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In neurodegenerative diseases, neurodegeneration has been related to several
mitochondrial dynamics imbalances such as excessive fragmentation of mitochondria,
impaired mitophagy, and blocked mitochondria mitochondrial transport in axons.
Mitochondria are dynamic organelles, and essential for energy conversion, neuron
survival, and cell death. As mitochondrial dynamics have a significant influence on
homeostasis, in this review, we mainly discuss the role of mitochondrial dynamics
in several neurodegenerative diseases. There is evidence that several mitochondrial
dynamics-associated proteins, as well as related pathways, have roles in the
pathological process of neurodegenerative diseases with an impact on mitochondrial
functions and metabolism. However, specific pathological mechanisms need to
be better understood in order to propose new therapeutic strategies targeting
mitochondrial dynamics that have shown promise in recent studies.

Keywords: mitochondrial dynamics, mitochondrial fusion and fission, mitophagy, mitochondrial transport,
neurodegeneration

INTRODUCTION

Neurodegenerative diseases are a kind of incurable and devastating neurological disorders, in these
diseases, neurons gradually lose their function and ultimately cause death. The increased longevity
of people’s lives has contributed to a rising incidence rate of neurodegenerative disorders associated
with aging over the past 50 years. Due to the complexity of brain function, disease-modifying
treatments of neurodegenerative diseases remain elusive despite concerted attempts to rescue brain
energy, counter neuroinflammation or neurotoxic protein.

Mitochondria undergoing coordinated cycles of fission and fusion, the balance of fission/fusion
events is referred to as the “mitochondrial dynamic.” Energy for neurons is provided by
mitochondria, who generate adenosine triphosphate (ATP) via oxidative phosphorylation.
Excessive fragmentation or dysfunction of mitochondria may have an impact on the ATP biogenesis
and lead to mitochondrial dysfunction, which can be disastrous for the survival viability of neurons.
In this review, three mitochondrial dynamic related events are discussed: the fusion/fission event,
movement within the neuronal axon, and disintegration of mitochondria (mitophagy).
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Due to the essential nature of mitochondrial functions,
excessive mitochondrial fission leads to brain dysfunction.
Characteristic hallmarks in the brains of patients with
neurodegenerative diseases such as the accumulation of
a-synuclein, hyperphosphorylated tau, and amyloid beta (Aβ)
plaques, have been proven to be related to the activity of
mitochondrial fission proteins. We focus on the impaired
mitophagy pathway represented by PINK/parkin defects
in neurodegenerative diseases, the important role of the
ubiquitin protease system (UPS), and the potential connection
between mitochondrial dynamics and the pathological process
of neurodegenerative diseases. In addition to its role in
quality control, deficiencies in PINK/Parkin may also lead
to neuroinflammation, thus exacerbating neurodegenerative
disease progression. The mechanisms of mitochondrial dynamics
cause an imbalance in several neurodegenerative diseases and
allow us to have a better understanding of the pathogenesis,
while altered peripheral blood mitochondrial dynamics provide
a potential diagnostic approach for Alzheimer’s disease.

Finally, we propose possible future research directions for
mitochondrial dynamics and consider the challenge of translating
promising therapeutic targets toward the dual goals of symptom
relief and disease modification in Neurodegenerative diseases.

MITOCHONDRIAL FISSION AND FUSION

Mitochondrial fission and fusion play critical roles in creating
new mitochondria and removing damaged mitochondria. In
mammalian cells, fission/fusion events are mainly mediated
by several large dynamin-related GTPase proteins, including
conserved dynamin-related GTPase (Drp1), conserved dynamin-
related GTPase mitofusion (Mfn), and optic dominant atrophy
1 (Opa1). In addition to the GTPase activity of these proteins,
fission/fusion processes are regulated by multiple mechanisms,
and this review provides a short description of the mechanisms
that control mitochondrial fission and fusion.

In the initial stage of mitochondrial fission, the endoplasmic
reticulum (ER) makes contact with the outer mitochondrial
membrane (OMM) at the ER-mitochondria contact sites
(EMCS) and causes mitochondrial constrictions (Friedman et al.,
2011) (Figure 1). Some mitochondrial-bound proteins work as
“membrane-anchored adaptors,” including FIS1, MFF, and MiDs
(Otera et al., 2010; Zhao et al., 2011), which aid the oligomeric
forms of Drp1 recruited to EMCS. Then, Mitochondria-
bound Drp1 form a ring-like structure, enhancing the pre-
existing mitochondrial constriction neck and eventually inducing
fission. On-going investigations in this area have uncovered the
important roles of EMCS in mitochondrial dynamics and related
diseases. EMCS is necessary for correct mitochondrial function,
by connecting mitochondrial stability to intracellular calcium
handling (Lynes and Simmen, 2011; Rowland and Voeltz,
2012). A new study has proposed a mechanism of nucleoid
called active transportation, which focuses on the interaction
of nucleoids, MICOS, Miro1, and KFI5B, aiming to implement
the coordination of the nucleoid segregation and transportation
during mitochondrial fusion and division (Qin et al., 2020).

EMCS is regarded as the essential platforming in this mechanism.
ER-mitochondrial contact is an independent and conservative
feature, and Drp1 also plays a vital role in mitochondrial division.

