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Aims: To examine associations of the gut microbial metabolite

trimethylamine-N-oxide (TMAO) and its precursors with risk of cardiovascular

events in acute coronary syndrome (ACS), and determine whether these

associations were mediated by renal function.

Methods: In this prospective cohort study, we included 309 patients with

ACS. During a mean follow-up of 6.7 years, 131 patients developed major

adverse cardiovascular events (MACE) (myocardial infarction, hospitalization

for heart failure, and all-cause mortality). Plasma concentrations of TMAO,

trimethylamine (TMA), choline, betaine, dimethylglycine and L-carnitine were

profiled by liquid chromatography tandem mass spectrometry. Hazard ratios

were estimated with multivariable Cox regression models. The mediating

role of estimated glomerular filtration rate (eGFR) was tested under a

counterfactual framework.

Results: After adjustment for traditional cardiovascular risk factors and

medications, participants in the highest tertile vs. the lowest tertile of

baseline TMAO and dimethylglycine concentrations had a higher risk of

MACE [(HR: 1.83; 95% CI: 1.08, 3.09) and (HR: 2.26; 95% CI: 1.17,

3.99), respectively]. However, with regards to TMAO these associations

were no longer significant, whereas for dimethylglycine, the associations

were attenuated after additional adjustment for eGFR. eGFR mediated the

associations of TMAO (58%) and dimethylglycine (32%) with MACE incidence.

The associations between dimethylglycine and incident MACEwere confirmed

in an internal validation. No significant associations were found for TMA,

choline, betaine and L-carnitine.

Frontiers inCardiovascularMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.1000815
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.1000815&domain=pdf&date_stamp=2022-09-21
mailto:papchris10@gmail.com
https://doi.org/10.3389/fcvm.2022.1000815
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.1000815/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Sanchez-Gimenez et al. 10.3389/fcvm.2022.1000815

Conclusion: These findings suggest that renal function may be a key mediator

in the association of plasma TMAO with the development of cardiovascular

events after ACS. The present findings also support a role of dimethylglycine

in the pathogenesis of MACE, which may be mediated, at least partially, by

renal function.

KEYWORDS

trimethylamine-N-oxide, metabolites, acute coronary syndrome, major adverse

cardiovascular events, prognostic

Introduction

Acute coronary syndrome (ACS) is a leading cause of

morbidity, mortality, and health care cost worldwide (1, 2).

Patients with ACS are at high risk for recurrent cardiovascular

events (3, 4) and therefore secondary prevention is paramount.

Although many prognostic tools have been developed for,

efforts are still ongoing to identify reliable and predictive

biomarkers, which may help predict clinical outcomes of

high-risk ACS patients (5). Given the fact that metabolic

perturbations are frequent in ACS (6, 7), metabolomics

seems a promising approach to reveal these perturbations

and to identify metabolite-based biomarkers to aid in both

the identification of pathophysiological processes relevant to

adverse events development and improve preventive clinical

outcomes reduction efforts after ACS.

Lately, the gut microbiota-related metabolite

trimethylamine-N-oxide (TMAO) has attracted considerable

attention across cardiovascular research due to its association

with the risk of cardiovascular outcomes (8). Since the

discovery of a relationship between TMAO and major adverse

cardiovascular events (MACE) in ACS patients, in 2017 (9),

few studies were conducted and a recent meta-analysis of

prospective studies revealed positive pooled estimates with

substantial methodologic heterogeneity among the studies

indicating the need for more prospective researches to evaluate

this relationship (10). Little evidence also exists on the

relationship between TMAO precursors and risk of MACE

after ACS. A previous study suggested that higher choline and

betaine concentrations in plasma were associated with greater

risk of incident MACE, but only among those ACS patients

with concomitantly elevated plasma TMAO concentrations

(11). In another small study with short follow-up time,

plasma dimethylglycine, the immediate product of betaine,

was associated with increased risk of all-cause death, acute

myocardial infarction (MI), and hospitalization for heart failure

(12); still, associations with a composite of these clinical events

have not been examined. In addition, the prognostic role of

trimethylamine (TMA), the immediate precursor of TMAO,

and L-carnitine in ACS remains unknown. Because circulating

levels of these metabolites have been inversely correlated with

levels of the renal function marker, glomerular filtration rate

(GFR), in previous studies (13–16) and some studies suggest

that GFR can be a mediator in these associations (17, 18)

further studies exploring the mediating role of renal function

are needed.

