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Abstract: Wearable technologies are known to improve our quality of life. Among the various
wearable devices, shoes are non-intrusive, lightweight, and can be used for outdoor activities. In this
study, we estimated the energy consumption and heart rate in an environment (i.e., running on a
treadmill) using smart shoes equipped with triaxial acceleration, triaxial gyroscope, and four-point
pressure sensors. The proposed model uses the latest deep learning architecture which does not
require any separate preprocessing. Moreover, it is possible to select the optimal sensor using a
channel-wise attention mechanism to weigh the sensors depending on their contributions to the
estimation of energy expenditure (EE) and heart rate (HR). The performance of the proposed model
was evaluated using the root mean squared error (RMSE), mean absolute error (MAE), and coefficient
of determination (R2). Moreover, the RMSE was 1.05 ± 0.15, MAE 0.83 ± 0.12 and R2 0.922 ± 0.005 in
EE estimation. On the other hand, and RMSE was 7.87 ± 1.12, MAE 6.21 ± 0.86, and R2 0.897 ± 0.017
in HR estimation. In both estimations, the most effective sensor was the z axis of the accelerometer
and gyroscope sensors. Through these results, it is demonstrated that the proposed model could
contribute to the improvement of the performance of both EE and HR estimations by effectively
selecting the optimal sensors during the active movements of participants.

Keywords: smart shoe; energy expenditure; heart rate; channel wise attention; DenseNet;
accelerometer; gyroscope; pressure sensor; deep learning

1. Introduction

Wearable technologies have been continuously developed to improve the quality of
human life and facilitate mobility and connectivity among users due to the rapid devel-
opment of the Internet of Things (IoT). Its global demand is increasing every year [1–3].
Recently, several wearable devices, including wrist bands, watches, glasses, and shoes,
have started enabling the continuous monitoring of an individual’s health, wellness, and
fitness [4]. In particular, the coronavirus disease (COVID-19) pandemic highlighted the
importance of remote healthcare delivery, resulting in further expansion of the wearable
technology market [3,5]. This is because wearable devices could continuously collect and
analyze the movement and physiological data of a user and provide appropriate feedback
in function of users’ exercise information and health status.

The shoe is a useful wearable device that is easy to use, unobtrusive, lightweight, and
easily available when doing outdoor activities [6–9]. Previous studies on shoes include gait
type classification [9–11], step count [8,12,13], and energy expenditure (EE) estimation [14].
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Three types of sensors (i.e., pressure, accelerometer, and gyroscope sensors) were equipped
in the shoes to realize these tasks. These relatively low-cost sensors could be mounted in
an unconstrained and convenient manner and record the movement information of users
to estimate their physical behaviors.

The EE estimation was associated with physical activity (PA) which could influence
an individual’s health conditions [15]. The PA level, which can be quantitatively assessed,
is highly correlated with the risk of developing cardiovascular diseases, diabetes, and
obesity [16,17]. In addition, there are only a few studies conducted on EE estimation using
shoes compared to those on gait type classification and step counting. In addition, the
accelerometer is one of the most commonly used sensors in shoes and other various devices
for estimating EE [18–22].

In a previous study, a regression model was designed to estimate personal characteris-
tics such as age, gender, height, weight, and BMI using accelerometer sensor data [18,20].
On the other hand, Vathsangam et al. used an accelerometer and a gyroscope sensor
together to estimate EE, showing the improvement of the EE estimation by utilizing both
sensor data [23]. In addition, a pressure sensor can also provide significant information to
estimate EE. In a study conducted by Ngueleu et al., they predicted the number of steps
taken by users using pressure sensors that were equipped to their shoes [13]. The results
show that there was a high correlation between the number of steps and EE conducted
by Nielson et al. [19]. Moreover, the pressure sensor could also be used along with the
accelerometer sensor to improve the EE estimation. In [22], EE was estimated using baro-
metric pressure and triaxial accelerometer sensors in various states such as sitting, lying,
and walking. Additionally, Sazonova et al. estimated EE using the data from the triaxial
accelerometer and five pressure sensors which were measured whilst the participants
performed various activities such as sitting, standing, walking, and cycling [14].

The World Health Organization (WHO) reported that more than 30% of fatalities
worldwide are caused by cardiovascular diseases (CVDs) [24]. The heart rate variability
(HRV) is known as an important risk index for CVDs [25]. Accordingly, in recent years,
various types of wearable devices have been developed (e.g., a watch-type device mounting
electrocardiogram (ECG) or photoplethysmogram (PPG) sensors) to conveniently measure
heart rate (HR). However, in an exercise environment, ECG is inconvenient to measure
and PPG is affected by severe noise due to the movement. Instead of measuring the direct
cardiac response, Lee et al. estimated HR from the activity information measured using an
accelerometer and gyroscope sensors attached to the chest [26,27].

