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2e most common mesenchymal tumors are gastrointestinal stromal tumors (GISTs), which have malignant potential and can
occur anywhere along the gastrointestinal system. Imaging methods are important and indispensable of GISTs in diagnosis, risk
staging, therapy, and follow-up. 2e recommended imaging method for staging and follow-up is computed tomography (CT)
according to current guidelines. Artificial intelligence (AI) applies and elaborates theses, procedures, modes, and utilization
systems for simulating, enlarging, and stretching the intellectual capacity of humans. Recently, researchers have done a few studies
to explore AI applications in GIST imaging. 2is article reviews the present AI studies in GISTs imaging, including preoperative
diagnosis, risk stratification and prediction of prognosis, gene mutation, and targeted therapy response.

1. Introduction

2e most frequent mesenchymal tumors from the gastro-
intestinal system are gastrointestinal stromal tumors
(GISTs), with a prevalence of 14–20 cases per million [1].
GISTs can occur anywhere in the gastrointestinal system,
with 50–60% located in the stomach, 30–35% sited in the
small intestine, 5% originated in the colon and rectum, and
less than 1% in the esophagus [2]. 2e surgical operation is
the first treatment way for GISTs with malignant potential.

Imaging methods are important and indispensable of
GISTs in diagnosis, staging, follow-up, and surveilling
adjuvant therapy response [3]. 2e recommended imag-
ing method for GISTs classification is computed tomog-
raphy (CT) according to current guidelines [4], while
magnetic resonance imaging (MRI) or enhanced endo-
scopic ultrasonography (EUS) could be replacements for
iodine allergic or pregnant patients, [18F]-fluorodeox-
yglucose positron emission tomography (PET)–CTcan be

conducive for early phase monitoring of tumor response
to tyrosine kinase inhibitor (TKI) therapy [4].

At present, the clinical images practice mainly de-
pends on the subjective interpretation by radiologists of
morphological signs such as the location, margin, con-
tour, size, attenuation, growth type, and enhancement
degree. With the application and popularization of high-
end multislice spiral CT, high-quality images containing
rich digital information are available and prevalent,
promoting artificial intelligence (AI) techniques to mine
and process the big data deep in the images. Recently, an
explosion of AI research emerged, particularly in the
medicine field.

Recently, researchers have reported a few studies ex-
ploring the AI applications in GISTs imaging, including
preoperative diagnosis, risk stratification and prediction of
prognosis, gene mutation, and targeted therapy response.
2e current article aims to review the AI imaging studies in
GISTs in relation to these four aspects.
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2. Artificial Intelligence

As an information science, AI applies and elaborates theses,
procedures, modes, and utilization systems for simulating,
enlarging, and stretching intellectual capacity of humans [5].

Lambin et al. [6] initially proposed the notion of
radiomics in 2012, which consisted of a computer-aided
operating instrument derived from a great number of fea-
tures from radiographic images. 2is technique as a new
imaging technology, which can provide objective image
information that cannot be recognized by the naked eye, is
more detailed than the personal image interpretation by
radiologists’ vision. And texture analysis can quantitatively
evaluate and extract the characteristics of tumors and can
assess tumor heterogeneousness related to histopathological
components in tumor tissues and mainly influenced by
tumor neovascularization (vascularization formation and
vascular permeability), tumor cellular structure, tumor cell
density, and microcirculation deformation. Such quantita-
tive-feature-based method could be of clinical associations
of tumor diagnosis, staging, prognosis, and therapy.

In detail, radiomic texture is mainly composed of sta-
tistical texture, morphology-based texture, and transform-
based texture. 2e statistical texture is formed on assessing
texture as a measurement of the gray levels statistical
properties based on processing the region of interest (ROI).
It mainly includes (1) first-order statistical features,
depicting distributed pixels in an image, such as histogram
analysis; (2) second-order statistical features, as well as
texture features, represent spatial relations between pixels
and corresponding pair ratios, including gray-level cooc-
currence matrix (GLCM), gray-level difference matrix
(GLDM), gray-level run-length (GLRLM), gray-level size
zone matrix (GLSZM), and neighborhood gray-tone dif-
ference matrix (NGTDM); (3) higher-order statistical fea-
tures refer to the features extracted after applying filters or
mathematical transformations for images, such as first-order
and textural features extracted from the wavelet-filtered,
Laplacian of Gaussian (LoG)-filtered, or local binary pattern
(LBP) filtered images.2e transform-based analysis includes
texture characteristic extraction based on wave spectral
statistical properties of and characterization of the global
periodicity of gray level by high-energy apices and their
varied types in the spectrum.

