolites could be
advantageous.
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