In recent years, advanced deep learning algorithms have been developed with the
help of increasing computing power and a sufficient big dataset. There have been studies
on the application of the deep learning approach to the wearable technology [28–30], where
the algorithm performed well in regression and classification problems using physiological
sensor data [21,31,32]. Staudenmayer et al. reported that an artificial neural network (ANN)
model can predict the EE information using the accelerometer signals [21]. However, they
extracted hand-crafted features from the signals and fed them into the ANN model, which
are challenging to extract and suboptimal in distinguishing sophisticated patterns in the
signal due to its fixed model-based approach. Zhu et al. successfully improved the
accuracy of the EE estimation using convolutional neural network (CNN) by extracting
subtle patterns from the accelerometer and heart rate signals [33].

In the studies [23,33], the multichannel data from the accelerometer and gyroscope
sensors were simultaneously analyzed to estimate EE and HR, which could have been
improved by considering the significance of each channel data. It is important to investigate
which channel’s data are the most significant when multivariate input data can be obtained
from multichannel sensors to derive the target variable. In recent studies, a method to
determine the weight for each input channel to a neural network was suggested using the
channel-wise attention based on deep learning techniques [34–36].

This study investigated the novel approach in estimating EE and HR using wearable
sensors. A smart shoes system was selected for the convenience of users rather than the
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direct cardiac response measurement system, owing to its unobtrusive and natural manner
of measuring the activities of users in their daily life. Conventionally, smart shoes are
equipped with three types of sensors (i.e., pressure, accelerometer, and gyroscope) to
produce multichannel data. Moreover, a deep neural network model was designed to infer
EE and HR information from the multichannel data without using model-based hand-
crafted feature extraction methods, and the attention mechanism provides appropriate
weights to the input channels of the networks to improve the inference performance.
Additionally, the weights decided by the attention algorithm provide the importance of
three different sensors and their channels to the estimation of the physiological variations,
EE, and HR. This could also enhance our understanding of the designed deep neural
network structure, also known as explainable artificial intelligence [37].

The rest of this study is organized as follows. Section 2 discusses the design and data
collection process of the experiment. Section 3 introduces the structure and the learning
process of the proposed deep learning model. In addition, Section 4 discusses the results of
HR and EE estimations using the proposed model and statistical analysis of the attention
weights of sensors used as inputs. The results presented in Section 4 are discussed in
Section 5 using the existing related studies. Finally, this study is concluded in Section 6.

2. Materials and Methods
2.1. System Overview

Figure 1 shows the overall system architecture for EE and HR estimation. The
participant in the study wore a calorimeter (K4b2, Cosmed, Italy) and a chest strap (H10,
Polar, Finland) for EE and HR measurements. Moreover, for the signal detection of walking
and running, four film-type pressure sensors on each foot and a sensor (BMI160, Bosch Corp,
Reutlingen, Germany) capable of the simultaneous measurement of 3-axis accelerometers
and gyroscopes were mounted between the shoe’s insole and outsole (Salted, Korea). Their
locations are shown in Figure 2. In the figure, the locations of the pressure sensors are
illustrated on the anatomical sketch. All sensor signals were simultaneously measured as
the participant ran on the treadmill and predicted the EE and HR by using the deep learning
model. The predictions were evaluated using the measurements from the calorimeter and
chest strap.

Figure 1. Overview of the system architecture for EE and HR estimation.
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Figure 2. Locations of the sensors in the smart shoes: (a) a total of 12 sensors (6 sensors on the left
and right shoe each) consisting of the pressure, accelerometer, and gyroscope sensors; (b) locations of
the pressure sensors on the anatomical sketch: 1st metatarsal head (MH; sensor 1), toe (between the
1st and 2nd phalange; sensor 2), 4th metatarsal head (sensor 3), and heel (sensor 4).

2.2. Experiments

Ten healthy adult males (age: 22.5± 1.8 years old, height: 172.9± 3.5 cm, weight:
69.3 ± 4.9 kg, foot size: 264 ± 4.6 mm) without musculoskeletal and nervous system
abnormalities were recruited for this study. Written informed consent was obtained from
all participants. The study design and protocol was approved by the Institutional Review
Board (IRB No. P01-201908-11-002).

The participants wore shoes equipped with pressure, accelerometer, and gyroscope
sensors in their stable states before the experiment. In addition, as shown in Figure
3, they wore an HR strap and a calorimeter for measuring the HR and EE, respectively.
Each participant ran on an electric treadmill at a speed varying from 3 to 10 kph, which
increased by 1 kph per every 2 min (total 16 min ran) and they were instructed to run at a
constant speed as much as possible. Each shoe data type of the participants (gyroscope,
accelerometer, and pressure sensor data), HR, and EE were simultaneously recorded during
the experiment. The shoes data were obtained using a smartphone app at a sampling rate
of 33.3 Hz, while the HR and EE were acquired using the K4b2 software and recorded
when the participant exhaled.

