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Abstract: Users’ satisfaction in indoor spaces plays a key role in building design. In recent years,
scientific research has focused more and more on the effects produced by the presence of greenery
solutions in indoor environments. In this study, the Internet of Things (IoT) concept is used to define an
effective solution to monitor indoor environmental parameters, along with the biometric data of users
involved in an experimental campaign conducted in a Zero Energy Building laboratory where a living
wall has been installed. The growing interest in the key theory of the IoT allows for the development
of promising frameworks used to create datasets usually managed with Machine Learning (ML)
approaches. Following this tendency, the dataset derived by the proposed infield research has been
managed with different ML algorithms in order to identify the most suitable model and influential
variables, among the environmental and biometric ones, that can be used to identify the plant
configuration. The obtained results highlight how the eXtreme Gradient Boosting (XGBoost)-based
model can obtain the best average accuracy score to predict the plant configuration considering both
a selection of environmental parameters and biometric data as input values. Moreover, the XGBoost
model has been used to identify the users with the highest accuracy considering a combination of
picked biometric and environmental features. Finally, a new Green View Factor index has been
introduced to characterize how greenery has an impact on the indoor space and it can be used to
compare different studies where green elements have been used.

Keywords: living wall; wearable; IoT; machine learning

1. Introduction

Users’ satisfaction in indoor spaces is a key point in the design process of a comfortable building
environment. Different technical solutions to be applied to the envelope and thermal plant systems
have been developed, studied and diffused for commercial purposes. The study of the effects produced
by the presence of greenery solutions in indoor environments has engaged the international scientific
literature since the late 1980s on some different and complementary fronts, leading to a significant
spread of green potted elements and of a vertical green façade, known as a “vertical garden” or
“living wall”.

The scientific research has focused, for example, on the analysis of the micro-environmental fallout
with regard to the ability of specific plants to contribute to the improvement in Indoor Air Quality (IAQ)
through the abatement of indoor air pollutants. Wolverton’s studies [1] have shown, for example, that
low-light indoor plants, associated with soil microorganisms and combined with active carbon filters,
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have a strong potential to improve IAQ by removing organic tracks of air pollutants in energy-efficient
buildings (the most exposed to the problems of sick environment). Moving from the studies carried
out by NASA, most recently, Pegas et al. [2] corroborated the previous results concerning the ability of
plants to improve IAQ, reducing air pollutants’ (CO2, VOCS and PM10) concentrations.

Other studies focused their attention on the potential of specific ornamental potted plant in
removing VOCs from indoor air, concluding that greenery removal efficiency is strictly influenced by
aspects such as plant species, light intensity, indoor temperature, VOCs concentration and identity [3],
or, in other cases, by the microorganisms closely associated with the used growing medium and the root
system [4]. Irga et al. [5] studied the removal potential of CO2 and VOCs from indoor environments
comparing a conventional potting mix and hydroculture, whereas Darlington et al. [6] based their
studies on the use of a biofiltration system, composed of a series of bioscrubbers, through which the
air of the room, a hydroponic growing region, has been sucked. Whatever approach is tested, all the
research mentioned clearly indicates that the removal of indoor air pollutants is possible.

Some other researchers have focused their scientific interests on the active contribution of greenery
systems to influence some indoor parameters such as temperatures and relative humidity.

Gunawardena and Steemers [7], in their bibliographic review concerning the outdoor and indoor
applications of “vertical green systems” underline how indoor living walls are a very recent innovation.
Consequently, the effects of using a living wall on the indoor environment are still poorly assessed.

Only a few studies have been carried out on the real effects of living walls on indoor environment
frequented by humans. Fernàndez-Canero et al. [8], for example, investigated the impact of a living
wall on indoor temperatures and relative humidity installed in a hall inside a section of the University
of Seville (Spain): the results quantified the summer cooling effect with an average reduction of 4 ◦C,
over the room temperature, and registered a significant increase in the relative humidity level of the air
both near the living wall and in the overall hall room. A subsequent work carried out by the same
team of researchers [9], investigated the effects on the indoor temperature and relative humidity of an
active living wall, in other words, a system in which air is forced to pass through the living wall to take
advantage of its evaporative cooling potential [8], reducing the ventilation requirements of the room.
However, the literature is still insufficient and must be deepened, going beyond the analysis of the
relationship between the presence of the living wall and indoor environmental parameters, through
an all-encompassing analysis that considers environmental and biometric parameters and possible
correlations with the presence, for example, of a living wall.

The remaining literature analyses the energy-environmental effects of a living wall, generally
applied on an outdoor environment. Mazzali et al. [10], for example, realized three living wall field
tests to investigate their potential effects on the energy behavior of the building envelope, monitoring
both the external surface with respect to a bare wall, and the incoming/outgoing heat flux. More recently,
a study carried out in Australia [11] was focused on the monitoring of relative humidity and temperatures
comparing an outdoor living wall with a bare wall, studying the effects on both the surrounding
microclimate and the indoor back wall. Many other studies have been carried out in this direction,
always considering the outdoor installation of living walls.

Finally, other researchers have focused their studies on the analysis and verification of the
psycho-physiological response of users to the presence of real or simulated (through virtual reality
or photos) potted flowering and foliage plants: the early scientific studies, carried out between the
late 1980s and the beginning of the new Millennium, demonstrated that human–plant interaction
ensures a physiological reduction in stress in a very quick lapse of time, almost within minutes of
exposure [12–14], recording an improvement in psychological [15,16], emotional [17] and cognitive
health [18,19].

The biometric effects due to the use of this solution are quantified in few cases and in different
indoor environments (hospital rooms, offices, schools).

Chang and Chen [20] describes the effects of different window views and indoor plants on the
human psychophysiological response of 38 volunteers in a laboratory equipped as an office, considering
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six different combinations of window views and indoor plotted plants. The results conducted considering
electroencephalography, electromyography and blood volume pulse have shown that the window view
has a greater effect on the state of anxiety when compared with indoor plants.