Post-translational modification is an important mechanism
for GTPase activation, phosphorylation of Drp1 is the most
widely discussed example. During mitosis, serine 616 on the GED
of Drp1 is phosphorylated by cdk1/cyclin B kinase, stimulating
its oligomerization and results in mitochondrial fission (Taguchi
et al., 2007; Kashatus et al., 2015). Interestingly, new seminal
work has proposed that the PINK1 phosphorylating Drp1 on
S616 is feasible, by which the mitochondrion can be split into
the damaged part and the healthy part by promoting the fission
process. After the fission process, the PINK1/parkin-mediated
mitophagy will further degrade the damaged mitochondria. Thus,
PINK1 may have a role in both fission and mitophagy during the
mitochondrial quality control (Han H. et al., 2020). Furthermore,
the PKA is capable of phosphorylating the serine residue
(637) as well, which inhibits fission and protects mitochondria
from autophagosomal degradation during nutrient deprivation
(Cereghetti et al., 2008; Gomes et al., 2011; Chou et al., 2012).
From these results, we can conclude that the physiological
properties of Drp1 are inseparable from its phosphorylation site.

Mitochondrial fusion includes two inseparable progressions.
In mammals, OMM fusion is ensured by Mfn1 and Mnf2–
dynamin-like GTPases with conserved catalytic domains and
the fusion of the inter mitochondrial membrane (IMM) is
mediated by OPA1 and mitochondria-specific cardiolipin (CL)
(Kameoka et al., 2018).

Similarly, the GTPase activity of Mfn1 is regulated by
ubiquitination and acetylation, Mfn2 can also be ubiquitinated
(Ziviani and Whitworth, 2010). Long forms (L-OPA1) or short
forms (S-OPA1) of OPA1 can be generated through the mRNA
splicing of IM peptidases like OMA1 and YME1L (Anand et al.,
2014). Different forms of OPA1 may manifest distinct subcellular
localizations and functions (Ishihara et al., 2006; Anand et al.,
2014). Thus, the properties of the GTPase are not static, and their
function can be changed or even turned to the opposite through
modification methods such as pre-translation modifications or
splice. This means that we can not only inhibit or promote
GTPase activity but also “convert” it.

Notably, IMM fusion occurs downstream of OMM fusion,
and OPA1-mediated IMM fusion depends on Mfn2 but not
Mfn1 (Cipolat et al., 2004; Ishihara et al., 2004), Mfn1 and Mfn2
may play different roles in the fusion process of mitochondria.
However, the focus of past research has been Mfn2, and thus
the potential interaction of Mfn1 with OPA1 remains unclear.
Together, mitochondrial fission or fusion is a coherent dynamic
process involving multiple mechanisms, which implies that
once a certain link changes, it will have a broad impact on
mitochondrial dynamics, even causing neuronal dysfunction.
This requires us to pay closer attention to the chain reaction and
downstream effects in the treatment of mitochondrial dynamics.

The role of phospholipids like cardiolipin (CL) and
phosphatidic acid (PA) in remodeling and regulating
mitochondrial dynamics has been revealed in past research
(Kameoka et al., 2018). PA can be transferred directly from the ER
to the mitochondria as a saturated lipid, then it stimulates OPA1
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FIGURE 1 | Simplified model of mitochondrial fusion and fission in mammals. Fusion is mediated on the OMM by the Mfns, and on the IMM by Long forms (L-OPA1)
or short forms (S-OPA1) of OPA1, which spliced from OMA1 and YME1L. Fission begins with endoplasmic reticulum (ER) contacts with OMM at the
ER-mitochondria contact sites (EMCS). Next, mitochondrial-bound proteins (FIS1, MFF, and MiDs) aid in the oligomeric forms of Drp1, and induce eventually fission.
Phosphorylation of Drp1 serine 616 promotes its oligomerization, whereas phosphorylation of Drp1 serine 637 inhibits mitochondrial fission.

assembly and GTPase activity by converting to CL at the OMM,
which subsequently promotes OMM fusion. Correspondingly,
a small amount of CL can be converted into PA by mitoPLD at
OMM (Choi et al., 2006; Huang et al., 2011; Vance, 2015), and
accumulation of PA enhances Mfns-dependent OMM fusion.
CL binds to Drp1 to enhancing constriction and tubulation
of liposome membranes by stimulating oligomerization and
GTPase activity of Drp1 (Bustillo-Zabalbeitia et al., 2014;
Stepanyants et al., 2015). However, Drp1 binds to PA synthesis
via mitoPLD, leading to its oligomerization but inhibiting its
GTPase activity, resulting in mitochondrial hyperfusion (Adachi
et al., 2016). Thus, PA and CL may play an antagonistic role in
mitochondrial fission and fusion regulation.