Figure 3. Example figures of the experimental equipment and process. During the experiment,
participants wore a chest strap and a calorimeter to measure HR and EE, respectively. Each participant
ran on a treadmill at a speed varying from 3 to 10 kph, which increased by 1 kph per every 2 min
(total 16 min ran) and they were instructed to run at a constant speed as much as possible.
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2.3. Data Preparation

Figure 4 shows the overall data preparation process for model training proposed
in this study. It was difficult to determine the exact HR and EE that correspond to the
data of the sensors attached on the shoes because the sampling periods of HR and EE
recording (approximately 2–5 s) were not the same as those of the shoes’ sensors (30 ms).
Therefore, HR and EE data were resampled to match the sampling period of the data of the
sensors attached on the shoe using a linear interpolation method, as shown in Figure 5. In
addition, the obtained data were standardized for the efficient learning of the proposed
deep learning model and reduced adverse effects of outliers [38]. The input sample used
by the proposed deep learning model consisted of 20 channel data (four points’ pressure
on the left and right shoe each, triaxial accelerometer, and gyroscope) which were 10 s long,
and the average values of HR and EE for 10 s were used as its label. The 10-s sample was
overlapped to the next one by 1 s. The total number of samples was 9600. Moreover, Figure
6 shows the distributions of the HR and EE labels of 10 participants.

Figure 4. Flowchart of the data preprocessing when training the proposed deep learning model. The
input shoes’ data were recorded at a 33.3 Hz sampling rate and standardized to have a zero mean
and unit variance. The label was created based on the HR and EE information, which were averaged
on a 10 s long window with an overlap of 1 s.

Figure 5. Application of a linear interpolation method due to the mismatch between the sampling
rates of the HR/EE and data of the shoes’ sensors. In the HR and EE graphs, the green dot represents
HR and the gold dot represents the EE of the actual measurement, and the dashed line is the
estimated value.
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Figure 6. Distributions of HR and EE labels: (a,b) show the number of EE values per KCal/min and
HR values per bpm, respectively.

3. Proposed Model

Figure 7 shows the overall structure of the model proposed in this study. The channel-
wise attention layer, which is described in Section 3.1, provides weights to the significant
channels of the sensors mounted on the shoes to accurately estimate HR and EE. The
weighted signals by the attention layer pass using DenseNet [39], which is a CNN-based
model known to be excellent in extracting key features from input data and generating
spatial feature vectors that are discussed in Section 3.2. The bidirectional gated recurrent
unit (GRU) [40] models the temporal relationship among the feature vectors, enabling
an intuitive and efficient learning by observing the variations of input data over time
(described in Section 3.3). Furthermore, the global average pooling (GAP) [41] layer
compresses the information of the spatiotemporal features vectors and output values of HR
and EE (described in Section 3.4). The advantages of the proposed model are as follows:

• The manual feature extraction process is not necessary since a fully automated end-to-
end deep learning model was applied;

• The spatiotemporal characteristics of the multivariate time-series data that is complex
to process could be effectively extracted using DenseNet and bidirectional GRU (Bi-
GRU);

• The importance of each channel in estimating HR and EE could be quantified using
the channel-wise attention method, and it can explain the optimal sensors for the task.
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Figure 7. Structure of the proposed model. The shoe data from 20 channel sensors are fed into the input of the model and the
channel-wise attention layer increases the intensity of the significant channels. The spatial features from the multi-channel
data are extracted using DenseNet, and the temporal features are produced through Bi-GRU. Finally, HR and EE are
estimated after the global average pooling (GAP) layer.

3.1. Channel-Wise Attention

It is difficult to extract the key features corresponding to HR and EE from the complex
multivariate show data consisting of 20 channels. The conventional deep learning models
train all input data with equal weights. This could deteriorate the learning efficiency of the
model owing to the unnecessary and redundant information. However, the deep learning
model could be efficiently trained by minimizing the unnecessary information in the input
data and maximizing the significant information to the task. The attention mechanism
is an optimized way of making this possible. In this study, we aimed to find and verify
the optimal sensors for the estimation of HR and EE using the channel-wise attention
expressed as follows:

O = σ(SinWin + bin), (1)

Satt = Att⊗ Sin, (2)

Att = Averaget(O), (3)

where O is calculated with the 20 channel signal Sin = [s1, s2, · · · si]
(
s ∈ Rt, Sin ∈ Rt×i), a

trainable weight matrix Win
(
Win ∈ Ri×i), a bias bin

(
bin ∈ Rt), and a non-linear activation

function σ(·). In addition, t is the time length of a sample and i the number of channels. A
sigmoid function [42] was chosen in this study for the activation function. Att

(
Att ∈ Ri)

represents the attention weights, which is calculated by the average of O across the time
axis using the Averaget(·) function. Finally, the signal Satt

(
Satt ∈ Rt×i) is derived by

multiplying Att and Sin element-wise operation, which is expressed as ⊗.