Dijkstra et al. [21] reports the result of an infield investigation regarding the possibility of using
natural elements to reduce the stress in a hospital room considering a sample of 77 volunteers with
no direct acquisition of biometric parameters. The results show that the perceived stress of patients
is reduced in the presence of indoor plants. The same environment was considered by S. Park et al.
in [22], where they studied the therapeutic influence of plants on a sample of 90 patients through the
acquisition of systolic and diastolic blood pressure, body temperature, heart rate and respiratory rate.

In [23], the psychological relaxing effects due to the exposure to rose flowers in a conference room
occupied by 31 males, were reported, while in [24] the shared feeling of greater comfort and relaxation
of 85 students was determined when exposed to the vision of a dracaena plant. Choi et al., in [25],
introduced an index of greenness in indoor space in terms of preferred level of greenery considering
an equipped room in a university laboratory, where 103 volunteers took part in the test. A. E. van den
Berg et al. in [26] evaluated the restorative impact of living walls in different classrooms of elementary
schools. J. Yin et al. [27] performed cognitive tests on a sample of 28 volunteers.

The present paper differs from the above mentioned because it considers the correlation analysis
among monitored environmental variables and biometric parameters in a research campaign carried
out considering nine different users who alternatively occupied a ZEB lab room [28] equipped as
a working station with four different system configurations. The article intends to investigate the
complex interaction among the environment, occupants and the presence of a living wall in order
to define new models that fill the gap of the current methodologies to design comfortable, usable,
adaptable and energy-efficient buildings, emphasizing the potential of Internet of Things (IoT) and
Machine Learning (ML) techniques.

Table 1 reports the most important features of the proposed study if compared with the reference
literature reported in the introduction, which have provided for the involvement of participants in
real-life contexts.

Table 1. Main features of the reference literature and proposed study.

Reference
Study Test Environment Greenery

Element
Environmental

Data
Biometric

Data
Data

Processing

[2] Classroom Real plants Monitored Not monitored Statistical
[4] Offices Real plants Monitored Not monitored Statistical
[8] University Living wall Monitored Not monitored Statistical

[9] University Active Living
Wall Monitored Not monitored Statistical

[12] University Real plants and
photos Not monitored Monitored Statistical

[13] Experimental room Real plants Not monitored Monitored Statistical

[20] Hospital Photos on
monitor Not monitored Monitored Statistical

[21] Hospital Photos Not monitored Not monitored Statistical
[22] Hospital Real plants Not monitored Monitored Statistical
[23] Office Real plants Not monitored Monitored Statistical
[24] School Real plants Not monitored Monitored Statistical
[25] Office Photos Not monitored Monitored Statistical
[26] School Living wall Not monitored Not monitored Statistical

[27] Office Real plants and
Virtual Reality Not monitored Monitored Statistical

Current study Office lab Living wall Monitored Monitored
(IoT)

Machine
Learning
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The paper is structured as follows: the second chapter describes the experimental set-up used to
define the dataset. The third chapter reports and discusses the outcomes of the dataset analysis with
the machine learning (ML) techniques. Finally, a conclusion about the implication of the proposed
framework within building design and future development is reported in the last chapters.

2. Experimental Set-Up

The experimental set-up used to define the dataset managed with ML models for correlation
analysis consists of a laboratory equipped with a set of sensors used for the acquisition of environmental
data and wearable devices were used for the monitoring of biometric parameters of the users involved
in the test. Meanwhile, a Google Form is used to record personal comfort perception. During four
consecutive weeks, four different configurations are considered as described in detail in Section 2.2.

2.1. Test Case, Monitoring System and Questionnaire

This study is the first part of a wider experimentation aimed at analysing the behaviour of an
indoor living wall from different point of views (hygro-thermal, acoustic, air quality) in a room that
simulates an office over a period of one year, in adaptation to different indoor hygro-thermal conditions,
in both active and passive plant conditions. Specifically, it aims to analyse the impact of the indoor
living wall in terms of the variation in the individual biometric response of occupants during the
month of May 2019.

The experimentation is carried out within the CNR-ITC ZEB Laboratory in San Giuliano Milanese
near Milan, in the A1 room (Figure 1a). It has dimensions of about 640 × 370 × 295 (L × W × H,
expressed in cm) with two windows of 110 × 160 (L ×H in cm) facing a south-east orientation with
white plastered walls, white panels for the suspended ceiling and metal black tiles for the floor.
The living wall, provided by the company Sundar Italia, occupies the north-west side of the A1 room
(in green in Figure 1b) with an area of about 7 m2. It consists of an indoor living wall mounted on an
aluminum frame, on which special panels are installed and connected each other. The frame is fixed to
the support wall (A1 room, Figure 1b) with a special system that facilitates the natural renewal of the
air and does not damage the wall. Panels are realized in pvc and covered by three layers of felt: plants
are rooted in those felt layers and grown in hydroponics in the absence of a growing medium.Sensors 2019, 19, x FOR PEER REVIEW 5 of 25 

 

 
Figure 1. LabZEB: (a) outdoor view; (b) indoor plan. 

Within A1, two complete workstations (desk, chair, PCs) are installed, facing a south-west 
direction. Each workstation is completed by a monitoring system consisting of a thermo-hygrometric 
sensor for the measurement of air temperature and relative humidity, a black globe thermometer and 
a hot wire anemometer for the measurement of both air velocity and temperature. In addition, 
occupants wear a smart device for biometric data acquisition. 

Figure 2 reports the spatial distribution of the sensors used for the monitoring of indoor 
environmental variables 

 
Figure 2. A1 room: (a) spatial distribution of sensors; (b) photo of the room set up. 

Table 2 reports the metrological characteristics of the environmental and biometric sensors. 
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Plants were selected directly by Sundar Italia depending on the indoor environmental conditions
to which they would be exposed. The chosen species are two variants of ficus repens (or ficus pumila)
characterized by green or white edged leaves. An artificial illumination system was installed in order
to guarantee that plants get the right amount of light and the correct light spectrum they need for
their grow and conservation. The drip irrigation system, positioned on the top frame of the living,
is completely autonomous and automatic.