Morphology-basing method incorporates the decom-
position of an image into basic units and the determination
of the rules required to assemble a given image based on
these basic units. All of the above methods consist in various
descriptors. 2e detailed descriptions are presented in Ta-
ble 1. In a simplistic way, a representative radiomics
workflow is composed of four tasks: image attainment,
image segmentation, parameter extraction, and statistical
analysis (Figure 1).

Radiogenomics, as well as an encouraging novel ex-
emplification, has the potential to extend and expand tra-
ditional radiographic images into the field of molecular and
genomic imaging [7]. It aims to correlate image features with
patterns of gene expressions, gene mutations, and any other
genes associated traits, promoting a deeper level explanation

of tumor heterogeneity and the development of imaging
biomarkers [8].

Deep learning is a group of machine learning algorithms
extracting deep features of the input image via multiple
hidden layers [9]. Such multilayered computational models
can progressively learn representations of data during
multilevel abstraction [10]. A neural network is an
embranchment of machine learning that organizes the basic
structure of a deep learning network [11]. 2e models of
deep learning algorithms used in medical imaging pro-
cessing include Sparse Autoencoder, Convolutional Neural
Network (CNN), Deep Belief Network, Restricted Boltz-
mannMachine, and Residual Neural Network (ResNet) [10].
Among various deep learning networks, CNN is the most
popular architecture, and a further improved neural network
included more computational layers.

3. Diagnosis and Differential Diagnosis

GISTs represent a distinct histopathological group of sub-
epithelial tumors. A broad range of other mesenchymal
tumors can also manifest similar imaging features with
GISTs, while the two groups have distinguished prognosis
and treatment. Previous studies have differentiated GISTs
from other mesenchymal tumors based on tumor location,
margin, contour, size, attenuation, growth type, enhance-
ment degree, and necrosis [12–17]. However, it is still dif-
ficult to discriminate GISTs with a diameter less than 5 cm
from other mesenchymal tumors, only counting on sub-
jective imaging interpretations. 2ere is a vacancy of AI
research in this area, we look forward to more AI researches
to dig new data in this field.

Clinically, the preoperative diagnosis of GISTs around
the periampullary area poses a dilemma in conventional
imaging performance. Rather, pancreatic ductal adenocar-
cinomas (PDACs), duodenal adenocarcinomas (DACs), and
GISTs differed in surgery procedures and prognosis [15–17].
Recently, Lu et al. [18] retrospectively studied 74 patients
with duodenal tumors around the periampullary area: 26
DACs, 20 DACs, and 28 GISTs. Volumetric histogram
analysis was performed on enhanced multidetector CT
images based on tumor heterogeneity. 2ey concluded that
some parameters of CT histogram analysis of periampullary
tumors could be valuable for diagnostic differentiating
DACs, PDACs, and GISTs arising from the periampullary
area. However, the sample size and tumors type involved in
this article are limited. Further researches with more sample
capacity and various kinds of tumors will reinforce AI
application in GISTs diagnosis.

4. Prediction of Risk Stratification
and Prognosis

Several risk assessment systems for postoperative recurrence
of GISTs have been proposed and evolved over the years,
including the National Institute of Health (NIH) criteria,
Armed Forces Institute of Pathology (AFIP) standard, and
National Comprehensive Cancer Network (NCCN) risk
classification. In 2008, modifications of the NIH criteria were
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proposed, which incorporated tumor location, size, mitotic
count, and tumor rupture. 2e criteria of the recurrence risk
categorized into four groups (including very-low-risk group,
low-risk group, intermediate-risk group, and high-risk
group) and is accepted worldwide [19]. Imaging can provide
more findings related to the risk stratification of GISTs.
According to previous studies [20–24], tumor growth mode
is related to the risk, and the risk level of GISTs with exo-
phytic or mixed growth mode is high. It has also been
suggested that the enhancement type, boundary, enlarged
blood vessels, necrosis, calcification, and invasions to ad-
jacent organs are connected to the tumor risk stratification.