3.2. DenseNet

DenseNet has yielded excellent performance in various image classification tasks [43–46].
Moreover, it avoids information dilution unlike other CNN-based models by concatenating
the feature map output and input data in each convolutional layer. In addition, this method
achieved higher performance with fewer parameters than that of the other models [39].
Therefore, DenseNet was used as a feature extractor in this study. The convolution layer
was changed from two-dimensional (2D) to one-dimensional (1D), as shown in the Figure 8,
since the shoe data are time-series data. In addition, the GAP layer was removed from its
connection with the Bi-GRU layer in the last layer. The input to DenseNet Satt is produced
from the channel-wise attention layer. The output is represented as follows:
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Fdense = DenseNet(Satt) (4)

The final output vector is Fdense = [x1, x2, · · · , xT ](x ∈ Rc1 , Fdense ∈ Rc1×T), where T is
the time length compressed by the pooling layer and c1 is the number of output of the last
convolution layer, because the DenseNet used in this study has no GAP in the last layer.

Figure 8. Internal structure of DenseNet. ⊕ denotes the concatenation of feature vectors.

3.3. Bidirectional Gated Recurrent Unit

In the proposed model, the temporal features are extracted from the output of
DenseNet, Fdense, using the Bi-GRU layer defined in Equation (5). GRU is one of RNN
models with powerful modeling capabilities for long-term dependencies. On the other
hand, long short-term memory (LSTM) [47] is another popular RNN model. Between the
two, GRU has a more efficient structure with fewer parameters [40]:

Fbigru = BiGRU(Fdense) (5)

The hidden vector of Bi-GRU, Fbigru = [h1, h2, · · · , hT ](h ∈ Rc2 , Fbigru ∈ Rc2×T), was
obtained from Fdense, where c2 is the size of the hidden unit of the GRU, as shown in
Figure 9. Moreover, the internal structure of the GRU cell is shown in Figure 10. The
operation is elaborated as follows:

rt = σ(Wr ∗ [ht−1, xt]) (6)

zt = σ(Wz ∗ [ht−1, xt]) (7)

h̃t = tanh(Wh ∗ [rt ∗ ht−1, xt]) (8)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (9)

In Equations (6)–(9), rt and zt are the update gate and the reset gate vectors for
an arbitrary time point t ∈ [1, T], respectively. The update gate determines how much
information from the past and the present will be used to generate new information. The
reset gate specifies which information to retain from the past information at the time t− 1.
Moreover, h̃t is a candidate state, which decides the amount of current information to be
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learned using the result of the reset gate. Wz, Wr, and Wh are the trainable weight vectors of
each gate. In addition, σ(·) and tanh(·) are the sigmoid and hyperbolic tangential functions,
respectively. Furthermore, ∗ denotes the element-wise multiplication.

Figure 9. Structure of Bi-GRU.

Figure 10. Internal structure of GRU.

Bi-GRU could simultaneously utilize both the past and future information, creating
more useful features than unidirectional GRU. This is implemented as a forward and
backward layer, as shown in Figure 9. The final output ht of Bi-GRU is determined by
the concatenation of the two vectors when the forward and backward hidden vectors are
represented as

−→
ht and

←−
ht , respectively:

ht =
−→
ht ⊕

←−
ht (10)

3.4. Global Average Pooling

In the proposed model, the GAP layer was designed in the last layer instead of the fully
connected (FC) layer, which tends to overfit on the training data. This could degrade the
generalization performance of the networks. On the other hand, no additional parameters
were required since the GAP layer only calculates the average across the final output
vectors of the network, reducing the overall network size and preventing overfitting. The
final predicted target variables (i.e., HR and EE) using GAP are calculated as follows:

Target =

(
1
T

T

∑
t=1

Fbigru

)
Wout + bout. (11)
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3.5. Model Training Environment

The proposed model uses leave-one-subject-out (LOSO) cross-validation to evaluate
the robustness and generalizability in an inter-subject analysis. The data of 9 subjects
out of 10 subjects were used as the training set and the data of the remaining 1 subject
were used as the testing set, which was repeated for all subjects. The mean and standard
deviation of performance for each subject were calculated and described in Section 4. The
Adam [48] optimization (learning rate = 10−3) was used to train the model, and the batch
size was empirically set to 16. The initial weights of the networks were set at random and
the loss function was designed based on the mean squared error (MSE). An early stopping
method was applied to find the optimal model when there is no significant improvement
in the validation loss of 20 epochs in a total of 150 training epochs. Furthermore, 4.2 GHz
Intel Core i7 processor (Intel, Santa Clara, CA, USA) and NVIDIA GeForce RTX 2080Ti
(NVIDIA corporation, Santa Clara, CA, USA) (with 11 GB VRAM), which are the computing
environment for network training, were used. The model was implemented in Keras deep
learning framework with TensorFlow backend.