Two Heat Recovery systems (HR) are installed on the north-east wall of the room (in blue in
Figure 1b) consisting of decentralized ventilation units with heat recovery designed for installation in
residential and commercial spaces. Considering that, for the Italian climatic zone E [29] in which the
experimentation took place, the month of May presents the optimal climatic conditions for tests in
passive conditions, the heating and cooling plants were switched off. Therefore, the HR in this phase
worked exclusively as an indoor air renewal system.

Within A1, two complete workstations (desk, chair, PCs) are installed, facing a south-west direction.
Each workstation is completed by a monitoring system consisting of a thermo-hygrometric sensor for
the measurement of air temperature and relative humidity, a black globe thermometer and a hot wire
anemometer for the measurement of both air velocity and temperature. In addition, occupants wear a
smart device for biometric data acquisition.

Figure 2 reports the spatial distribution of the sensors used for the monitoring of indoor
environmental variables.
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Table 2 reports the metrological characteristics of the environmental and biometric sensors.
While it is clear why the above environmental sensors are considered, it is not clear which

of the above-mentioned biometric parameters could be affected by the surrounding environment.
For this reason, all data recorded by the wearable device are considered. The experimentation, where
participants perform common office tasks (typing and reading with or without video terminal support),
is structured in two sections: one in the morning (3-h long) and one in the afternoon (2-h long).
The sessions are separated by an interval time of one hour in order to nullify/minimize the effects of
the prolonged occupants’ presence in relation to indoor environment conditions and the fatigue of
participants. At the end of each section, before leaving the room, the user involved in the test answers
some questions using a web-based Google Form (Table 3). All answers are based on a five-point Likert
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scale, used to allow the individuals to express how satisfied or unsatisfied they are with a particular
comfort condition.

Table 2. Characteristics of sensors installed in the test cell.

Sensor (Figure 2a) Position (Figure 2a) Variable U.M. Measure Range Accuracy

TRH In front of P1 and P2
Relative Humidity [%] 0 ÷ 100% ±2 %
Air Temperature [◦C] −40 ÷ +60 ◦C ±0.1 ◦C

TRA Near P1 and P2 Radiant Temperature
(derived) [◦C] −40 ÷ +60 ◦C ±0.1 ◦C

ANM Left to P1 and P2
Air Velocity [m/s] 0 ÷ 5 m/s ±0.02 m/s

Air Temperature [◦C] −20 ÷ +80 ◦C ±0.3 ◦C
LXL In front of P1 and P2 Illuminance [lx]
CO2 Behind P1 and P2 CO2 concentration [ppm] 0-5000 ppm ±50 ppm

VOC Behind P1 and P2 Volatile Organic
Compounds [%] 0 ÷ 100 % of VOC ±20 %

PPG sensor Smart wearable Heat Recovery (HR)
(derived) [bpm] - -

EDA sensor Smart wearable EDA [µS] 0.01 ÷ 100 µS -
Skin temperature

sensor Smart wearable Tskin [◦C] −40 ÷ +85 ◦C -

3-axes
accelerometer Smart wearable Accelerations [g] ±2 g -

Table 3. Questions of Web-based survey.

Question ID Questions Answer Options

Q1 How do you evaluate the performance
of your work? 1 (tiring) to 5 (untiring)

Q2 How do you assess thermo-hygrometric
wellness on average?

1 (very unsatisfactory) to
5 (very satisfactory)

Q3 How do you assess the air quality
on average?

1 (very unsatisfactory) to
5 (very satisfactory)

Q4 How do you assess the lighting quality
on average?

1 (very unsatisfactory) to
5 (very satisfactory)

As the impact of several factors on the overall categorization of the Indoor Environmental Quality
(IEQ) is unclear and further research is needed considering the numerous differences in terms of
“characteristics of occupancy, ventilation type, office type, etc.” [30], it was decided, starting from
the answers to the questions on thermo-hygrometric perception (Q2 in Table 3), air quality (Q3) and
lighting quality (Q4), to derive a simple IEQ score, defined as the weighted average of the three values.
The data derived from the participants’ feedback are considered in the definition of the dataset, but
they are not considered in the ML approach.

2.2. Configurations

The monitoring campaign lasted for four consecutive weeks in May, each of which is characterized
by one of the below four configurations (Table 4) defined considering a different combination of
possible settings.
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Table 4. Considered plant configurations and related setting.

Plant Configuration Setting

1 Living wall absent
HR OFF

2 Living wall absent
HR ON

3 Living wall present
HR OFF

4 Living wall present
HR ON

The choice of four consecutive monitoring weeks during the month of May (spring season) is due
to the following reasons:

• Avoid a high external temperature difference between configurations, keeping the possibility of
comparing results;

• Ensure acceptable indoor temperature levels for the researchers involved in the experiment, as the
cooling system was switched off (passive conditions); in the hottest periods of the year (summer
months), the indoor temperatures should require the use of cooling plants;

• Ensure the minimum indoor temperatures required by ficus repens: for their survival, a minimum
temperature of 10 ◦C is required, which is hard to maintain in the coldest periods of the year
without the use of HVAC plants;

• Ensure that the indoor humidity doesn’t exceed the maximum level tolerated by the selected green
essences without risking lowering the indoor temperature too much; using the HR (configuration 2
and 4) to mix the air and to mitigate the humidity level created both by the irrigation of the living
wall and by the evapotranspiration of the plants in colder periods would have led to an excessive
drop in perceived indoor temperatures.

The research campaign is carried out considering nine users who paired occupied the two
workstations (P1 and P2 in Figure 2a) available in the A1 lab room. The field of view of workstations
P1 and P2 is reported in Figure 3a,b, respectively. Figure 3c,d is used to define, in a kind of parallelism
with the Sky View Factor (SVF) estimation, using a fisheye [31], the Green View Factor (GVF), an index
introduced to indicate the fraction of green area on the surface of a hemisphere centered on the point
of analysis (the upper edge of the monitor, in the middle position). The GVF for P1 is 0.061, while for
P2 it is 0.114. Very low values indicate that a small portion of the space centered at the analysis point is
occupied by the green area. In addition, the very similar values indicate that the green areas resulting
from the different perspective view for the two positions are roughly equivalent. Figure 3e,f highlights
how the green areas occupy the peripheral visions [32] of the Field of View: in P1, it covers the right
far-peripheral area, while in P2 it covers the right part of mid-peripheral vision.