A recent study shows other substances that affect
mitochondrial dynamics include ceramides (C18 and C16),
CerS1, ER/mitochondria trafficking, and sphingosine-1-
phosphate in mitochondria (Fugio et al., 2020). Other studies
have identified that mitochondrial fission process 1 (MTFP1)
and MSTO1 (Misato) can modify mitochondrial dynamics,
either directly or indirectly (Gal et al., 2017; Morita et al.,

2017). However, the mechanisms underlying this process
await further elucidation. Due to the complexity and diversity
of the mechanism of mitochondrial fusion and fission, we
cannot balance mitochondrial dynamics by simply changing
the quantity or nature of a certain substance. The elucidation
of the influencing factors of mitochondrial fusion and division
and its mechanism may help us get closer to the “balance
point” of mitochondrial dynamics. Further work to elucidate the
molecular mechanisms or signaling pathways that regulate
mitochondrial dynamics should help in understanding
mitochondrial biocomplexity, metabolism, and dynamics
homeostasis, and thereby identify new therapeutic targets in
human pathologies.

MITOPHAGY

Mitochondria are commonly known as the “powerhouse” of the
cell. This is beause mitochondrial quality is important for energy
production. In 2005, the scientific community first proposed the
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term “Mitophagy” to describe a subcellular process involving
specific sequestering and degradation of the aged and damaged
mitochondria. In normal physiological conditions, mitochondria
maintain the quality control process via mitophagy to replenish
vital macromolecular precursors for cells and protect against
both neuronal cell death and the accumulation of dysfunctional
mitochondria simultaneously (Ma et al., 2020). On the contrary,
fission is downregulated during starvation-induced autophagy,
causing elongation of mitochondrial tubules and thus preventing
degradation (Rambold et al., 2011).

Previous studies strongly focus on the partnership between
the PINK1[Phosphatase and Tensin homologue (PTEN)-induced
kinase 1] and the ubiquitin E3 ligase Parkin. Mutations in this
cytoprotective PINK-Parkin pathway are a common cause of
Parkinsons disease (Kim et al., 2008; Gaudioso et al., 2019;
Yoboue and Valente, 2020). Under cellular or environmental
stress, the mitochondrial serine/threonine protein kinase PINK1
accumulates on the OMM for autophosphorylation. It also
phosphorylates the ubiquitin molecules on the mitochondrial
surface, which contributes to subsequent Parkin activation.
Indeed, PINK1 was shown to straightforwardly phosphorylate
the ubiquitin-like domain (Ubl) of Parkin, subsequently, Parkin
ubiquitinates specific proteins like Mfns and FIS1 (Junqueira
et al., 2019). In addition, by cooperating with PINK1 and
Parkin, Drp1 is recruited to the OMM, leading to mitochondrial
fragmentation and thus promoting mitophagy, thus PINK
and Parkin form a particular way for organelle degradation
(Yoboue and Valente, 2020).

Additional E3 ligases other than Parkin –such as
Mitochondrial ubiquitin ligase 1 (MUL1) – can ubiquitinate
mitochondrial membrane proteins and inhibit the mutant
phenotypes of Parkin in the ubiquitin-mediated pathway
(Yun et al., 2014). Knocking out MUL1 with either PINK or
Parkin at the same time had more serious phenotypes than
individual nulls. These data suggest that MUL1 may be an
alternative pathway, its function is parallel to Parkin partially.
Both mitochondrial autophagy mediated by Parkin and MUL1
are dependent on PINK and both regulate the activity of Mfns
(Gegg et al., 2010). Other E3 ligases like G78, which aim the
common targets with Parkin, whether these E3 ligases mediated
mitochondrial autophagy is dependent on PINK1 needs to be
further investigated (Fu et al., 2013). Thus, in the Parkin mutation
model, compensation by ubiquitin-mediated mitophagy may be
a potential repair mechanism for the balance of mitophagy.

Mitochondrial molecular mechanisms of the PINK1-
independent pathway have been revealed by studies in human
cell lines and animal models (Goldberg et al., 2003; Perez and
Palmiter, 2005; Kitada et al., 2007; Akundi et al., 2011). On the
OMM, proteins ubiquitinated by Parkin can directly interact
with the autophagic isolation membrane via autophagic receptors
including BNIP3L/Nix, p62/SQSTMA, FUNDCI (Figure 2).
This receptor-mediated mitophagy utilizes autophagic receptors
with MAP1LC3/LC3-interacting regions (LIRs), these receptors
gather and mediate the damaged mitochondria degradation
with the help of LIRs motifs. The BHRF1 protein (a BCL2
homolog) is one of the autophagic receptors that can induce
mitochondrial fission and degradation, thus resisting innate

immunity activation (Vilmen et al., 2020). However, another
study shows the damaging role of BHRF1 within hypoxia
brain and spinal cord injury (Shi et al., 2014; Yu et al., 2018).
Unraveling these specific roles further could facilitate and
identify possible therapeutic targets.

In addition to receptor-mediated or ubiquitin-mediated
mitophagy, the roles of non-selective mitochondrial clearance,
the endosome-lysosome pathway, and mitochondrial derived
vesicles (MDV) in mitochondrial quality control processes have
attracted the attention of researchers. The latter two maintain
mitochondrial health by transporting impaired mitochondria
to lysosomes for degradation or selective clearance of the
impaired parts of mitochondria (Hammerling et al., 2017). These
pathways are also essential for the maintenance of synaptic
mitochondrial health. Yet, future work should elucidate the
mechanisms involved in mitochondrial quality control within
the distal axon.