4. Results

The results of the proposed model were evaluated in the following three aspects:

• Performance evaluation of the HR and EE estimation models;
• Performance analysis with and without the attention mechanism;
• Analysis of the channel significance using the attention weight;

The performance of the model was evaluated using several indicators. The root-mean-
square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2)
between the predicted and ground truths were calculated. Additionally, a Bland–Altman
plot [49] was also presented. The formula of the evaluation indices are as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2, (12)

MAE =
1
N

N

∑
i=1
|yi − ŷi|, (13)

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳi)

2 , (14)

In Equations (12)–(14), N is the total number of test samples, yi is the ground truth, ŷi
is the predicted value, and ȳi is the average value of yi.

4.1. Energy Expenditure Estimation
4.1.1. Proposed Model Performance

Table 1 shows the EE estimation performance using the proposed model. The pressure,
accelerometer, and gyroscope sensor data were all used as input data. The RMSE between
the predicted and ground truths was 1.05 ± 0.13, MAE was 0.83 ± 0.12, and R2 was
0.922 ± 0.005. Figure 11 illustrates the predicted and ground truths across time for the best-
and worst-case scenarios using the proposed model.

Table 1. EE (KCal/min) estimation performance.

Input RMSE MAE R2

Acc + Gyro + Pr 1.05 ± 0.13 0.83 ± 0.12 0.922 ± 0.005
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Figure 11. Comparison between the predicted (EST) and ground truths (REF) in EE estimation: (a) is
the best case; (b) is the worst case.

4.1.2. Channel-Wise Attention Effectiveness

Analyzing what kind of sensors are helpful in estimating HR or EE using the channel-
wise attention mechanism is the main objective of this study. This process could not be
significant if the channel-wise attention degrades the performance of the model. The
averaged results among the 10 participants are shown in Table 2 and Figure 12.

Table 2. Mean and standard deviation of RMSE, MAE, and R2 values obtained using the proposed
models with and without the attention mechanism in the EE estimation.

Input RMSE MAE R2

with attention (proposed) 1.05 ± 0.13 0.83 ± 0.12 0.922 ± 0.005
without attention 1.17 ± 0.24 0.95 ± 0.2 0.923 ± 0.12

The proposed model using the channel-wise attention in EE estimation achieved
higher performance in RMSE and MAE compared to that without the channel-wise atten-
tion. In addition, a significant improvement was confirmed using the one-tailed paired-
sample t-tests (p < 0.05). Although the R2 of both models were quite close, the per-
formance of the attention model is more stable with a standard deviation that is less
than 0.005.
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Figure 12. Bland-Altman plot of EE estimation. The orange line is the limit of agreement (LOA) and the center blue line is
the mean of difference error between the actual and estimation.

In Figure 12, the orange line is the limit of agreement (LOA), which means that the
difference between the actual and estimated values is within the range of [lower LOA,
upper LOA]. At the 95% confidence interval (±1.96SD), in this study, the LOA was [−1.56,
1.93] and [−2.42, 3] in the model with and without the channel-wise attention, respectively.
The distribution of the difference values was more concentrated around zero in the model
with the attention than the model without attention, indicating the superiority of the
channel-wise attention model. In addition, the mean differences between the actual and
the estimation (blue line in Figure 12) were 0.19 and 0.29 for the models with and without
the attention, respectively. This indicates the high accuracy of the attention model, which
means that this model has little bias compared to the model without attention.