The workstation orientation and placing within the room emphasize particular indoor discomfort
effects due, for example, to the presence of the two south-east exposed windows in proximity of P1
and P2 that could favour daylight discomfort or radiant asymmetry.
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2.3. Dataset Attributes

The experimental approach described above defined a preliminary dataset structured considering
all environmental, biometric and user feedback data consisting of a total of 43,100 instances and
50 attributes. The heat map shown in Figure 4 can verify the consistency of the defined dataset.
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It is possible to highlight how this is completely imbalanced. The following chapter describes
how it has been filtered and used in the ML approach.

The above-mentioned set-up and dataset try to answer to the following questions:

• What are the main environmental variables and models useful to accurately classify the adopted
plant configurations?

• Are the biometric data useful to classify the adopted plant configurations? If so, which features
are the most important?

• How does combining environmental and biometric data affect the accuracy of the model?

3. Results and Discussion

3.1. Data Filtering and Dataset Structure

To overcome the limitations of the starting imbalanced dataset due to a small number of available
data, a new one (Figure 5) is defined, starting from the above situation, by applying the following steps:

• Filtering Not Available Number (NaN) by using DataFrame.dropna pandas function [33]
considering a subset defined starting from a list of specific columns (subset= [“filtered_eda_P1”,
“HR_P1”, “filtered_eda_P2”, “HR_P2”, “Q1.1”]);

• Defining the P1 subset of data, by using DataFrame.loc pandas function [34], to consider
only the P1 label in the P1/P2 column and DataFrame.rename function [35], renaming specific
attributes (columns={‘P1_VA’: ‘VA’, ‘P1_TA’: ‘TA’, ‘P1_AT: ‘AT’, ‘P1_RH’: ‘RH’, ‘P1_TRA’: ‘TRA’,
‘P1_LX’: ‘LX’, ‘P1_CO2’: ‘CO2’, ‘P1_VOC’: ‘VOC’, ‘EDA_P1’: ‘EDA’, “AccelX_P1”:”AccelX”,
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“AccelY_P1”:”AccelY”, “AccelZ_P1”:”AccelZ”, “Temp_P1”:”Temp”, “motion_P1”:”motion”,
“HR_P1”:”HR”, “User_P1”: “User”, “M/A_P1” : “M/A”});

• Defining the P2 subset of data, by using DataFrame.loc pandas function [34], to consider
only the P2 label in the P1/P2 column and DataFrame.rename function [35] renaming
specific attributes (columns={‘H_VA’: ‘P2_VA’, ‘H_TA’: ‘P2_TA’, ‘P2_AT’: ‘AT’,’P2_RH’: ‘RH’,
‘P2_TRA’: ‘TRA’, ‘P2_LX’: ‘LX’, ‘P2_CO2’: ‘CO2’, ‘P2_VOC’: ‘VOC’, ‘EDA_P2’: ‘EDA’,
“AccelX_P2”:”AccelX”, “AccelY_P2”:”AccelY”, “AccelZ_P2”:”AccelZ”, “Temp_P2”:”Temp”,
“motion_P2”:”motion”, “HR_P2”:”HR”, “Q1.1”:”Q1”,”Q2.1”:”Q2”, “Q3.1”:”Q3”, “Q4.1”:”Q4”,
“Q5.1”:”Q5”, “IEQ_avg.1”:”IEQ_avg”, “User_P2”: “User”, “P1/P2.1”:”P1/P2”, “M/A_P2” : “M/A”});

• Using the DataFrame.join pandas function [36] to merge P1 and P2 subset data.
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The derived dataset is characterized by a series of 5692 instances and 25 attributes, each of which
is defined in Table 5.
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Table 5. Dataset attributes and description.

ID Label Number Type Description

0 ID 5692 non-null int64 ID progressive
1 Data&Time 5692 non-null datetime64 Date and time
2 VA 5692 non-null float64 Air velocity [m/s] measured close to the workstations P1 and P2

3 TA 5692 non-null float64 Air temperature [◦C] measured by the anemometer close to the
workstations P1 and P2

4 AT 5692 non-null float64 Air temperature [◦C] measured by the thermo-hygrometer close to
the workstations P1 and P2

5 RH 5692 non-null float64 Relative humidity [%] measured by the thermo-hygrometer close to
the workstations P1 and P2

6 TRA 5692 non-null float64 Radiant temperature [◦C] measured by the globe thermometer close
to the workstations P1 and P2

7 LX 5692 non-null float64 Illuminance [lx] measured by the luxmeter close to the workstations
P1 and P2

8 CO2 5692 non-null int64 CO2 indoor concentration [ppm] close to the workstations P1 and P2
9 VOC 5692 non-null int64 VOCs [%] close to the workstations P1 and P2
10 EDA 5692 non-null float64 ElectroDermal Activity [µS]
11 AccelX 5692 non-null float64 Acceleration along the X axis [g]
12 AccelY 5692 non-null float64 Acceleration along the Y axis [g]
13 AccelZ 5692 non-null float64 Acceleration along the Z axis [g]
14 Temp 5692 non-null float64 Skin temperature [◦C]
15 motion 5692 non-null float64 Root mean squared 3 axis acceleration [37,38]
16 HR 5692 non-null int64 Heart rate [bpm]
17 Q1 5692 non-null int64 Question 1 (see Table 3 for more details)
18 Q2 5692 non-null int64 Question 2 (see Table 3 for more details)
19 Q3 5692 non-null int64 Question 3 (see Table 3 for more details)
20 Q4 5692 non-null int64 Question 4 (see Table 3 for more details)
21 IEQ_avg 5692 non-null float64 IEQ as a weighted average of previous scores
22 User 5692 non-null float64 Number of the user
23 P1/P2 5692 non-null object P1/P2 workstation
24 M/A 5692 non-null object Morning/Afternoon
25 Plant_Config. 5692 non-null int64 Configuration as reported in Table 4

3.2. ML Approach

The defined dataset is used through the ML approach to identify the correlation between some
variables and different target values.