The aim of the present prospective cohort study was (i) to

investigate associations between baseline plasma concentrations

of TMAO and its precursors with incident MACE among

patients with ACS and (ii) to determine whether these

associations are mediated by renal function.

Materials and methods

Study design and participants

The study was approved by the Institutional Ethical

Committee and was conducted in accordance with the ethical

principles set forth of the Declaration of Helsinki. All patients

gave their written consent for participation in the study.

Patients with ACS admitted to Joan XXIII University

Hospital and underwent a coronary angiography from January

2011 to May 2013, were included in this study and followed-

up until 2022. The European Society of Cardiology guidelines

were followed to define ACS as follows: patients with

ST-segment elevation myocardial infarction (STEMI), non-

ST-segment elevation myocardial infarction (NSTEMI) and

unstable angina. Acute myocardial infarction (STEMI or

NSTEMI) was diagnosed according to the current universal

definition of myocardial infarction (19). Unstable angina was

defined as the presence of ACS symptoms at rest or with

minimal exertion in the absence of cardiomyocyte necrosis

(20). Patients that suffered a MI other than type 1, and those

with foreign residency were excluded from this study. The

Joan XXIII University Hospital is a tertiary hospital located in

South Europe (Tarragona, Spain) and the only hospital in the

region for performing angiograms and percutaneous coronary

interventions. This could result in difficulties to follow-up

patients treated at the hospital during the acute phase. Therefore,

many patients were only treated at the hospital during the

acute phase and then followed-up by their local cardiologist

after discharge.
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Ascertainment of MACE cases

Information on clinical outcomes was obtained by

contacting patients every year and by analysis of the hospital’s

patient management information system [myocardial infarction

(ICD-10-CM I21), hospitalization for heart failure (ICD-

10-CM I50)]. MACE was defined as the composite of

myocardial infarction, hospitalization for heart failure, and

all-cause mortality.

Metabolomic profiling

Blood samples were collected into EDTA tubes from patients

during coronary angiography. These samples were shipped

from the Joan XXIII University Hospital to the Biobank of

the Pere Virgili Health Research Institute, registered in the

National Biobank Network, for further processing and storage.

After centrifugation, plasma aliquots were stored at −80◦C

until analysis. TMAO, TMA, choline, betaine, dimethylglycine

and L-carnitine were quantified by stable-isotope dilution

method using liquid chromatography coupled to tandem mass

spectrometry. Samples (50 µl plasma) were mixed with 10 µl

of internal standard, 75 µl of 50mM tert-Butyl bromoacetate

in ACN and 10 µl of 70% ammonium hydroxide. Samples

were vortexed for 1min and incubated for 30min at room

temperature. A volume of 50 µl of 1% formic acid in ACN

was added. Samples were centrifuged for 5 minat 15,000 rpm

and 4◦C. Samples were chromatographed on an ACQUITY

UPLC BEHHILIC, 1.7µm2.1× 100mm (Waters, Milford,MA,

USA) and in junction with a UHPLC 1290 Infinity II (Agilent

Technologies, Santa Clara, CA, USA). The gradient consisted of

a gradient of 0% A for 1min, to 10% A at 4min, to 55% A at

5min and 55% A for 2min. Mobile phase A was composed of

10% acetonitrile and 90% water with 10 mmol/L of ammonium

formate and 0.125% formic acid; mobile phase B was 90%

acetonitrile and 10% water with 10 mmol/L of ammonium

formate and 0.125% formic acid. Flow rate was kept constant

at 0.5 mL/min, and the column manager was set at room

temperature for the duration of the sequence. Agilent QqQ/MS

6470 Series with an electrospray ionization probe operating in

positive-ion mode was used for mass spectrometric analysis.

The source conditions were set at 50 psi for the nebulizer gas,

300◦C for the gas temperature, 11 L/min for the gas flow,

400◦C for the sheath gas temperature, 12 L/min for the sheath

gas flow, 2,500V for the capillary voltage, and 500V for the

nozzle voltage. Quantitative determination was performed using

the multiple reaction monitoring mode, and the transitions for

each compound are detailed in Supplementary Table S1. Assay

quality assurance was monitored by routine analysis of pooled

quality control plasma. Information about the mass to charge

ratio and retention time is shown in Supplementary Table S1.