4.1.3. Optimal Sensor Analysis

The additional analysis was performed to determine the optimal sensors for the EE
estimation based on the results presented above. First, one-way ANOVA was performed to
investigate whether there is a significant difference among the average attention weights
for each sensor calculated from the channel-wise attention. The results are shown in Table 3,
where SS denotes the sum of squares, df denotes the degree of freedom, MS denotes the
mean square, and F denotes the F-statistic. As a result of the ANOVA analysis, there
was a statistically significant difference in the average attention weights of the sensors
(p < 0.001). Therefore, we also conducted a post hoc Tukey HSD test and the results are
shown in Table 4. In the post hoc analysis, the symbols P, A, and G represent pressure,
accelerometer, and gyroscope, respectively. The first letter in the subscript denotes the left
(L) or right (R) side of the shoe, and the second letter is the detailed attachment position
of the pressure sensors (see Figure 2) or the x, y, and z axis of the accelerometer and
gyroscope. Each numerical value is an attention weight, and each column corresponds to a
homogeneous subset with no statistically significant difference. For example, in column
1 of Table 4, there is no statistical difference in attention weights from PL3 to PL1 sensors
(p > 0.05), and the p-value of the corresponding subset is indicated at the bottom of the
table. In Table 4, seven sensors are included in each subset from columns 1 to 6, but the
number of sensors included in the subset sharply decrease in columns 7 to 10. This means
that the sensors from columns 7 to 10 contributed significantly more to the EE estimation
than those from columns 1 to 6. As a result, the subsets of sensors that are important for
the EE estimation were {ALZ, GLZ, GLY}, {GLY, ARZ}, and {ARZ, GRZ} in the order of high
attention weight. The accelerometer and gyroscope mostly show their higher contribution
to the EE estimation than the pressure sensors, and particularly their attention weights in
the z axis are higher than those in the other axes GLY.
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Table 3. ANOVA analysis of the channel-wise attention weights in the EE estimation. SS is the sum
of squares, df is the degree of freedom, MS is the mean square, and F is the F-statistic.

SS df MS F p-Value

beetween groups 1.216 19 0.064 55.107 0.000
within groups 22.434 19,320 0.001

total 23.649 19,339

Table 4. Post-hoc Tukey HSD test result for the averaged attention weight for each sensor in EE estimation. Each column
1–10 represents a homogeneous subset for a significance level of 0.05. The sensor types are pressure (P), accelerometer (A),
and gyroscope (G). The first subscript for each sensor type denotes the left (L) and right (R) sides of the shoe. The second
subscript is the detailed attachment position of the pressure sensor (see Figure 2) or the x, y, and z axis directions of the
accelerometer and gyroscope.

Sensor Type 1 2 3 4 5 6 7 8 9 10

PL3 0.4908
PR2 0.4910 0.4910
PR4 0.4910 0.4910
PL4 0.4918 0.4918
GRY 0.4926 0.4926 0.4926
PR3 0.4935 0.4935 0.4935
PL1 0.4944 0.4944 0.4944 0.4944
ALY 0.4964 0.4964 0.4964 0.4964
PL2 0.4977 0.4977 0.4977 0.4977
ARX 0.4979 0.4979 0.4979 0.4979
ARY 0.4980 0.4980 0.4980 0.4980
PR1 0.4991 0.4991 0.4991
ALX 0.4998 0.4998 0.4998
GRX 0.4999 0.4999
GLX 0.5031 0.5031
GRZ 0.5070 0.5070
ARZ 0.5091 0.5091
GLY 0.5137 0.5137
GLZ 0.5148
ALZ 0.5155

p-value 0.742 0.069 0.057 0.060 0.750 0.072 0.546 0.999 0.240 1.000

4.2. Heart Rate Estimation
4.2.1. Proposed Model Performance

There are few previous studies conducted about the HR estimation using the pressure,
accelerometer, or gyroscope sensors compared with those about the EE estimation because
it is relatively easy to obtain an accurate heart rate using various off-the-shelf wearable
devices equipped with physiological sensors such as electrocardiogram (ECG) and pho-
toplethysmogram (PPG). However, users might be uncomfortable wearing an additional
wrist or chest band to measure ECG or PPG. On the other hand, shoes could be a natural
and unobtrusive wearable device to measure users’ physiological information. This study
tried to extract the HR information from the pressure, accelerometer, and gyroscope sensors
that were mounted on shoes due to the limitation of ECG and PPG measurements with
high SNR by selecting the optimal sensors for the estimation. The performance of the heart
rate estimation using the proposed model, which selects the optimal sensors with the help
of the channel-wise attention mechanism, is shown in Table 5. Additionally, Figure 13
is the graph showing the actual and predicted values for the best and worst cases of the
proposed model.
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Table 5. HR (bpm) estimation performance.

Input RMSE MAE R2

Acc + Gyro + Pr 7.81 ± 1.12 6.12 ± 0.86 0.897 ± 0.017

Accurately measuring the heart rate using physical sensors attached to smart shoes is
challenging. Since the purpose of this study is to make it possible to easily measure heart
rate in daily life, we compared it with the heart rate estimation accuracy of PPG-based
wearable devices that are commercially available. Table 6 lists the accuracy of consumer
wearable devices in heart rate estimation conducted by Nelson et al. [50]. The two devices
that were compared were Apple Watch 3 (2017 version, Apple Inc, Cupertino, CA, USA,
v. 4.2.3) and Fitbit Charge 2 (2017 version, Fitbit Inc, CA, USA, v. 22.55.2). In addition,
MAE, Bland–Altman analysis, and mean absolute percent error (MAPE) were calculated as
performance evaluation metrics. In particular, MAPE was calculated as follows:

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (15)

In the previous study conducted by Nelson et al., the performance of each device
under various conditions was evaluated. However, in Table 6, only the results in walking
and running environments similar to this study were compared. The performance of the
proposed model was 5.40 of MAPE, which is good compared with the results of Fitbit
Charge 2 (9.21 and 9.88) and slightly worse than that of Apple Watch 3 (4.61 and 3.01).