3.2.1. Environmental Parameters Correlation Considering the Plant Configuration as a Target Value

The correlation between environmental monitored data and the four considered configurations is
reported in the scatter matrix plot of Figure 5.

Figure 6 highlights how some attributes (RH, the pair RH–VOC) are useful to predict the
plant configurations, each characterized by a specific color as reported in the legend. However,
it is not possible to identify which attributes would be the best to validate and predict the plant
configuration based on this set of environmental data. For this purpose, an Extremely Randomized Tree
technique [39] with Python’s scikit-learn tool [40] is considered, thus allowing to verify the importance
of environmental features to identify the categorical target label (Figure 6).

Defined two threshold feature importance values equal to 0.1 and 0.2, it is possible to identify the
most important variables that can be used to determine the plant configuration (Figure 6).

The RH has a predominant impact when compared with all other environmental data. Considering
the two threshold values defined previously, the following lists of variables are considered:

• [5—RH, 8—CO2, 9—VOC];
• [5—RH, 9—VOC].

An analysis is then carried out to identify, according to the ML approach, which the algorithm can
identify, with the highest accuracy, the plant configuration adopted. For this purpose, a set of different
algorithms are considered: Logistic Regression (LR) [41], Linear Discriminant Analysis (LDA) [42],
K-Nearest Neighbors (kNN) [43], Classification and Regression Trees (CART) [44], Extra Tree Classifier
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(ETC) [40], Gaussian Naïve Bayes (NB) [45], Support Vector Machines (SVM) [46], Random Forest
(RF) [47], eXtreme Gradient Boosting (XGBoost) [48].
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Each of the considered algorithms is characterized by a different solving approach. Thus, for
example, LR is a supervised classification method usually used when the target variable is categorical.
LDA is a supervised technique used to reduce the number of dimensions (i.e., variables) in a dataset
while retaining as much information as possible. kNN is a supervised learning algorithm that considers
different centroids and uses a Euclidean function to compare and classify each point to the group to
optimize it to place with all closest points to it. CART is referred to as “decision trees” because it
takes an instance, traverses the tree, and compares important features with a determined conditional
statement. Whether it descends to the left lower branch or the right depends on the result. ETC is a
type of ensemble learning technique which aggregates the results of multiple de-correlated decision
trees collected in a “forest” to output its classification result. In concept, it is very similar to an RF and
only differs from it in the manner of construction of the decision trees in the forest. NB is based on
Bayes’ theorem that assumes independence between predictors. A Naïve Bayes classifier will assume
that a feature in a class is unrelated to any other. In particular, the selected NB model, implements the
Gaussian Naïve Bayes algorithm for classification. SVM is a supervised classification algorithm that
plots a line that divides different categories of your data and optimizes it to ensure that the closest
points in each group lie farthest from each other. Finally, XGBoost, follows the principle of gradient
boosting, and currently it is considered to be one of the most useful libraries to build accurate models
on structured data.

The dataset is divided into two subsets, composed of 80% and 20% of values. The former is used
to train the models and the latter for the test.

The “accuracy” metrics [49] have been used to evaluate the different algorithms, which in this
specific contest is defined as the ratio between the correct number of instances predicted, divided by
the total number. A k-fold cross validation [50] equal to 10 has been considered. Below is the average
value for each algorithm.

Table 6 shows the average accuracy and the standard deviation for the different considered algorithms.
As reported in [51], tree-based models always work better than the alternatives when there is no

hyperparameter tuning. To verify this circumstance, the tuning of the hyperparameters was carried
out for LR, KNN, CART, ETC, SVM, RF and XGBoost. The values with an asterisk in Table 6 are those
obtained in the tuning of hyperparameters: LDA and NB have not been considered because they have
no hyperparameter to tune [42,52].
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Table 6. Average accuracy—selected environmental data for plant configuration identification. With *:
average accuracy defined considering the tuning of hyperparameters.

Algorithm Average Accuracy Standard Deviation

25 = ƒ [5,8,9] 25 = ƒ [5,9] 25 = ƒ [5,8,9] 25 = ƒ [5,9]

LR 0.988* 0.988* 0.006* 0.005*
LDA 0.969 0.634 0.008 0.028
KNN 0.982* 0.994* 0.005 0.005*
CART 0.997 0.974* 0.002 0.008*
ETC 0.993 0.875 0.006 0.015
NB 0.984 0.621 0.006 0.027

SVM 0.977* 0.986* 0.008* 0.007*
RF 0.998* 0.994* 0.002* 0.005*

XGBoost 0.998* 0.995* 0.002* 0.004*

Table 7 shows the hyperparameters tuned and their corresponding ranges.

Table 7. Hyperparameters tuning range.

Algorithms Hyperparameters Range

LR
Solver [‘newton-cg’, ‘lbfgs’, ‘liblinear’]

Penalty [‘l1′, ‘l2′, ‘elasticnet’, ‘none’]
C_value [100, 10, 1.0, 0.1, 0.01]

KNN
Leaf_size range(1,10,2)

n_neighbors range(1,30,5)
p_value [1,2]

CART
Max_depth range(1,50,4)

Min_samples_leaf [i/10.0 for i in range(1,6)]
Max_features [i/10.0 for i in range(1,11)]

ETC
Max_depth range(1,50,4)

Min_samples_leaf [i/10.0 for i in range(1,6)]
Max_features [i/10.0 for i in range(1,11)]

SVM
Kernel [‘poly’, ‘rbf’, ‘sigmoid’]

C_value [50, 10, 1.0, 0.1, 0.01]

RF n_estimators range(1,22,2)

XGBoost
Max_depth range(3,10,2)

Min_child_weight range(1,6,2)
Gamma [i/10.0 for i in range(0,5)]

The statistical significance of the results is verified using the ANalysis Of VAriance (ANOVA)
test SciPy function [53]; data of each sample are normally distributed and with the same standard
deviations, because nine data samples are considered, one for each considered model, consisting into
the array of 10 accuracies. The p-values are lower than 0.05, demonstrating the statistical significance
of the results.