2e differences among the observers of subjective
evaluations urged researchers to find more stable and more
objective parameters and indicators. 2e texture analysis
could extract more information hidden from medical im-
ages, which cannot be identified by subjective visual in-
terpretation. In theory, the judgment efficiency of texture
analysis of GISTs risk stratification is better than the con-
ventional imaging [24, 25]. Nine studies have researched the
performance of CT-derived radiomic signature for risk
stratification [24–32], and one study evaluated EUS-derived

texture [33] associated with risk stratification.2e details are
summarized in Table 2. In CT-derived analysis, four studies
have applied NIH criterion or modified NIH criterion for
GISTs malignant risk classification [25–28], while three
studies were determined on NCCN guideline [24, 29, 30]
and one study without clear guideline [33] and one study
used Ki-67 expression standard [32]. Two of the four NIH
studies based on NIH risk classification only evaluated CT
textural parameters [26, 27]. 2e remaining two studies
combined and compared conventional visual CT findings
and clinical indexes models [25, 28].

In 2018, Feng et al. [26] retrospectively reviewed 90
intestinal GISTs patients. GISTs risk levels were evaluated by
CT-derived histogram features that were compared
according to modified NIH risk classification. 2ey believe
that volumetric CT texture features show the feasibility to be
biomarkers for distinguishing low-risk, intermediate-risk,
and high-risk intestinal GISTs (area under the curve
(AUC)� 0.830, P< 0.001). However, some studies have
reported contradictory results with the present study
[29, 34–36]. We speculate that the differences in ROI de-
lineation methods, and differences between enhanced and
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Figure 1: A representative radiomics workflow is composed of four tasks: image acquisition, tumor segmentation, features extraction, and
subsequent statistical analysis.2e patient in Figure 1 had a small gastrointestinal stromal tumor in the duodenum.

Table 1: Feature metrics extracted in the radiomic analysis of images.

Texture metric Method (s) Descriptors
First-order
(statistical) Histogram analysis Mean, median, kurtosis, skewness, quartiles, minimum, maximum, energy

(uniformity), entropy, standard deviation

Second-order
(statistical)

GLCM, GLDM, NGTDM, GLRLM,
GLSZM

Homogeneity, contrast, autocorrelation, prominence, maximum probability,
difference variance, dissimilarity, inverse difference moment, sum entropy, sum

variance, sum average, inertia, coarseness, busyness, complexity, texture
strength, short run emphasis, long run emphasis, gray-level nonuniformity, run-
length nonuniformity, intensity variability, run-length variability, long-zone
emphasis, short-zone emphasis, intensity nonuniformity, intensity, zone

percentage, variability, size zone variability
Transform
(statistical)

Fourier, wavelets, discrete cosine,
Gabor, law, LoG, LBP Metrics assessing magnitude, phase, direction, edge, noise, and other descriptors

Structural analysis Fractal analysis Hurst component, mean fractal dimension, standard deviation, lacunarity
Note.GLCM� gray-level cooccurrence matrix, GLDM� gray-level difference matrix, NGTDM�Neighborhood gray-tone difference matrix, GLRLM� gray-
level run-length, GLSZM� gray-level size zone matrix, LoG� Laplacian of Gaussian, LBP� local binary pattern.
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unenhanced CT-derived texture features might be associ-
ated. In this study, the numbers of some risk groups of
intestinal GISTs were limited and the author combined some
groups. Moreover, this study only applied first-order sta-
tistical radiomics features. It will require further studies to
explain the controversy.

Another research [27] constructed a radiomics model
using multiple-order statistical radiomics features based on
contrast-enhanced CT to noninvasively predict malignant-
transformation potential and mitotic indexes of GISTs. In
this research, the patients were classified as low- (including
very-low-risk GISTs, low-risk GISTs, and intermediate-risk

GISTs) and high-malignant-transformation-potential group
(high-risk GISTs) based on the NIH criterion, and the
sample size is enlarged with 333 numbers in total (training
cohort� 233 and validation cohort� 100). 2e radiomics
model showed a good predictive performance in differen-
tiating high-from low-malignant-transformation-potential
GISTs with an AUC value of 0.882 in the training group and
0.920 in the validation group.