Table 6. Comparison of the HR estimation performance of commercial wearable devices and the proposed model. The
performance of commercial wearable devices was cited from the study results of Nelson et al. [50].

Device Condition
Device Error Bland–Altman Analysis

MAE MAPE ME Lower LOA Upper LOA

Fitbit Charge 2
walking 9.55 9.21 −6.85 −28.51 14.81

running 14.73 9.88 −14.73 −29.77 0.31

Apple Watch 3
walking 4.77 4.64 0.11 −14.18 14.41

running 4.05 3.01 1.77 −9.78 13.33

proposed model walking + running 6.12 5.40 0.39 −15.12 15.90

4.2.2. Channel-Wise Attention Effectiveness

The HR estimation with and without attention were also compared similar to EE
estimation to verify the improvement of the performance using the channel-wise attention.
The results are shown in Table 7. In HR estimation, the proposed model using the channel-
wise attention achieved higher performance for all evaluation indicators including RMSE,
MAE, and R2, which are all statistically significant (p < 0.05). This indicates that the
channel-wise attention contributes to the selection of the optimal sensor for estimating the
correct HR.
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Figure 13. Comparison between predicted (EST) and ground truths (REF) in HR estimation: (a) is the
best case; and (b) is the worst case.

Table 7. Mean and standard deviation of RMSE, MAE, and R2 values of models with (proposed
model) and without the attention for HR estimation.

Input RMSE MAE R2

with attention 7.81 ± 1.12 6.12 ± 0.86 0.897 ± 0.017
without attention 9.19 ± 3.16 7.72 ± 3.67 0.878 ± 0.037

Figure 14 shows the Bland–Altman plot of HR estimation, where the LOA was in the
range of [−15.12, 15.90] and [−21.46, 16.79] in the model with and without the attention,
respectively, at the 95% confidence interval (±1.96SD). This indicates that the model with
attention has less bias and higher stability than the model without attention, which is
similar to the results of EE estimation.

Figure 14. Bland–Altman plot of HR estimation. The orange line represents the limit of agreement (LOA) and the blue
center line is the mean of the difference error between the ground truth and the estimation.
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4.2.3. Optimal Sensor Analysis

One-way ANOVA was performed for HR estimation in the same way as EE estimation,
for which the results are shown in Table 8. As a result of ANOVA analysis, there was a
statistically significant difference in the averaged attention weight between the sensors
(p < 0.001). In addition, a post hoc Tukey HSD test was conducted, and the results are
shown in Table 9. In the post hoc analysis, the homogeneous subsets that contributed to the
HR estimation were shown in the following order: {ALZ}, {ARZ, GLY}, {GLY, GLZ, GRZ}.
Same as the results of EE estimation, the accelerometer and gyroscope mostly showed a
higher contribution than the pressure sensor and z axis direction sensors made a greater
contribution than the other directions. In particular, the average attention weight of ALZ
was significantly different from those of the other sensors, followed by ARZ.

Table 8. ANOVA analysis of the channel-wise attention weights in the HR estimation. SS denotes the
sum of squares, df denotes the degree of freedom, MS denotes the mean square, and F denotes the
F-statistic.

SS df MS F p-Value

beetween groups 2.145 19 0.113 90.706 0.000
within groups 24.049 19,320 0.001

total 26.194 19,339

Table 9. Post-hoc Tukey HSD test result for the average attention weight for each sensor in HR
estimation. Each column 1–8 represents a homogeneous subset for a significance level of 0.05.

Sensor Type 1 2 3 4 5 6 7 8

PR3 0.4864
PL3 0.4871
PR1 0.4888
PR4 0.4893
PR2 0.4900 0.4900
PL4 0.4901 0.4901
GRY 0.4911 0.4911 0.4911
ALX 0.4952 0.4952
ARY 0.4954 0.4954
PL1 0.4956 0.4956
ARX 0.4961
PL2 0.4963
GRX 0.5032
ALY 0.5064 0.5064
GLX 0.5067 0.5067
GRZ 0.5084 0.5084 0.5084
GLZ 0.5099 0.5099
GLY 0.5141 0.5141
ARZ 0.5167
ALZ 0.5229

