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Changes in proteolytic enzyme activities, tenderness-related
traits, and quality properties of spent hen meat affected by

adenosine 50-monophosphate during cold storage
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ABSTRACT A mechanism of postmortem tenderi-
zation by adenosine 50-monophosphate (AMP) on spent
hen meat was investigated. Breast meat samples were
made into a rectangular size of 7.5 ! 5 ! 2 cm and
grouped into 5 different treatments, followed by im-
mersion for 24 h at 4 6 2�C in AMP marinade solutions
of 0, 15, 30, 45, and 60 mmol/L that dissolved in 0.9%
(w/v) saline solution. To investigate the enzymatic
changes and tenderness-related traits, samples were
stored until day 5 at a temperature of 2 6 2�C. Result
showed that each increase of 15 mmol/L AMP within
marinade solution remarkably improved the myofibril
fragmentation index and texture properties. The upre-
gulation of tenderness-related enzymes was found for
caspase-3 at 1 to 20.4 fold and 1 to 1.2 fold higher for
the cathepsin-B, while a slight effect on calpains
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enzyme was observed. When compared with day 0 as a
reference sample, the activity of the caspase-3 enzyme
was more stable, as was cathepsin-B on the ultimate
storage day, while the calpains enzyme showed a
declining activity even after treatment. The flavor
enhancement of 2.16- to 5.10-fold seemed to be a
consequence of the AMP conversion into IMP that was
responsible for the intensification of the umami-like
flavor. No adverse effect was observed for instru-
mental surface color during the postmortem period.
Therefore, this study suggested that the synergistic re-
sults after AMP treatment strongly contributed to
postmortem tenderization mainly through cathepsin-B
and caspase-3 enzyme upregulation, which led to more
myofibrillar fragmentation and structural alteration of
myofibrillar protein.
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INTRODUCTION

Among protein sources, spent layer hens are underu-
tilized after reaching peak performance and entering the
last cycle of egg laying (21–25 mo). Considering the
rapid replacement of old laying hens with new pullets
during the same period, old laying hens are commonly
sold at a relatively low price for food and feed usage
(Souza et al., 2011). The low price corresponds to
poor meat quality, the existence of residual bone, and
tough meat due to increased age, which leads to the
increased formation of heat-stable collagen (Kersey
and Waldroup, 1998). Even worse, the disposal of un-
utilized spent hens, which involves labor and transport
costs, is an economic burden for the poultry industry
(Freeman et al., 2009).

Spent hen meat is a potential functional food.
Apart from its potential as an affordable protein
source, numerous studies reported that spent hen-
derived peptides possess essential physiological func-
tions as anticancer, antihypertensive, antioxidant,
immunomodulatory, and anti-inflammatory
(Korhonen, 2009; Udenigwe, 2014; Li-Chan, 2015).
These activities are likely due to the angiotensin-
converting enzyme inhibitory peptides within spent
hen meat that serve to inhibit the expression of proin-
flammatory interleukin 6 (Yu et al., 2018a), suppress
the presence of antigen-presenting cells, and induce
the increased activity of macrophages, dendritic cells,
and anti-inflammatory interleukin 10 (Yu et al.,
2018b). However, because meat tenderness is one of
the most crucial factors for eating satisfaction
(Wang et al., 2014), which determines the repurchas-
ing intention of most consumers, the inferior texture
of spent meat is apparently a factor that limits its
continued consumption (Wattanachant et al., 2005).
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Severe muscle is a product of cross-linkage between
actin and myosin filaments, a myofibrillar protein,
which together form a stiff muscle called actomyosin
(Wang et al., 2015). In addition, increased age also
leads to the increased formation of heat-stable collagen,
another factor for tough texture (Kersey and
Waldroup, 1998). Generally, after an animal is slaugh-
tered, muscle is converted into meat during the postri-
gor period, where both collagen and actomyosin muscle
formation remain unchanged (Steen et al., 1997). Alter-
natively, studies have proven that the application of
physical and chemical treatments possibly contributes
to the improvement of meat tenderness (Freeman
et al., 2009; Souza et al., 2011; Wang et al., 2013).
Particular factors for postmortem tenderness improve-
ment are proposed by the complex interaction among
tenderness-related enzymes (Lana and Zolla, 2016)
that ultimately weaken the cross-linkage bonds between
actin and myosin (Taylor et al., 1995), the liberation of
actin from myofibrillar protein (Okitani et al., 2009),
myofibril fragmentation, and the dissociation of acto-
myosin (Wang et al., 2013). Meanwhile, the challenges
are mainly the consistent effect of tenderization and
cost-effective treatment for continued utilization of
the proposed method for meat tenderization in the
poultry industry.