The metabolite identification confidence level according to the

published criteria (21) is Level 1: confirmed structure with MS,

MS2, RT and reference standard.

Covariates

Information about demographics, smoking status, medical

conditions, and medication use were collected during hospital

admission. Body mass index (BMI) was calculated as

weight divided by height squared (kg/m2). The estimated

GFR (eGFR) was calculated by using the Chronic Kidney

Disease Epidemiology Collaboration creatinine equation

(22). Participants were considered having type 2 diabetes

(T2D), dyslipidemia, or hypertension if they had previously

been diagnosed.

Statistical analyses

Baseline characteristics of patients are described as

mean ± standard deviation (SD) or median (interquartile

range) for quantitative variables and percentages for

categorical variables. A natural logarithmic transformation

in metabolites’ concentrations was applied to approximate a

normal distribution.

We used crude and 2 multivariable Cox proportional

hazards models for time-to-event analysis to determine hazard

ratios (HRs) and 95% confidence intervals (CIs) for MACE. We

checked the proportional hazards assumption by examining the

Schoenfeld residuals and found that the assumption was not

violated. The first multivariable-adjusted Cox regression model

(multivariable model 1) was fitted as follows: multivariable

model 1 was adjusted for age, sex, BMI (kg/m2), smoking (never,

current, or former), hypertension (yes or no), dyslipidemia

(yes or no), T2D (yes or no), unstable angina (yes or no),

acute ST-segment elevation myocardial infarction (yes or no),

non-ST-segment elevation acute myocardial infarction (yes or

no), statin medication (yes or no), beta-blockers (yes or no),

oral antidiabetic medication (yes or no), insulin medication

(yes or no), diuretics (yes or no), and aspirin (yes or no).

The multivariable model 1 was additionally adjusted for eGFR

(multivariable model 2) to further assess the effect of renal

function. Spearman’s correlation analyses were performed to

investigate whether there was a relationship between circulating

levels of TMAO, TMA, choline, betaine, L-carnitine and eGFR.

Metabolites were analyzed as both continuous variables

[1-standard deviation (SD) (1-SD) increment in their ln-

transformed levels] and by using tertiles. To appraise the linear

trend across tertiles, themedianmetabolite concentration within

each tertile was included in the Cox regression models as

a continuous variable. Bootstrap resampling of the original

sets (1,000-fold) was performed to internally validate the

associations. Non-parametric associations were examined by
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fitting cubic splines to the Cox regression model. Tests for non-

linearity involved the likelihood ratio test, comparing the model

with only the linear term to the model with the linear and the

cubic spline terms. These analyses were performed using Stata

14.1 (Stata Corp.), at a two-tailed α of 0.05.

We carried out a counterfactual-based mediation analysis

(23) to explore the possibility that the association of plasma

metabolites concentrations with MACE incidence might be

mediated by eGFR. Mediation analysis under the counterfactual

framework has advantages over conventional mediation analysis

since it enables the incorporation of exposure-mediator

interactions, adjusts for measured intermediate confounders,

and deals with non-linear relationships. By performing this

analysis using the R package “medflex” (24), the total effect of

metabolites on MACE risk can be decomposed into a natural

direct effect of metabolites on MACE risk and a natural indirect

effect of metabolites accounted by the effect of the putative

mediators, in our case the eGFR.We also accounted for potential

confounding by the covariates included in the multivariable

Cox regression model 1. The bootstrapping technique with

1,000 replications was employed to derive the 95% confidence

intervals. The mediation analysis was performed using Poisson

based Generalized Linear Models by splitting the follow-up

time every time an event was observed [survSplit() function

in the survival package] in such a way every time interval

contains only one event and thereafter we estimated the effects

of the model parameters (25, 26) as Cox regression models are

currently not implemented in “medflex”. It has been suggested

that a similar hazard ratio to that of the Cox regression model

could be obtained by fitting a Poisson model on survival data

(27, 28). To approximate more the Cox results we added a

time term to the Poisson model. The mediated proportion

was calculated as natural indirect log-incident rate ratios (IRR)

divided by total effect log-IRR. This analysis was performed

using R version 4.2.0 (R Foundation for Statistical Computing,

Vienna, Austria).