The XGBoost and RF with three features have the same highest average accuracy and lowest
values of standard deviation. Considering only two features, the XGBoost records the best results.
Consequently, the validation values are defined (Table 8) in terms of:

• Precision defined as a measure of a classifiers exactness;
• Recall considered as the completeness of the classifier;
• f1-score, a weighted average of precision and recall;
• Support, the number of occurrences of each label in y true.
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Table 8. Validation—selected environmental data for plant configuration identification.

Plant Config. Precision Recall F1-Score Support

RF, 25 = ƒ
[5,8,9]

1 0.98 0.87 0.92 119
2 0.95 0.99 0.97 290
3 1.00 1.00 1.00 330
4 1.00 1.00 1.00 400

XGBoost, 25 = ƒ
[5,8,9]

1 1.00 1.00 1.00 119
2 0.99 0.99 1.00 290
3 1.00 0.99 1.00 330
4 0.98 1.00 1.00 400

XGBoost, 25 = ƒ
[5,9]

1 1.00 0.95 0.97 119
2 0.98 1.00 0.99 290
3 1.00 1.00 1.00 330
4 0.99 1.00 0.99 400

3.2.2. Biometric Parameters Correlation Considering the Plant Configuration as a Target Value

The correlation between biometric variables and the four considered configurations is investigated
(Figure 7).
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In this case, it is not possible to identify which algorithms would be the best to validate and
predict the plant configuration based on this set of biometric data. Considering the same ML approach
used in the previous case, an analysis is then carried out to identify the relationship among all available
biometric data parameters and the plant configuration. First, the sub-dataset is analyzed in order to
identify the importance of individual features to identify the categorical label “plant configuration”
(Figure 8).Sensors 2019, 19, x FOR PEER REVIEW 16 of 25 
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Defined the same threshold feature importance values equal to 0.1 and 0.2, the following biometric
parameters are selected for the identification of plant configuration:

• [10—EDA, 11—AccelX, 14—Temp, 22—User];
• [14—Temp, 22—User].

Table 9 shows the average accuracy and the st.dev. for the considered algorithms.

Table 9. Average accuracy—selected biometric data for plant configuration identification. With *: average
accuracy defined considering the tuning of hyperparameters.

Algorithm Avgerage Accuracy Standard Deviation

25 = ƒ [10,11,14,22] 25 = ƒ [14,22] 25 = ƒ [10,11,14,22] 25 = ƒ [14,22]

LR 0.500* 0.500* 0.015* 0.015*
LDA 0.363 0.363 0.024 0.023
KNN 0.871* 0.742* 0.011 0.019*
CART 0.855 0.626 0.011 0.016
ETC 0.848 0.632 0.024 0.024
NB 0.397 0.347 0.015 0.024

SVM 0.559* 0.495* 0.015* 0.014*
RF 0.891* 0.687* 0.011 0.020*

XGBoost 0.902* 0.743* 0.014 0.016*

The values with an asterisk in Table 9 are those obtained considering the tuning of hyperparameters
considering the same parameters and ranges reported in the previous Table 7.
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XGBoost algorithm maintains the best level of average accuracy and lowest standard deviation
considering the two lists of features. The validation values (Table 10) in terms of precision, recall,
f1-score and support confirm the good results of the selected algorithm.

Table 10. Validation—selected biometric data for plant configuration identification.

Plant Config. Precision Recall F1-Score Support

XGBoost, 25 = ƒ
[10,11,14,22]

1 0.94 0.92 0.93 119
2 0.82 0.84 0.83 290
3 0.92 0.91 0.91 330
4 0.85 0.85 0.85 400

XGBoost, 25 = ƒ
[14,22]

1 0.89 0.92 0.91 119
2 0.70 0.68 0.69 290
3 0.74 0.70 0.72 330
4 0.70 0.73 0.71 400

3.2.3. Selected Biometric and Environmental Parameters Correlation Considering the Categorical
Label User as a Target Value

In the Section 3.2.2, two lists of biometric features are selected. In both, there is the User feature.
It is possible to replace the categorical label 22—User following the same approach, considering all
environmental and biometric data. In this way, it is possible to verify the importance of individual
features to identify the target feature, Users (Figure 9) thus highlighting the interconnection among
environmental parameters and biometric data, as discussed in recent studies [54,55].

Sensors 2019, 19, x FOR PEER REVIEW 17 of 25 

 

4 0.85 0.85 0.85 400 

XGBoost, 25 = ƒ [14,22] 
 

1 0.89 0.92 0.91 119 
2 0.70 0.68 0.69 290 
3 0.74 0.70 0.72 330 
4 0.70 0.73 0.71 400 

3.2.3. Selected Biometric and Environmental Parameters Correlation Considering the Categorical 
Label User as a Target Value 

In the Section 3.2.2, two lists of biometric features are selected. In both, there is the User feature. 
It is possible to replace the categorical label 22 - User following the same approach, considering all 
environmental and biometric data. In this way, it is possible to verify the importance of individual 
features to identify the target feature, Users (Figure 9) thus highlighting the interconnection among 
environmental parameters and biometric data, as discussed in recent studies [54], [55]. 

 
Figure 9. Feature importance—environmental and biometric data for user identification. 

Table 11 shows the average accuracy and the standard deviation for the considered algorithms 
and selected features. 

Table 11. Average accuracy—selected environmental and biometric data for user identification. With 
*: average accuracy defined considering the tuning of hyperparameters. 

Algorithm Average Accuracy Standard Deviation 
LR 0.364* 0.018 

LDA 0.217 0.021 
KNN 0.963* 0.006* 
CART 0.816 0.009 
ETC 0.788 0.013 
NB 0.321 0.030 

SVM 0.251* 0.015* 
RF 0.957* 0.009* 

XGBoost 0.959* 0.008* 
The validation values (Table 12) in terms of precision, recall, f1-score and support confirm the 

good results of the XGBoost algorithm. 

Figure 9. Feature importance—environmental and biometric data for user identification.

Table 11 shows the average accuracy and the standard deviation for the considered algorithms
and selected features.

The validation values (Table 12) in terms of precision, recall, f1-score and support confirm the
good results of the XGBoost algorithm.
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Table 11. Average accuracy—selected environmental and biometric data for user identification. With *:
average accuracy defined considering the tuning of hyperparameters.