MITOCHONDRIAL TRANSPORT

Mitochondria serve as local energy sources and maintain various
essential functions at synaptic terminals. Lack of synaptic
mitochondria is a common feature of some instances of age-
related neurodegeneration. Because neuronal synapses require
healthy mitochondria to maintain their functions, the transport
and degradation of damaged mitochondria and the correct
distribution of healthy mitochondria are essential processes.

The mechanism underlying mitochondrial maintenance at
synaptic terminals is poorly understood. Newly synthesized
organelles should transport along the axon to supplement
mitochondria at the remote end of the axon (Sheng, 2014;
Zheng et al., 2019). In previous research, cells depleted for
Drp1 resulted in mitochondrial elongation due to organelle
division deficiency and impaired mitophagy, which then form
large spheres. This abnormal form of mitochondria may be
difficult to transport into the long dendritic and axonal extensions
(Kageyama et al., 2012). Interestingly, fusion and fission can
also facilitate the isolation of dysfunctional mitochondria. For
example, through fusion and fission events, mitochondria with
damaged or healthy components merge into a new organelle,
following that, it undergoes fission to distribute components
evenly (Youle and van der Bliek, 2012).

Similarly, retrograde transport may also be essential to
mitochondrial clearance and repair. The latest research
shows mitophagy coordination with retrograde transport of
mitochondria (Cai et al., 2012). Three proteins were highlighted
in this study—RHEB (Ras homolog enriched in brain),
BNIP3L/Nix (an outer mitochondrial membrane protein),
and dynein-SNAPIN motor-adaptor complex. RHEB was
previously reported to target mitochondria for autophagy in
non-neuronal cells. This study determined that RHEB-targeted
mitochondria exhibit high motility and display dominant
retrograde movement in neuronal axons. It also mentions that
membrane protein BNIP3L/Nix facilitates RHEB association
with damaged mitochondria, then these combinations
are engulfed by phagophores to form mitophagosomes,
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FIGURE 2 | Mechanisms of mitophagy. (1) PINK/Parkin mediated mitophagy. PINK1 phosphorylates the ubiquitin molecules (Ub) on the mitochondrial surface or
straightforwardly phosphorylate ubiquitin-like domain (Ubl) of Parkin. Simultaneously, PINK1 facilitates the aggregation of Drp1 in OMM, leading to mitochondrial
fragmentation and thus promoting mitophagy. (2) Ubiquitin-mediated mitophagy. E3 ligases like Mitochondrial ubiquitin ligase 1 (MUL1) and G78 ubiquitinate the
common targets with Parkin. (3) Receptor-mediated mitophagy. Autophagic receptors (BNIP3L/Nix, p62/SQSTMA, FUNDCI) ubiquitinated by Parkin on the OMM,
contact with MAP1LC3/LC3-interacting regions (LIRs) and mediate the damaged mitochondria degradation.

which move exclusively in a retrograde direction in axons
(Figure 3). It is known that degradative lysosomes primarily
are located in the soma of neurons for mitophagic clearance.
Increasing SNAPIN levels in AD neurons decreases mitophagic
retention and attenuates mitochondria defects in axons by
enhancing retrograde transport motility of mito-amphisomes
(Mitophagosomes fuse with dynein-SNAPIN transport complex-
loaded LEs). This study provides new mechanistic insights
into how mitophagy coordinates with retrograde transport
of synaptic mitochondria and how the failure of retrograde
transport aggravates AD-associated mitochondrial defects and
synaptic degeneration.

The bidirectional movement of axonal mitochondria via
long-distance transportation is regulated by mitochondrial Rho
(Miro) and trafficking kinesin-binding protein (TRAK)1 and 2
(Fransson et al., 2006; Wang and Schwarz, 2009; van Spronsen
et al., 2013). Interestingly, Mfn2 has been shown to directly
regulate axonal mitochondrial transport, by interacting with
Miro and complex that links mitochondria to kinesin motors

(Misko et al., 2010). Miro has been linked to three proteins–
PINK1, Parkin, and LRRK2, which all have been reported to
promote Miro degradation and mitophagy (Wang et al., 2011;
Liu et al., 2012; Hsieh et al., 2016). Mutations in LRRK2 are
the commonest pathogenesis of PD (Corti et al., 2011), in this
case, Miro remains on damaged mitochondria thus hindering
mitochondrial degradation. This section on the pathogenesis of
PD will be discussed below.

ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is characterized by the progressive
loss of cholinergic neurons in brain regions that are critical for
memory, language, and learning, resulting in early memory loss,
which can even progress to broad cognitive impairment. Two
major hallmarks of AD are hyperphosphorylated tau and amyloid
beta (Aβ) plaques in Neurofibrillary tangle (Bird, 1993). By the
role of BACE-1 (known as β-secretase) and subsequent cleavage
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FIGURE 3 | (1) Mitophagosomes fuse with dynein-SNAPIN transport complex-loaded LEs and move exclusively in a retrograde direction in axons. Next, lysosomes
located in the soma of neurons degrade damaged mitochondria. (2) Newly synthesized organelles should transport along the axon to supplement mitochondria at
the remote end of the axon.