Results

Baseline characteristics of patients

Baseline characteristics of this cohort are shown in Table 1.

A total of 309 patients with ACS were included in the study.

The mean age was 64.9 years and 28.8% were women. The mean

values of BMI and eGFR were 28.1 kg/m2 and 81.3 mL/min/1.73

m2, respectively. Of all patients, 62.0% were admitted with

NSTEMI, 22.0% with STEMI and 15.9% with unstable angina.

Half of them were following statins medication, followed by

those taking aspirin (40.5%), beta-blockers (30.4%), diuretics

(25.2%) and oral antidiabetic agents (22.7%). The median

(interquartile range) of metabolites’ concentrations can also be

seen in Table 1.

TABLE 1 Baseline characteristics of patients.

Characteristics Patients (N = 309)

Age (years) 64.9± 12.3

Sex, %

Women 28.8

Men 71.2

Body mass index, kg/m2 28.1± 4.0

eGFR (mL/min/1.73 m2) 81.3 (62.1–96.7)

Type 2 diabetes, % 37.2

Hypertension, % 67.6

Dyslipidemia, % 60.8

Smoking, %

Never 35.6

Former 33.9

Current 30.4

Discharge diagnostic, %

Unstable angina 15.9

STEMI 22.0

NSTEMI 62.0

Medications, %

Statins 50.5

Beta-blockers 30.4

Aspirin 40.5

Diuretics 25.2

Oral antidiabetic agents 22.7

Insulin medication 8.7

Metabolites

TMAO, µmol/L 9.98 (7.42–19.19)

TMA, nmol/L 49.41 (32.17–88.32)

Choline, µmol/L 11.81 (9.59–14.30)

Betaine, µmol/L 41.01 (32.46–50.62)

Dimethylglycine, µmol/L 3.26 (2.42–4.19)

L-carnitine, µmol/L 47.26 (40.0–57.0)

Continuous data are presented as mean ± standard deviation or median (interquartile

range), and categorical variables are presented as %. eGFR, estimated glomerular filtration

rate; STEMI, ST elevation myocardial infarction; NSTEMI, non-ST elevation myocardial

infarction, TMAO, trimethylamine N-oxide; TMA, trimethylamine.

Baseline metabolites and risk of MACE

ACS patients were followed for a mean of 6.7 (SD = 3.6)

years for MACE occurrence. The associations of TMAO and

its precursors with MACE risk are displayed in Table 2. In

the multivariable model 1, the estimated HR for incident

MACE reached significance only in the highest, compared

with the lowest tertile of plasma concentrations of TMAO

(HR: 1.83; 95% CI: 1.08, 3.09). Furthermore, the risk of

MACE significantly increased per 1-SD increase in TMAO

concentrations (HR: 1.25; 95% CI: 1.07, 1.46; p = 0.005).

Spearman’s correlation analyses revealed a significant negative
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TABLE 2 Associations of baseline individual metabolites concentrations with the risk of MACEa.

Tertiles of plasma

metabolite concentrations

Metabolite T1 T2 T3 P trend HR per 1 SD increment P-value

TMAO

Concentrations (µmol/L) <8.01 8.01–<14.96 >14.96

Cases 29 45 57

Crude model Ref. 1.81 (1.15–2.85) 2.63 (1.69–4.08) <0.001 1.42 (1.24–1.64) <0.001