p-value 0.288 0.061 0.122 0.130 0.794 0.056 0.986 1.000

5. Discussion

In this study, it was shown that the proposed model could estimate the EE and HR
using physical sensors such as accelerometer, gyroscope, and pressure sensors that can
be equipped in smart shoes. In particular, the accuracy was improved with adaptively
assigning weights to the sensors through the channel-wise attention, which is the core of
the model to select the optimal sensors, making important contributions to the EE and
HR estimations.
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The proposed model shows that the z axis sensors in the accelerometer and gyroscope
have higher contributions to the EE estimation than the others, as shown in Table 3 and
Table 8. Among the previous EE estimation studies, Vathsangam et al. [23] calculated
the EE in the treadmill while walking using an accelerometer sensor and a gyroscope
sensor. They claimed that the x axis sensor in the accelerometer (y axis in this study) was
aligned with the movement direction of the foot, indicating that its contribution to the EE
estimation could be high. On the other hand, Javed et al. [51] found that the y and z axis
features of the accelerometer were important to recognize walking and jogging activities.
In another related study, Smith et al. [52] calculated the ratio of the triaxial to uniaxial
(vertical) number in the accelerometer for various activities using an accelerometer sensor
on the wrist. The results show that activities such as running are greatly affected by vertical
movement. Moreover, we found that the average attention weight of the z axis was high
corresponding to the running activity, which is largely affected by vertical activity. The
findings of the significance of the z axis monitoring the vertical movement are consistent
with the results of Javed et al. [51] and Smith et al. [52] since our study was conducted on a
treadmill under similar conditions to the jogging activity.

In the HR estimation, the contributions of the z axis sensors in the accelerometer and
gyroscope were high, which is similar to the results of EE estimation. In various previous
EE estimation studies, the EE was directly calculated using the HR level [53]. However,
in this study, the EE estimation was carried out separately from the HR estimation. As a
result, large attention weights in the z axis in the proposed model seem to be significant
considering the high correlation between HR and EE.

As an additional analysis, we performed ANOVA and post hoc analysis to verify
whether there is a significant difference in attention weights among the x, y, and z axis
sensors in the accelerometer and gyroscope. Figure 15 shows the average attention weight
for each axis to predict the EE and HR levels. As a result, there was a significant difference
between the x and z axes and between the y and z axes (p < 0.001), although there was no
statistical difference between the x and y axes.

Figure 15. Comparison of the average attention weights for each of the x, y, and z axes. (A,B) illustrate the result of EE and
HR, respectively.

6. Conclusions

In this study, the efficient HR and EE estimation models from multivariate raw signals
including pressure, accelerometer, and gyroscope sensor data were designed using a deep
learning architecture in an end-to-end manner. In addition, significant channels of the
sensors were investigated using the channel-wise attention mechanism to estimate HR
and EE, which found that the effects of the z axis sensors of the accelerometer and the
gyroscope were significant in walking and running conditions. This is consistent with
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the previous study demonstrating that a general running activity is greatly affected by
a vertical movement in the z axis direction [51,52]. This study also demonstrated the
possibility of estimating HR and EE using the sensors mounted on shoes and suggests
an effective and cost-efficient design of a wearable shoe-based device with selecting the
optimal sensors. Furthermore, using the channel-wise attention, HR and EE were effectively
estimated even when the individual left and right foot movements were not constant the
during exercise. A limitation of this study is the small size of the training dataset and the
individual characteristics of the participants with small deviations. Whilst the predictions
might be a little unstable for datasets obtained under various conditions, the proposed
model is trained and validated through the inter-subject analysis using LOSO, which
could guarantee the generalizability of the proposed model if being adaptively retrained
for each individual datum. Another limitation is that the computational load is large
compared with the conventional approaches to estimate the HR and EE using a wrist
band-typed photoplethysmogram (PPG) sensor (deep learning model size: approximately
70 mb, testing time: a few seconds). However, the existing HR and EE measurement
devices have disadvantages when worn on a wrist, as some users feel uncomfortable to
wear. In addition, they are too sensitive to noise, resulting in poor SNR. On the other
hand, the proposed shoe sensor could be more natural for use to wear compared to the
wrist-typed sensor.

For the future research, it would be possible to improve the generalization performance
using more diverse datasets and adding personal information (gender, BMI, foot size, etc.)
to the model input. It will also include the investigation of the sensor-specific functions
corresponding to the variations in HR and EE values.
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Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
EE Energy expenditure
PA Physical activity
CVD Cardiovascular disease
HRV Heart rate variability
HR Heart rate
ECG Electrocardiogram
PPG Photoplethysmogram
ANN Artificial neural network
CNN Convolutional neural network
GRU Gated recurrent unit
GAP Global average pooling
Bi-GRU Bidirectional gated recurrent unit
FC Fully connected
MSE Mean squared error
LOSO Leave-one-subject-out
RMSE Root-mean-square error
MAE Mean absolute error
R2 Coefficient of determination
LOA Limit of agreement
MAPE Mean absolute percent error
ANOVA Analysis of variance
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