of the complex, small peptide Aβ is secreted from membrane-
bound amyloid precursor protein (APP) to the extracellular
fluid. These Aβ products are oligomerized, then mature into
fibrous structures and localize in neuronal tissues as amyloid
plaques, which are thought to be neurotoxic. Over-expression
of APP causes an imbalance of mitochondrial fission/fusion
that contributes to mitochondrial excessive fragmentation and
abnormal distribution accumulating around the perinuclear area
(Wang et al., 2008). Tau protein is a microtubule-associated
protein (MAP), the phosphorylation of tau occurs step by
step, and hyperphosphorylated tau proteins have the most
impact on the memory function (Johnson and Stoothoff, 2004;
Shahpasand et al., 2012; Ma et al., 2017; Abtahi et al., 2020).
Hyperphosphorylated tau causes microtubule instability, which
leads to neuronal synaptic disruption, connectivity and plasticity
damage, neuronal death ultimately. A study has shown that
caspase-cleaved tau increases TRAK2-mitochondria binding and
decreases the ATP production available for the locomotion of
these organelles, resulting in adverse effects on mitochondrial
transport (Quintanilla et al., 2020).

Impairment of Mitochondrial quality control is an early
salient feature in susceptible neurons of an AD patient brain,
characterized by distinct mitochondrial fragmentation, abnormal
mitochondrial distribution, and mitochondrial dysfunction
(Wang et al., 2017), culminating in neurodegeneration.
Although both tau and Aβ play a role in oxidative stress and
mitochondrial damage, it still seems difficult to distinguish which
of them is more closely related to cognitive impairment and

neurodegeneration in AD. However, a pathological promoting
effect between these two characteristic changes has been
demonstrated. Aβ plaques provide a favorable environment
for the aggregation of Alzheimer’s brain tau-seeded, which
was followed by the formation of neuropil threads (NTs)
(He et al., 2018). Aβ plaques, pathologic tau, and a-synuclein
were found to co-exist in the brains of neurodegenerative
diseases patients with dementia. It was shown that α-synuclein
bridges the interaction between Aβ plaques and tau tangles. By
accelerating the diffusion of α-synuclein, Aβ plaques induce
hyperphosphorylation of tau and ultimately exacerbate neuronal
damage and neuronal damage (Bassil et al., 2020). Using
immunofluorescence techniques, studies have also observed
a selective contact between Drp1 and phosphorylated tau,
which facilitates the interaction between Drp1 and Aβ, resulting
in excessive mitochondrial fragmentation. The pathological
synergy between Aβ plaques and hyperphosphorylated tau
has been observed but the underlying mechanisms require
further investigation.

In the early stage of AD, studies have revealed that there is
a greater increase in Drp1 compared to Marf (homologous to
human MFN2) expression. However, with disease progression,
both Mfn2 and Mfn1 levels are downregulated markedly in
the brain of AD patients (Manczak et al., 2011). A reduction
in the expression of fusion genes is thus likely to be a
later event in AD and is associated with the progress of
the AD process. Although changes in protein rates have
been observed, the triggers remain poorly understood, and
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whether the process of mitochondrial fragmentation is caused
by this GTPase change, and it is positively correlated with
the progression of AD cases is a question that merits further
investigation. The feasibility of mitochondrial dynamics as
a treatment target for neurodegeneration requires further
supporting studies.

The expression of PINK1 was markedly lower in the brains
of patients with AD or APP transgenic mice than controls
(Du et al., 2017). AD models undergo defective mitophagy that
results in abnormal mitochondria accumulation and promotes
Aβ production, while Aβ accumulation may exacerbate impaired
mitophagy (Kerr et al., 2017; Fang, 2019; Kingwell, 2019).
Valinomycin activates mitophagy via the PINK/Parkin signaling
pathway. N2a/APP695swe cells treated with valinomycin for
3h can recover PINK1/Parkin-mediated mitophagy and the
removal of damaged mitochondria thus reduces Aβ and restores
ATP levels. Notably, the different action times of valinomycin
may produce opposite results (Xiong et al., 2020). β-asarone
has also been shown to improve learning and memory in
Aβ1-42-induced AD rats by regulating PINK1-Parkin-mediated
mitophagy (Han Y. et al., 2020). Studies have demonstrated a
vicious cycle formed by the interaction between mitochondrial
dysfunction, phosphorylated-Tau, and impaired mitophagy (Kerr
et al., 2017). The mitochondrial division inhibitor 1 (mdivi-1)
has been reported as an inhibitor of dynamin related protein
1 (Drp1) (Wang et al., 2017), mdivi-1 or the knockdown of
Drp1 downregulates mitochondrial ROS levels and blocks LPS-
induced cellular inflammatory activation. However, a recent
study reported that the neuroprotective effect of mvidi-1
is mainly via the regulation of mitochondrial function and
intracellular calcium signaling, rather than relying on Drp1 (Ruiz
et al., 2018). The role of mvidi-1 in inhibiting mitophagy pathway
impairment in a traumatic brain injury model has also been
proposed (Wu et al., 2018).

Accumulating experimental data suggest that the impairment
of the PINK/Parkin-dependent or -independent mitophagy
pathway is critical in AD pathology. Here, some outstanding
questions deserve further exploration—Is defective mitophagy
in AD an early preceding event and cause of the subsequent
accumulation of toxic proteins? What are other possible
molecular mechanisms of defective mitophagy in AD?