MV1 Ref. 1.45 (0.85–2.46) 1.83 (1.08–3.09) 0.043 1.25 (1.07–1.46) 0.005

MV2 Ref. 1.43 (0.84–2.42) 1.66 (0.98–2.82) 0.119 1.15 (0.96–1.37) 0.121

TMA

Concentrations (nmol/L) <36.09 36.09–<70.24 >70.24

Cases 38 45 48

Crude model Ref. 1.33 (0.87–2.04) 1.47 (0.95–2.25) 0.117 1.11 (0.95–1.29) 0.187

MV1 Ref. 1.18 (0.73–1.92) 1.21 (0.75–1.96) 0.534 1.05 (0.89–1.25) 0.568

MV2 Ref. 1.13 (0.70–1.83) 1.10 (0.68–1.81) 0.792 1.01 (0.85–1.21) 0.894

Choline

Concentrations (µmol/L) <10.39 10.39–<13.35 >13.35

Cases 38 42 51

Crude model Ref. 1.14 (0.74–1.75) 1.66 (1.08–2.55) 0.019 1.37 (1.16–1.61) <0.001

MV1 Ref. 0.99 (0.61–1.63) 0.96 (0.58–1.58) 0.865 1.15 (0.95–1.40) 0.146

MV2 Ref. 0.99 (0.61–1.63) 0.87 (0.53–1.40) 0.530 1.02 (0.84–1.24) 0.840

Betaine

Concentrations (µmol/L) <35.27 35.27–<47.02 >47.02

Cases 48 38 45

Crude model Ref. 0.75 (0.50–1.14) 0.99 (0.66–1.48) 0.964 1.02 (0.84–1.23) 0.863

MV1 Ref. 0.70 (0.43–1.12) 0.84 (0.50–1.40) 0.586 0.97 (0.77–1.22) 0.771

MV2 Ref. 0.64 (0.39–1.03) 0.80 (0.49–1.31) 0.504 0.96 (0.77–1.20) 0.742

Dimethylglycine

Concentrations (µmol/L) <2.69 2.69–<3.80 >3.80

Cases 31 46 54

Crude model Ref. 1.60 (1.02–2.50) 2.31 (1.49–3.60) <0.001 1.47 (1.22–1.76) <0.001

MV1 Ref. 1.63 (0.94–2.84) 2.56 (1.44–4.54) 0.001 1.53 (1.23–1.90) <0.001

MV2 Ref. 1.53 (0.89–2.65) 2.16 (1.17–3.99) 0.012 1.41 (1.10–1.81) 0.007

L-carnitine

Concentrations (µmol/L) <42.51 42.51–<53.74 >53.74

Cases 43 39 49

Crude model Ref. 0.88 (0.57–1.36) 1.20 (0.80–1.81) 0.316 1.01 (0.82–1.24) 0.934

MV1 Ref. 0.71 (0.43–1.16) 1.23 (0.74–2.03) 0.281 1.06 (0.85–1.32) 0.622

MV2 Ref. 0.77 (0.47–1.26) 1.21 (0.73–2.00) 0.352 1.06 (0.87–1.30) 0.548

aValues are HR (hazard ratios) with 95% confidence intervals. A natural logarithmic transformation was applied to the raw values of individual metabolites. Cox regression analysis was

used. MV1 adjusted for age, sex, body mass index (kg/m2), smoking, hypertension, dyslipidemia, type 2 diabetes, unstable angina, acute ST-segment elevation myocardial infarction,

non-ST-segment elevation acute myocardial infarction, statin medication, beta-blockers, oral antidiabetic medication, insulin medication, diuretics, aspirin. MV2 additionally adjusted for

estimated glomerular filtration rate.

MV, multivariable; Ref, reference; MACE, major adverse cardiovascular events; TMAO, trimethylamine N-oxide; TMA, trimethylamine.

Bold text indicates statistically significant P-values.

correlation between plasma TMAO and eGFR levels (r =

−0.40, P < 0.001) (Supplementary Figure S1A). Importantly,

the associations between TMAO and risk of MACE were no

longer significant after additional adjustment for eGFR. With

regard to dimethylglycine, in the multivariable model 1 the

estimated HR for incident MACE in the highest compared

with the lowest tertile was 2.56 (95% CI: 1.44, 4.54; p trend

= 0.001) and this association remained significant after
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inclusion of eGFR into the Cox regression model (HR: 2.26;

95% CI: 1.17, 3.99; p trend = 0.012). Kaplan–Meier survival

analysis demonstrated a significant difference in MACE

incidence across tertiles of dimethylglycine concentration

subgroups (log-rank, P < 0.001; Supplementary Figure S2).