2e above two studies have only constructed radiomics
model, and a single radiomics model could not utilize and
compare the performance of conventional image findings and
clinical information in GISTs’ risk stratification. 2e next two

Table 2: Details of 10 articles on artificial intelligence in the prediction of GISTs’ risk stratification and prognosis.

Author Year Nation Study design Sample size Extracted features of AI Software

Feng C et al.
[26]. 2018 China Retrospective 90

First-order statistics: Mean attenuation; 10th, 25th,
50th, 75th, and 90th percentile attenuation; skewness;

kurtosis; entropy
CT kinetics

Wang C
et al. [27]. 2019 China Retrospective

333
Training

cohort� 233
Validation
cohort� 100

First-order (histogram), haralick features, GLCM,
GLRLM AK

Chen T
et al. [25]. 2019 China Retrospective

222
Training

cohort� 130
Validation
cohort� 92

GLV, GLRLM, GLSZM, NGTDM, GLSZM MATLAB

Yan J et al.
[28]. 2018 China Retrospective 213 First-order (histogram) gradient features, GLCM,

GLRLM MaZda

Liu S et al.
[29]. 2018 China Retrospective 78 First-order (histogram) Image

analyzer

Zhang L
et al. [30]. 2020 China Retrospective

140
Training

cohort� 100
Validation
cohort� 40

First-order features, shape and size features, second-
order features (GLCM, GLRLM, GLSZM) features, and

haralick features
AK

Choi I et al.
[24]. 2019 Korea Retrospective 145

First-order statistics: Mean SD of mean, entropy, MPP,
skewness, and kurtosis. Geometry with Gaussian

filtration
MATLAB

Ning Z et al.
[31]. 2018 China Retrospective

231
Training

cohort� 130
Validation
cohort� 101

First-order, second-order (GLCM, GLRLM, GLSZM,
and NGTDM) features

MATLAB
PYTHON

Zhang Q
et al. [32]. 2020 China Retrospective

339
Training

cohort� 148
|Internal validation

cohort� 41
External validation

cohort� 150

First-order statistics, features of shape, second-order
features (GLCM, GLRLM, GLSZM) PYTHON

Li X et al.
[33] 2020 China Retrospective

915
Training

cohort� 680
Validation
cohort� 54
Testing

cohort� 181

First-order (histogram), second-order (GLCM,
GLRLM, GLSZM, NGTDM) and wavelet-filtered

features
MATLAB

Note. GLCM� gray-level cooccurrence matrix, GLRLM� gray-level run-length matrix, GLV� gray-level variance, GLSZM� gray-level size-zone matrix,
NGTDM�Neighborhood gray-tone difference matrix.
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studies [25, 28] compared the accuracy of CT-derived textural
parameters, subjective CT parameters, and clinical index
models in predicting risk stratification. Yan et al. [28] in-
cluded 213 intestinal GISTs patients to assess the predictive
effect of clinical and subjective imaging findings and multi-
detector CT texture findings on preoperative risk stratifica-
tion. 2ey reported that an AUC of the model combining
clinical and conventional imaging findings and multidetector
CT texture features was 0.943. 2ey deduced that CT texture
may be a useful integrated tool for preoperative risk strati-
fication of intestinal GISTs. In 2019, Chen et al. [25] con-
structed a radiomics nomogram for predicting GISTs
malignancy potential. In comparison to conventional CT
parameters and clinical indexes, the radiomics model could
discriminate low-from high-malignant-transformation-po-
tential group GISTs with a higher AUC value of 0.858. Be-
sides, the generated radiomic nomogram model achieved the
highest diagnostic performance, which showed an AUC of
0.867 and 0.847 in the internal and external cohort.