Neuroinflammation is a common pathological feature of
neurodegeneration. Immune training induced by peripheral
inflammatory stimuli exacerbates cerebral β-amyloidosis
(Wendeln et al., 2018). Mitophagy attenuates inflammation by
limiting the secretion of inflammatory cytokines and regulating
the homeostasis of immune cells (Xu et al., 2020), impairment
of mitochondrial quality control has been proven to contribute
to the activation of innate immune pathways (Guerriero et al.,
2017). In addition, oxidative stress can be triggered by either
Aβ or pathological tau. This level is in proportion to the rate of
tau and Aβ aggregations (DuBoff et al., 2012; Kandimalla et al.,
2016; Manczak et al., 2016). Previous studies have shown that
oxidative stress can perturb the mitochondrial fission/fusion
balance (Wang and Chen, 2016; Jezek et al., 2018), thus, the
interaction between impairment of mitochondrial quality
control, pathological tau or Aβ, and oxidative stress may also
form a vicious circle.

In addition to the brain, peripheral tissues can also
generate Aβ, and the hypothesis that Alzheimer’s disease
is a systemic disease has been proposed. Using a model
of parabiosis between AD mice and controls, researchers
observed that Aβ entered the brains of wild mice and
subsequently formed Aβ plaques (Bu et al., 2018). Clinical
studies have also explored the feasibility of using peripheral
blood Aβ to predict intracerebral amyloid-beta-positive
or -negative status (Nakamura et al., 2018). Significant
changes in the expression levels of Fission1 (FIS1), Drp1,
and Parkin were observed in peripheral blood samples
from AD patients, these gene expressions correlate with
cognitive performance (Pakpian et al., 2020). Thus, the genetic
profiling of peripheral blood mitochondrial dynamics in AD
patients may act as an underlying predictor of mitochondrial
function in the brain and a potential consideration for blood
AD biomarkers.

PARKINSON’S DISEASE

Parkinson’s Disease (PD is the second most common
neurodegenerative disease, caused by environmental factors
that interact with genetic susceptibility. It is characterized
by the progressive loss or degeneration of the dopaminergic
(DA) neurons in the substantia nigra and the accumulation
of a-synuclein in DA neurons, characterized by a deficit
in a patient’s ability to move (Alexander, 2004). Mutant
α-synuclein mislocalizes to mitochondria, it reacts with spectrin
to prompt Drp1 translocation (Ordonez et al., 2018), resulting
in mitochondrial fragmentation. Lewy body is an intracerebral
marker of PD patients, the misfolded a-synuclein enters to
Lewy body and aggregates abnormally (Dickson et al., 2008).
In addition, aging, oxidative stress, and traumatic brain injury
also play roles in increasing the risk of Parkinson’s disease.
Methyl-4-phenylpyridinium (MPP +) is the active metabolite of
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), it enters
nigrostriatal dopamine neurons selectively, causing extensive
impairment of the respiratory chain to promote oxidative stress
(Zhang et al., 2010). There has been reported that MPP + induces
excessive mitochondrial fission by engendering S-nitrosylation
of Parkin and triggering the phosphorylation of Drp1 Ser616
(Zhang et al., 2016).

Fly models of PINK1 and Parkin mutations summarize
the dominant hallmarks of PD, including mitochondrial
dysfunction, motor impairment, loss of dopaminergic neurons,
and shortened lifespan (Yang et al., 2006), impairment of the
PINK/Parkin pathway points to a possibility of an overlapping
effect between PD and AD (Sliter et al., 2018; Xu et al., 2020).
Mitophagy has been thought to counteract neuronal damage
through mitochondrial quality control, while its role in anti-
neuroinflammation is unclear. A study addressing the role
of mitophagy in innate immunity suggests that PINK and
Parkin may be a category of inflammatory suppressors and
that PINK-Parkin-mediated mitophagy can restrain innate
immunity and alleviate the inflammatory phenotype (Rakovic
et al., 2019). Interestingly, Parkin activated by activated protein
kinase (AMPK) may act as a tumor suppressor. By promoting
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polyubiquitination of RIPK3 (a serine/threonine-protein
kinases), the AMPM-Parkin axis blocks the formation of
necrosome RIPK1-RIPK3 and inhibits inflammation-associated
tumorigenesis (Lee et al., 2019). Research on Parkin has
established that PINK1/Parkin-mediated mitophagy links to PD
pathogenesis at least in part via mitochondrial quality control
(Rakovic et al., 2019). Thus, combating PD by exploring a
molecular diagnostic based on the activity of Parkin and other
treatments directed at Parkin-mediated mitophagy may be an
effective strategy.