Similarly, significant positive associations with MACE

incidence were observed for dimethylglycine when was

modeled continuously (per 1 SD) in the multivariable

model 1 (HR: 1.53; 95% CI: 1.23, 1.90; p < 0.001) and

these associations were attenuated after adjusting for eGFR

but remained statistically significant (HR: 1.41; 95% CI:

1.10, 1.81; p = 0.007). Dimethylglycine concentrations

were inversely correlated with eGFR levels (r = −0.29, P

< 0.001) (Supplementary Figure S1E). Cubic spline curves

(Supplementary Figure S3) showed that dimethylglycine was

non-linearly associated with MACE risk (P-value for non-

linearity with MACE risk was = 0.003). Internal validation

by bootstrap resampling confirmed the significant findings

for dimethylglycine (Supplementary Table S3). No significant

associations for TMA, choline, betaine, L-carnitine and MACE

risk were observed (Table 2).

Mediation of the association between
TMAO and dimethylglycine with MACE

Results from the mediation analyses are displayed in

Table 3. Overall 58% of the total effect of TMAO (per 1-

SD increase) on risk for MACE was mediated through eGFR,

with natural direct effect of IRR: 1.15 (95% CI: 0.98–1.34)

and natural indirect effect of IRR: 1.22 (95% CI: 1.10–

1.34). Significant indirect effect on MACE risk was also

found for dimethylglycine (per 1-SD increase). The magnitude

of mediation was 32%, with natural direct effect of IRR:

1.17 (95% CI: 0.94–1.44) and natural indirect effect of IRR:

1.09 (95% CI: 1.01–1.19).

Discussion

This prospective cohort study of 309 patients with ACS

demonstrated that baseline plasma concentrations of TMAO

and dimethylglycine were associated with higher risk of MACE

after a mean follow-up of 6.7 years. Notably, the strong

positive associations for TMAO were attenuated and became

insignificant after adjustment for eGFR. Importantly, eGFR,

a marker of renal function, fully mediated the association

between TMAO and MACE. Additionally, eGFR acted as a

partial mediator in the relationship between dimethylglycine

and MACE. No significant risk associations were observed for

other TMAO precursors TMA, choline, betaine and L-carnitine.

TABLE 3 Medflex counterfactual mediation analysis for MACE incident

rate ratios (IRR) per 1 SD increment in TMAO and dimethylglycine

concentrations; proportion mediated by eGFR with bootstrap 95%

confidence intervals (1,000 iterations).

Metabolite Effect IRR 95%

lower

CI

95%

upper

CI

Proportion

mediated

TMAO Natural direct

effect

1.15 0.98 1.34 58%

Natural

indirect effect

1.22 1.10 1.34

Total effect 1.38 1.22 1.55

Dimethylglycine Natural direct

effect

1.17 0.94 1.44 32%

Natural

indirect effect

1.09 1.01 1.19

Total effect 1.28 1.04 1.54

MACE, major adverse cardiovascular events; TMAO, trimethylamine N-oxide; eGFR,

glomerular filtration rate; CI, confidence intervals.

TMAO and MACE

To our knowledge, data on the relationship between

TMAO and risk of MACE in patients with ACS are limited

to prospective cohort studies from USA, UK, New Zealand,

China and Japan that were recently meta-analyzed and revealed

pooled HR estimates of 1.87 (95% CI: 1.41, 2.47) (10).

Our study is the first conducted in ACS patients from

the Mediterranean region with a long follow-up and high

median TMAO concentrations of 9.98 µmol/L vs. 2.87–

7.50 µmol/L in the studies included in the previous meta-

analysis. Differences in genetic variation, dietary habits and gut

microbiota composition may have affected the concentrations of

TMAO in ACS patients from different geographical locations.

Our results suggested that patients with elevated plasma

TMAO concentrations were at high risk of developing MACE,

after extensive adjustment for traditional cardiovascular risk

factors and medications. However, the association of TMAO

with MACE became insignificant after adjustment for eGFR,

raising the possibility the renal function may mediate this

association. Of note, we found a negative correlation between

TMAO and eGFR, in agreement with previous studies among

patients with chronic kidney disease (CKD) (13) and the

general population (17), implying that TMAO may accumulate

in the circulation in patients with impaired renal function.

Therefore, TMAO could be a marker of reduced renal clearance.