2e same predicament for the only usage of radiomics
model and limited sample size applied to these studies using
NCCN guidelines [29, 30]. Liu et al. [29] found meaningful
texture parameters from various phases in differentiating
malignancy risks GISTs based on NCCN risk stratification,
which was consistent with a previous study [25]. But the
sample size is small as no more than 100 patients, and this
study only applied first-order statistical radiomics features.
With a larger included sample size (total number� 140,
training cohort� 100 and validation cohort� 40) and vari-
ous statistical radiomics features, Zhang et al. [30] high-
lighted discriminative performance with an AUC value of
0.935 and an accuracy value of 90.2% in the validation set for
advanced from nonadvanced GISTs. Further, the radiomics
indicated satisfied discriminative performance for four
groups of GISTs risk stratification with an AUC value of
0.809 and an accuracy value of 67.5% in the validation set.
Nevertheless, these studies did not conduct a direct or in-
direct correlation among radiomics features, subjective
imaging findings, and pathological results.

So then, Choi et al. [24] evaluated and compared the
diagnostic performance of CT radiomics parameters and
visual CT inspection to predict malignancy grade and mi-
tosis index of GISTs. 2ey found the diagnostic accuracy of
special radiomics features was better than visual inspection.

However, the previous studies independently used
radiomics methods for pattern classification, without regard
to relatively global artificially predefined parameters. Re-
searchers also start to explore the GISTs classification effi-
ciency of deep features obtained by deep learning networks.
In 2019, Ning et al. [31] introduced an integrated structure
including various features applied to a radiomics model and
deep convolutional models and incorporated these features
to engage in GISTs categorization. 2e hybrid structure with
the combination of radiomics and CNNs features exhibited
better performance with an AUC of 0.882 than that of the
conventional CT features model (AUC� 0.774), radiomics
model (global features) (AUC� 0.807), and CNN model
(local features) (AUC� 0.826). As far as we can tell, this is
the initial and exclusive study to apply radiomics model and

CNNs for GISTs risk stratification, in which the radiomics
parameters are derived from a three-dimensional universal
section and deep convolutional features derived from a
regional section were combined. 2is integrated structure
enhances not merely model robustness but classifier effi-
ciency as well.

In addition, the risk-related molecules were also pre-
dicted by using radiomics methods. 2e ki-67 index is an
important marker related to cell proliferation and tumor
heterogeneity [37]. Ki-67 is signified in the majority of the
reproducing cells in high level expression, besides G0 cells,
and Ki-67 is deemed as a global risk marker of malignant
potential in GISTs [38]. Previous literature has also dem-
onstrated that expression of high level Ki-67 indexes is an
unrelated risk marker for high-malignancy GISTs [39–41]. A
multicenter study [32] has also demonstrated a nomogram
that consisted of CT-based radiomics features combined
with tumor size indicated significant performance in pre-
dicting Ki-67 indexes expression in GISTs, with respective
AUCs of 0.801, 0.828, and 0.784 in the training, internal
validation, and external validation cohort, respectively. 2is
proved that the Ki-67 indexes expression rate in GISTs was
potentially connected with the CT textural signature.

Radiomics methods extended its applicability to various
imaging modalities. For EUS-based radiomics, Li et al. [33]
performed a EUS-derived radiomics model to differentiate
GISTs of the higher-risk classification (intermediate-risk and
high-risk) from the lower-risk classification (very-low-risk
and low-risk). 2is model can promote the preoperative
diagnosis and supply a beneficial reference for clinicians.

All of the above results show that radiomics is superior to
traditional imaging description in predicting the risk
stratification of GISTs, which built a foundation for the
application of radiomics in the future. However, the existing
studies remained insufficient. Present studies only evaluated
CT-derived texture. 2e MRI-derived texture analysis may
be more potential to dig hidden information, and quanti-
tative imaging modalities may be useful in precise medical
improvement. It should also be noted that at present, the
sample sizes of most studies were limited. 2e inconsistency
of scanning parameters, scanners, image acquisition pro-
tocol, lesion segmentation, the delineation of ROI, and
statistical modeling is also presented. Selection bias of
texture parameters extraction also manifested in the sta-
tistics of the levy, which leads to the consequence that
duplication of research results be questioned. In addition,
the conclusions of small samples also brought about poor
generalization ability in specific clinical applications. Fur-
thermore, CNN based on deep learning may substantially
supplement and extend the applicability of radiomics, in the
aspects of feature library or the prediction accuracy, but its
effectiveness still remains to be verified.