A critical mechanism by which Parkin activation is regulated
is ubiquitination, which is dependent on the ubiquitination
of ubiquitinating enzymes. De-ubiquitination is mediated
by de-ubiquitinating enzymes (DUBs), it is the reverse
of ubiquitination and in charge of reversing mono- or
polyubiquitination in proteins. Almost 100 DUBs have
been identified in human genes, and the ubiquitin-specific
protease (USP) family is the largest branch of them. The
general theory is that DUBS affects mitophagy by regulating:
(i) activity of Parkin, (ii) stability of Parkin, (iii) proteasome
activity, and autophagy. Under normal conditions, a-synuclein
is ubiquitinated and circulates in the brain; USP13 may reverse
the ubiquitination of a-synuclein and exacerbate the process
of neurodegeneration (Liu et al., 2019). USP15 may inhibit
Parkin-mediated ubiquitination of mitochondrial surface
proteins rather than reversing the ubiquitinated state of Parkin
to impede mitophagy (Cornelissen et al., 2014). Thus, the
knockdown of USP family members or USP inhibition may
be an effective way to ameliorate mitochondrial deficiency. In
addition to PINK and Parkin, mutations and/or overexpression
in the majority of proteins involved in familial forms of PD,
including LRRK2, DJ-1, and VPS35, have been proven to
impair mitochondrial quality control and neuroprotective
effects (West et al., 2005). LRRK2 mutations encode leucine-
rich repeat kinase 2 (LRRK2), which is the commonest
cause of PD and is associated with an increase in kinase
activity (Wang et al., 2012) interacting with Drp1 to cause
mitochondrial fragmentation (Yue et al., 2015; Bonello et al.,
2019). Recent studies show that LRRK2 interferes with the
interaction between Parkin and Drp1, while suppression of
LRRK2 kinase activity attenuates this interaction (Bonello
et al., 2019). As mentioned above, Miro retention on injured
mitochondria in the LRRK2 mutant delays effective degradation
and disturbs mitochondrial transport (Wang et al., 2016).
Disruption of either the forward or retrograde mitochondrial
transport system or production of defective mitochondria
results in a decreased proportion of healthy mitochondria and
increased accumulation of damaged mitochondria at synapses.
Furthermore, LRRK2 was still recruited to mitochondria in
PD fibroblast lines expressing mutant PINK1 and Parkin,
indicating that LRRK2 function may be a comparable pathway
to PINK/Parkin. More studies are needed to elucidate the
mechanisms by which LRRK2 regulates mitophagy and
mitochondrial phagocytosis.

Mutations in VPS35 play a key role in the retromer
complex. It has been reported that mutant VPS35 increases
the clearance of inactive Drp1 complexes, which leads to

mitochondrial fragmentation (Ordonez et al., 2018). Another
study observed that VPS35 aids in the removal of MUL1 from
the OMM, thus inhibiting mitochondrial fusion by preventing
Mfn2 ubiquitination (Tang et al., 2015). Similar to VPS35
mutation, the DJ-1 protein is one of the rare causes of PD. It is
linked to pathogenic conditions of PD, but the basic molecular
mechanisms remain poorly understood. Flies deleted for DJ-
1 manifest a similar pathological phenotype as PINK1/Parkin
mutants. DJ-1 knockdown alleviates PINK mutation, but not
Parkin, indicating that DJ-1 may act in parallel to PINK/Parkin.
However, this hypothesis has not been conclusively tested.

HUNTINGTON’S DISEASE

Huntington’s disease (HD) is a dominantly inherited
neurodegenerative disease caused by mutations that result
in a duplication of the CAG triplet in the polyglutamine (polyQ)
region of the huntingtin protein (Htt) (Ghosh and Tabrizi,
2018). HD is characterized by the progressive loss of the capacity
to control movements, cognition, and emotional expression
and with a wide spectrum of other signs. Neurodegeneration
mainly occurs in the striatum and cerebral cortex. Mitochondrial
fragmentation in the peripheral blood cells of HD patients has
been described. They show the level of Mfns and Opa1 decreased
as the amount of Drp1 increased. A new study shows that the
use of the P110 (an inhibitor of Drp1-Fis1 interaction) to inhibit
Drp1 hyperactivation is adequate to mitigate HD-associated
behavioral impairments and neuropathology (Zhao et al., 2018).
This may help develop a potential therapeutic agent for treating
HD. A previous study established that the mutant Htt can
enhance the GTPase activity of Drp1 by interacting with it
on mitochondria.

Another study has suggested a possible mechanism of this
interaction, they discovered that mutant Htt may contribute
to the overproduction of NO. Drp1 reacts with NO, leading
to S-nitrosylation of Drp1, leading to excessive mitochondrial
fission and neuronal injury. Remarkably, this SNO-Drp1 has
also been observed in AD. In addition, this study also
shows that mutant Htt can also be S-nitrosylated, so that
it may transnitrosylate or transfer NO to Drp1, leading
to S-nitrosylation of Drp1. The study also suggested that
S-nitrosylation of Drp1 could facilitate the interaction between
Drp1and the mutant Htt (Song et al., 2011; Sesaki et al.,
2014). Consistently, introducing the non-nitrosylatable mutant
Drp1 (C644A) ameliorated the adverse effects of abnormal
mitochondrial dynamics on neurons caused by mutant Htt.
These studies suggest that there is an association between the
pathological progression of HD and S-nitrosylation of Drp1.

Mutant Htt directly impairs the potential of the mitochondrial
membrane, and calcium homeostasis. Increased levels
of cytoplasmic calcium could activate Drp1 through
dephosphorylation by the calcium-dependent protein
phosphatase calcineurin, and promote its association with
mitochondria (Costa et al., 2010). Moreover, Mitogen-
activated protein kinase 1 (MAPK1) can interact with Drp1
and phosphorylates it at Ser-616 causing the overactivation
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of the Drp1 in HD knock in mouse-derived striatal cells
(Qi et al., 2019).