However, studies in mice suggest that TMAO may directly

contribute to decreased renal function (29). Thus, it is possible

that elevated circulating concentrations of TMAO may have

a direct effect on renal impairment which in turn is a
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determinant of MACE (30). Our mediation analysis provides

further evidence by documenting a strong mediating role of

eGFR in the relationship between TMAO and MACE, and

extend prior results on the mediating role of renal function

in the association between TMAO and all-cause mortality

(18). Understanding how renal function underlies the relation

between TMAO and MACE risk is of great public health

importance given the coexistence of reduced renal function in

ACS patients (31).

Dimethylglycine and MACE

Our findings concerning the positive relationship between

dimethylglycine, a product of choline metabolic pathway,

and MACE incidence in ACS patients extend the current

knowledge of the role of this metabolite in cardiovascular

health. Although unexplored in relation to a composite of

cardiovascular events, higher concentrations of this metabolite

were previously found to be associated with risk of acute

myocardial infarction, and hospitalization for heart failure after

ACS (12), incident acute myocardial infarction in patients with

stable angina pectoris (32), atrial fibrillation and heart failure

in individuals at high cardiovascular risk (33) and mortality

in patients with coronary heart disease (34). In our study,

the association between dimethylglycine and MACE risk was

non-linear and more pronounced among patients with higher

dimethylglycine concentrations.

Dimethylglycine, the by-product of the betaine-

homocysteine methyltransferase (BHMT) reaction which

catalyzes the transfer of methyl groups from betaine to

homocysteine to form dimethylglycine and methionine

(35), is oxidatively demethylated to sarcosine (36). Elevated

concentrations of dimethylglycine could be caused either by a

decreased activity of the enzyme dimethylglycine dehydrogenase

that converts dimethylglycine to sarcosine or by inflammation

and oxidative stress in ACS (37, 38) altering the flux through

BHMT (39). It has been suggested that dimethylglycine may be

related to adverse cardiovascular outcomes through its effect on

the regulation of lipid and energy metabolism (32).

Adding eGFR to the Cox regression model attenuated the

association between dimethylglycine and MACE risk. We also

found an inverse association between plasma dimethylglycine

concentrations and eGFR, in agreement with studies among

patients with renal failure (40) and patients with stable

angina pectoris (32). Notably, eGFR partially mediated this

association offering new insight into understanding the

relationship between dimethylglycine, renal function, and

cardiovascular events. Given that declined renal function is

a risk factor for MACE, we might speculate that there may

be a synergistic relationship of increased dimethylglycine

concentrations and decreased renal function with the increased

risk for developing MACE.

CKD is defined for patients younger than 40 years by eGFR

below 75 mL/min/1.73 m2; between 40 and 65 years by 60

mL/min/1.73m2; for older than 65 years without albuminuria or

proteinuria by eGFR below 45 mL/min/1.73 m2 (41). Since the

eGFR range in our sample was close to normal renal function

(age 64.9 ± 12.3, eGFR 62.1–96.7), further studies are necessary

to quantitate the effects of TMAO and dimethylglycine on

MACE during the development of CKD.

Strengths and limitations

The main strengths of this study include its prospective

design with a long-term follow-up. Furthermore, the extensive

measure of metabolites involved in TMAO biosynthesis, may

broaden our understanding of the metabolic processes related to

TMAO pathway and the development of cardiovascular events

in ACS.

With regard to limitations, even though we adjusted for

many potential confounders, residual confounding by unknown

or unmeasured factors may exist. For example, information

about gut microbiota composition and dietary habits that

could affect TMAO concentrations was not available. The

generalizability of the findings is also limited to younger adults

and individuals with clinical features other than ACS. Another

limitation is the use of single measure of metabolites at baseline

that may have limited the precision of their long-term exposure

due to the within-individual variability over time (i.e., TMAO).

Finally, although the associations between dimethylglycine and

MACE risk were internally validated, external replication would

give greater validity to the findings.

Conclusions

This prospective cohort study of ACS patients suggests

that high plasma TMAO concentrations are related to

the risk of developing MACE and this relationship is

substantially mediated by renal function. Our results also

extend previous research findings, showing that elevated

dimethylglycine concentrations are associated with increased

risk of MACE, and that renal function partially mediates this

relationship. Understanding the potential interplay of TMAO

and dimethylglycine with renal function, and incident MACE,

may contribute to novel prevention and treatment efforts

in ACS.
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