Algorithm Average Accuracy Standard Deviation

LR 0.364* 0.018
LDA 0.217 0.021
KNN 0.963* 0.006*
CART 0.816 0.009
ETC 0.788 0.013
NB 0.321 0.030

SVM 0.251* 0.015*
RF 0.957* 0.009*

XGBoost 0.959* 0.008*

Table 12. Validation—selected environmental and biometric data for user identification.

User Precision Recall F1-Score Support

XGBoost, 22 = ƒ
[5,9,14]

1 0.99 0.97 0.98 106
2 0.94 0.98 0.96 138
3 0.92 0.95 0.93 83
4 0.91 0.95 0.93 63
5 0.96 0.93 0.94 137
6 0.95 0.94 0.94 160
7 0.98 0.91 0.94 159
8 0.95 0.97 0.96 162
9 0.93 0.96 0.95 131

3.2.4. Selected Biometric and Environmental Parameters Correlation Considering the Plant
Configuration as a Target Value

For the definition of the plant configuration, it is therefore possible to use a restricted set of
environmental data (5—RH, 8—CO2, 9—VOC or 5—RH, 9—VOC) or biometric (10—EDA, 11—AccelX,
14—Temp, 22—User or 14—Temp, 22—User). The possibility of replacing the categorical label “User”
with a selection of biometric and environmental data (5—RH, 9—VOC, 14—Temp) has been verified.
Ultimately, therefore, the two lists reported below are considered to evaluate the goodness of the
models in defining the target values Plant.Config.:

• [5—RH, 8—CO2, 9—VOC, 10—EDA, 11—AccelX, 14—Temp];
• [5—RH, 9—VOC, 14—Temp].

Table 13 shows the average accuracy and the standard deviation for the different considered
algorithms.

Table 13. Average accuracy—selected environmental and biometric data for plant configuration
identification. With *: average accuracy defined considering the tuning of hyperparameters.

Algorithm Average Accuracy Standard Deviation

25 = ƒ [5,8–11,14] 25 = ƒ [5,9,14] 25 = ƒ [5,8–11,14] 25 = ƒ [5,9,14]

LR 0.977* 0.952* 0.005* 0.008*
LDA 0.964 0.937 0.008 0.008
KNN 0.998* 0.986* 0.002* 0.005*
CART 0.984 0.983 0.008 0.007
ETC 0.978 0.977 0.005 0.007
NB 0.605 0.933 0.026 0.008

SVM 0.961* 0.967* 0.009 0.007*
RF 0.994* 0.986* 0.003 0.004*

XGBoost 0.998* 0.986* 0.002 0.004*
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The validation values (Table 14) in terms of precision, recall, f1-score and support confirm the
good results of the XGBoost algorithm.

Table 14. Validation—selected environmental and biometric data for plant configuration identification.

Plant Config. Precision Recall F1-Score Support

XGBoost, 25 = ƒ
[5,8–11,14]

1 1.00 1.00 1.00 119
2 1.00 1.00 1.00 290
3 1.00 1.00 1.00 330
4 1.00 1.00 1.00 400

XGBoost, 25 = ƒ
[5,9,14]

1 0.98 1.00 0.99 119
2 1.00 0.99 1.00 290
3 0.98 0.99 0.98 330
4 1.00 0.99 0.99 400

RF, 25 = ƒ
[5,9,14]

1 0.98 1.00 0.99 119
2 1.00 0.99 1.00 290
3 0.98 0.98 0.98 330
4 0.99 0.98 0.99 400

3.2.5. Model Interpretability

Summarizing from the results of the previous paragraphs, it is possible to highlight how, in this
specific case, for the prediction of plant configuration, a maximum of three environmental parameters
are useful (5—RH, 8—CO2, 9—VOC), while considering the environmental parameters, it is possible to
consider four features (10—EDA, 11—AccelX, 14—Temp, 22—User). In this study, it has been possible to
highlight how the User feature can be identified considering a mixture of environmental and biometric
parameters (5—RH, 9—VOC, 14—Temp). Then, it has been possible to mix the selected environmental
and biometric data to define an overall performance in defining the plant configuration. This has been
achieved considering only the three environmental features or the mix of six features (environmental
and biometric); the results are quite comparable considering the XGBoost-based model.

For a long time, models have focused on reaching high performances without verifying or, better,
explaining the causes of these results and their sense. In this specific case, in order to verify if the
adoption of this set of selected environmental and biometric features is relevant, the SHapley Additive
exPlanations (SHAP) library was used. This is a game theoretic approach that allows explaining the
output of any machine learning model [56–58]. The set of six features is considered (5—RH, 8—CO2,
9—VOC, 10—EDA, 11—AccelX, 14—Temp) because it can obtain the highest precision for all the four
plant configurations. The SHAP value plot (Figure 10) shows the distribution of the impacts of each
feature on the model output.

Figure 10 summarizes the following useful information:

• Variables are classified in descending order of importance;
• The horizontal location shows whether the effect of that value is associated with a positive or

negative impact on the prediction of target feature;
• Colour shows the feature value: high is in red and low in blue.

This reveals, for example, that a high RH has a positive impact on the quality rating. The “high”
comes from the prevalent red colour, and the “positive” impact is shown on the X-axis. Similarly,
the low values of the VOC feature have an impact on the model prediction comprised between −0.5
and 0.5.