Htt has been proposed as a scaffold protein with multiple
protein-protein interaction regions participation in axonal
vesicle transport, autophagosome, and mitochondria (Gauthier
et al., 2004; Trushina et al., 2004; Wong and Holzbaur,
2014). Recently, the role of Htt as a scaffold protein for
the launch of stress-induced selective autophagy has emerged.
One study shows that Htt interacts with ULK1 (unc-51
like kinase 1) and SQSTM1/p62 (a selective macro-autophagy
receptor), which bind simultaneously to autophagosomes by
acting with LC3-II (Ochaba et al., 2014; Rui et al., 2015).
Htt-depleted neurons or polyQ-Htt-expressing neurons display
inefficient degradation of engulfed mitochondrial fragments
(Franco-Iborra et al., 2020). Impairment of the selective
degradation of mitochondria by autophagy causes mitochondrial
dysfunction and the accumulation of damaged mitochondria
and consequently contributes to neurodegeneration. In addition,
the polyQ tract in mHtt affects the interaction of LC3-II with
mitophagy receptors including OPTN and CALCOCO2, which
plays an irreplaceable role compared to other receptors (Lazarou
et al., 2015). Htt functions as a scaffolding protein, aggregating
the different proteins required for mitophagy to take place,
and these interactions can be altered by Htt with polyQ and
the stability of the protein complex can also be destabilized
by it. For example, abnormal interaction between GAPDH and
polyQ stalled the GAPDH-induced mitophagy, and, GAPDH
fails to induce direct engulfment of damaged mitochondria into
lysosome (Hwang et al., 2015).

CONCLUSION AND FUTURE
PERSPECTIVES

Abnormalities of mitochondrial dynamics seem to be a common
feature of many neurodegenerative diseases. Changes in the
number and GTPase activity of Drp1 frequently appear in
the early pathological process of neurodegenerative disease,
accompanied by excessive mitochondrial division, mitochondrial
transport damage, and abnormal mitochondria mitophagy (Corti
et al., 2020; Pradeepkiran and Reddy, 2020), etc. Various
related experiments better help us understand that the changes
in mitochondrial dynamics may be different in different
neurodegenerative diseases, and even different stages of the same
disease. Research on mitochondrial dynamics can help us restore
mitochondrial function in a targeted manner. For example,
a large number of experiments have proved that introducing
dominant-negative Drp1 K38A mutant or inhibiting the binding
of Drp1 to its mitochondrial receptor can effectively inhibit the
excessive division of mitochondria. On another hand, the latest
research directions lean toward the mitochondrial autophagy
pathway, and treatment options for mitochondrial autophagy are
constantly evolving (Fang et al., 2019; Zhao et al., 2020).

In this review, we discussed the interaction between
three types of mitochondrial dynamics and three typical

neurodegenerative diseases. We also discussed the internal
interactions of mitochondrial dynamics, and it seems to point
in one direction—mitochondrial quality control. Several proteins
have been frequently mentioned in previous studies, such
as Drp1 and PINK, which have been shown to influence
mitochondrial dynamics through multiple mechanisms. At the
same time, with the study of new mitophagy pathways, a growing
number of researchers are starting to notice the effects of
other pathways on mitochondrial dynamics. This may bring
forth new targets for alleviating, and perhaps even curing,
neurodegenerative diseases.

The role of astrocytes has been shown during the mitophagic
degradation of damaged mitochondria from adjacent neurons
(Davis et al., 2014). In the latest research, researchers have found
that mitochondrial fragments can also be transmitted between
microglia, astrocytes, and neurons to spread inflammatory
neurodegeneration, which contributes to the production of
neurodegenerative diseases such as AD, PD, HD (Joshi et al.,
2019). The results of this study may be related to the
previously observed increased glial fibrillary acidic protein
(GFAP) in AD, and support the hypothesis that the activation
of astrocytes and microglia will induce neurodegeneration.
However, the molecular mechanism of this course requires
additional experimental studies. As the majority of previous
research efforts has focused more on the ubiquitination of
astrocytic GFAP and microglia or the S-nitrosylation of GFAP,
new exploratory studies provide us with valuable ideas for better
understanding the relationship between mitochondrial dynamics
and neurodegeneration.

Previous studies of mitochondrial dynamics types have
focused on synaptic mitochondrial transport. Mitochondrial
transport between astrocytes and microglia shows that
mitochondrial fragments can not only cause mitochondrial
quality control disorders at neuronal synapses but also
that they can be transmitted as a “diffusible signal,” which
contributes to the occurrence of neurodegenerative diseases. This
suggests that mitochondrial dynamics are linked with cell fate
(Iwata et al., 2020).

In conclusion, although we cannot completely cure
neurodegenerative diseases at the current level of technology,
previous studies have demonstrated that mitochondrial dynamic
abnormalities and dysfunction can affect the pathogenesis of
neurodegenerative diseases in many ways. More importantly,
there are complex and inseparable relationships between
various types of mitochondrial dynamics disorders. Therefore,
it is particularly important to clarify the cause-and-effect
relationships between them, pointing us to future directions for
the treatment of neurodegenerative diseases.
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