5. Prediction of Gene Mutation

GISTs grow up in the interstitial Cajal cells from the gas-
trointestinal system [42], and 90% express CD117 antigen
(C-KIT) [43], a tyrosinase kinase growth factor receptor
[44]. GISTs with KIT exon 11 mutated genes are more
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responsive to imatinib therapy [45–47], while other mo-
lecular mutations respond more poorly to imatinib. In
addition, GISTs with KIT exon 9 mutations are more re-
sponsive to sunitinib. 2e connection between CT findings
and GISTs genotype has been investigated [48]. GISTs with
KIT exon 9 mutation classification have significant linkages
with tumor size more than 10 cm, a stronger enhancement
grade and greater area of tumor necrosis when compared to
those of the KIT exon 11 mutation classification (P< 0.05).

In 2018, Xu et al. [49] reported a radiogenomic study on
GISTs. 2ey included enhanced CT images of 86 GISTs and
performed texture analysis. 2ey found that texture analysis
could be of use to discriminate GISTs without KIT exon 11
mutated gene group from those with KIT exon 11 mutated
gene group. In addition, the nongastric orientation, lower
CD34 staining, and higher radiogenomic signature values
were connected with GISTs without the KIT exon 11 mu-
tated gene, which achieved satisfactory diagnostic efficiency
in the validation group (AUC� 0.904− 0.962). However, the
sample size of the training cohort and validation cohort was
69 and 17 cases, respectively, and there were only four cases
of tumors without KIT 11 exon mutation in the validation
cohort, which may have affected the accuracy of the results.
Hence, a study with a large number of patients is required to
validate these conclusions.

6. Response Evaluation of Targeted Therapy

Adjuvant TKIs therapy is suggested for patients with a high
recurrence risk of GISTs, and enhanced CT is the recom-
mend imaging method for evaluating treatment response.

2e study in [50] constructed and confirmed a predictive
nomogram for recurrence-free survival (RFS) of GISTs after
surgery without aid treatment based on deep learning (ResNet
model).2e ResNet nomogramwas investigated on enhanced
CT and clinicopathological factors including mitotic index of
tumor, tumor location, and size. Both the ResNet nomogram
and model manifested significant prognostic capabilities in 3-
and 5-year RFS in receiver operating characteristic curves.
2ey suggested that ResNet nomogram was supreme to the
existing risk stratification standards and clinicopathological
nomogram majority of the probability of exceeding reason-
able threshold probabilities.

For metastatic GISTs undergoing TKI therapy, Ekert et al.
[51] identified 25 GISTs patients with KIT and PDGFR mu-
tations. All patients underwent first-line imatinib therapy and
different TKI therapies after disease progression. CT texture
features were extracted and associated with response categories
according to the modified Choi criterion. 2ey came to the
conclusion that some of the CTtexture features (GLCM inverse
difference, GLCM inverse difference normalized, GLRLM, and
NGTDM) correlated with prognosis, progressive-free survival,
gene mutations, and treatment regimens.

7. Conclusions

Previous studies had some limitations. First, all of the above
studies were retrospective. Most of them were the single
center and the sample sizes were limited. 2e restricted

number of samples not only limited the setting of imaging
radiomics threshold standard, but also imposed restrictions
on the training of the models [52]. Second, several image
acquisition scanners and parameters were used in the same
study, which might reduce the reliability and reproducibility
of potential findings. 2ird, all the studies evaluated CT-
derived texture. MRI-derived texture analysis might have
more potential to uncover hidden information, and quan-
titative imaging modalities may be useful for improving
precision medicine. In the end, most of the significant
texture semantics are statistical terms, which lacked ex-
plainable correlations to the specific clinicopathological
significance and biological characteristics directly and lim-
ited the interpretation of AI in repeatable research and
clinical application.

2e present studies demonstrated that AI methods in-
cluding radiomics or deep learning have clinical value for
GISTs and built a foundation for future application. Con-
sidering the limitations, prospective multicenter studies with
large samples are needed. Besides, further standardization of
inspection techniques and in-depth excavation of detailed
signs will deepen our understanding of GIST imaging. 2e
development of AI imaging in PET-CT and MRI will
broaden our exploration. In the future, more AI studies and
applications are expected in preoperative prediction of
various gene mutations and evaluation of the efficacy of
targeted therapies to make continuous progress towards the
goal of individualized and accurate treatment.
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