The Figure 10 demonstrates that the RH feature has the dominant effect among the selected
environmental and biometric data, while the VOC, Temp and CO2 features could have a limited impact
in defining the Plant configuration, where Temp is more important than the environmental variable
CO2. The effect of the other variables (AccelX and EDA) is almost obscured by the dominant weight of
all other considered features.
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3.3. Discussion

The present research draws its foundation from the increased impact of IoT solutions, showing
how different plant configurations also based on the adoption of greenery, could affect not only
the environmental indoor parameters as expected, but also the biometric parameters of users that
occupy the indoor environment. The use of IoT system has introduced new approaches of assessment
of IEQ, allowing revising classical standard approaches. De facto, the approaches reported in the
references have shown that the different evaluation methods which have been introduced follow
independent and unrelated strands to assess the influence of the presence of a living wall in indoor
environments, e.g., according to the psycho-physiological response of the users or the variation in
indoor environmental parameters. On the contrary, the experimental bibliographic evidence has shown
that indoor living walls have the ability to influence environmental, psychological and physiological
aspects, if appropriately sized and calibrated. The use of supervised machine learning approaches
allows recognizing correlations among different features of a conspicuous dataset. These are the reasons
that led to proposing this methodological approach as the new horizon of evaluation of the effects
produced by living walls in different indoor environments. The most important aspect of machine
learning is repetitiveness, because the more the models are exposed to data, the more they are able to
adapt independently. In this context, it could be useful to share a useful dataset structure that allows
ML to learn from previous processing and to produce results or make decisions, for example, in the
context of Building Automation, that are reliable and applicable to different contexts. ML models allow
to understand the humans’ sentiments through automated systems, thus allowing to give the accurate
answer to daily questions about the management and control of the building system as a whole.

Focusing the attention on all the considered variables involved in the experimentation, some
considerations could be done. From an environmental point of view, only the strictly air-related
variables (RH, VOC, CO2) are the most relevant descriptors of the comfort conditions, while the other
thermal variables have a smaller impact. On the contrary, among biometric variables, skin temperature
(Temp) is the relevant variable besides User in this specific study.

4. Conclusions

All previous considered works have not analyzed the correlation among environmental and
biometric data using an ML approach in indoor space where greenery solutions are located. To overcome
this limitation, the proposed approach describes a campaign investigation where the influences on
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both environmental and biometric parameters of participant of four different plant configuration are
analyzed using wearable devices in addition to an environmental monitoring system.

Several results are carried out by the presented research.
The questions proposed in the previous Section 2 will be answered based on the presented results.
Research question 1: What are the main environmental variables and models useful to accurately classify

the adopted plant configurations?
The evaluation of the comfort level of an indoor environment, according to its intended use, is

usually carried out considering the IEQ assessment through a holistic and integrated study of different
environmental aspects.

The presence of the living wall represents a forcing factor of some specific environmental variables
concerning the sphere of thermal comfort among the others.

De facto, the oversized design of the adopted living wall with respect to the specific needs
of the environment of the ZEB laboratory is, for example, a forcing agent with sensible effects on
the degree of indoor relative humidity. However, this oversized design is in response to the study
conducted on the green system which, as stated in the introduction, is wider than the one in object,
and consequently essential.

The presence of the irrigation system, the specific lighting system for eight hours a day able to
provide the most appropriate wavelength to the plants for proper growth and the evapotranspiration
phenomena, are, in this specific case, forcing with significant effects on some variables, as they are
effective in altering indoor microclimatic conditions.

Concretely, the indoor relative humidity degree undergoes a significant increase of up to 80% in
the case of the presence of the living wall and air exchange systems being turned off (configuration 3)
due to irrigation and evapotranspiration phenomenon.

All these considerations involve how, as reported in the Section 3.2.1, the RH feature has the most
relevant impact when defining the plant configurations. Among the other environmental variables,
in this specific case, the thermo-hygrometric variables (VA, TA, TA, TRA) have very little importance.
As expected, a variable LX does not have a relevant weight in defining the adopted configuration. Among
the air-quality-related features, VOC has an impact which is most relevant if compared with CO2.

Research question 2: Are the biometric data useful to classify the adopted plant configurations? If so,
which features are the most important?

According to the bibliographic review, the biometric parameters that describe the physiological
response of users to the indoor environment and its forcing agents can be influenced and altered
according to the indoor environmental boundary conditions.

The studies analyzed have shown how biometric parameters can be influenced.
In the study, the biometric parameters and the answers to the users’ questionnaires were directly

influenced by the presence of the living wall because, as highlighted above, it represents a forcing of
the indoor microclimatic conditions.

Too-high values of relative humidity in the indoor environment, induced by the presence of
the living wall and by the equipment suitable for its proper functioning, cause a variation in the
temperature of the skin which is different for the considered users. That is why, among the biometric
data, Temp and User have a relevant impact.

Research question 3: How does combining environmental and biometric data could affect the accuracy of
the model?

Therefore, the application of the model cannot disregard the verification of how it behaves in
the assessment of both biometric and physical indoor parameters in a combined manner. First, it can
highlight how it is possible to replace, with good accuracy, the User values with a selected set of
environmental and biometric data, thus overpassing the use of a categorical label.

In addition, it is possible to point out how, with the dominant effect recorded by the RH feature,
in this specific case, the biometric data have a limited impact, except for the Temp data, which is more
important than CO2 in contributing to definition of the target values.
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Beyond the answers to the questions, in the proposed research study, an index related to green
elements viewing (GVF index) has been introduced to indicate the fraction of green area which occupies
the surface of a hemisphere and could represent an interesting variable for deepening the study of
green elements comfort impact in indoor spaces.

By a building operation point of view, specific environmental parameters are deeply influenced by
the adopted plant configuration that also have an effect on the monitored biometric data. In particular,
the variables analysis shows how the different aspects of internal comfort (thermal, air quality, lighting,
acoustic) should be analyzed in an all-inclusive way due to the relationships that engage each other.

The ML approach used in the paper allows to characterize users by considering the selected
features. This offers the opportunity to create a sort of “user archetypes”, implementable on building
design in order to optimize building features.

Among the different considered ML techniques, the XGBoost-based model records the best
performance in terms of target value identification.

The structured database can be used to define new a possible relation among monitored data and
users’ feedback about their personal IEQ perception and this is a possible future improvement to the
proposed work.

However, to maximize the replicability of this approach, some limitations that emerged during
experimentation must be overcome.

Firstly, to maximize the potential of this approach, a new promising feature selection method can
be considered in future development [59].

The experimentation has been carried out in a laboratory, with environmental variables which
are not representative, in certain configurations, of a real working environment: in this context, it is
difficult to scale the results to a real case study. For this reason, this first approach can be replicated
considering a wider set of application in real case studies considering a greater variability in adopted
greenery solution.
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