Adenosine 50-monophosphate (AMP) which
composed of sugar ribose, phosphate group, and the
nucleobase adenine, is an essential component for the
synthesis of RNA and DNA in all biological matter
(Wang et al., 2015). During high energy expenditure in
animal life, AMP involves in energy metabolism through
the activation of 50-adenosine monophosphate protein
kinase (AMPK) (Richter and Ruderman, 2009) by bind-
ing to the specific g regulatory subunit of AMPK. Its
activation releases energy to regenerate adenosine
triphosphate (ATP) from broken-down molecules
(Krishan et al., 2015). In meat, AMP is generated from
a complex reaction called adenylate kinase that occurs
when ATP degradation happen during muscle glycogen
depletions. The utilization of AMP is mainly proposed to
enrich flavor and as additives for specific nutritions in
food industry (Koguchi et al., 2003; Wang et al.,
2013). Recent findings revealed that AMP could also
contribute to a mechanism of postmortem tenderization
through the upregulation of cell apoptosis and structural
changes of muscle proteins (Wang et al., 2015; Gao et al.,
2020). Chen et al. (2015) mentioned that the binding of
AMP to the specific g regulatory subunit of AMPK
could maintains the continued activation of AMPK
and consequently intensify the activity of tenderness-
related cysteine-aspartic acid protease (caspase-3). In
addition, a report by Wang et al. (2015) mentioned
that the role of AMP in meat tenderization is through
the ability of this nucleotide to enhance actomyosin
dissociation, myofibril fragmentation, and the liberation
of actin from myofibrillar protein. Meanwhile, the ino-
sine monophosphate (IMP) is a result from the deamina-
tion process of AMP by adenosine monophosphate
deaminase. It is known to positively contribute for the
umami taste through the enhancement of glutamic
acid (Zhang et al., 2013).
As the improvement in meat tenderness is a result

of a complex interaction among variables, it is also
affected by a series of enzymatic interactions during
postmortem periods (Lana and Zolla, 2016). However,
the enzymatic role in tenderness may vary among spe-
cies. In particular, caspase-3 activity, an enzyme
responsible for cell apoptosis, plays a significant role
during postmortem tenderization by exhibiting more
myofibril fragmentation in chickens (Chen et al.,
2011). However, this enzyme did not play a meaning-
ful function in postmortem tenderization in duck
breast meat (He et al., 2019) or in bovine sirloin
(Kemp et al., 2010). Instead, the calpain system and
cathepsin-B enzyme activity play a major function
in meat tenderization in most species (Lana and
Zolla, 2016). With regard to understanding these un-
clear mechanisms in meat tenderization as affected
by exogenous treatment, this study was performed
with the objectives of 1) investigating the effect of
spent hen meat treated with AMP treatment on post-
mortem tenderization and 2) revealing the mechanism
of postmortem tenderization of spent hen meat after
AMP treatment. This study is expected to provide
useful information on postmortem tenderization for
the poultry industry and increase the utilization of
spent hen meat.
MATERIALS AND METHODS

Sample Preparation

This study utilized a total of 96 skinless pectoralis ma-
jor spent hen muscles obtained from a local slaughter-
house 24 h postmortem. The sample preparation was
conducted in a chilling room with a temperature of
4 6 2�C. After visible fat was removed, the spent hen
breast meat was cut into a similar rectangular size of
7.5 ! 5 ! 2 cm. Samples were divided into 5 different
groups and subjected to immersed marination for
24 h at 26 2�C in different concentrations of AMP solu-
tion at 0, 15, 30, 45, and 60 mmol/L that previously dis-
solved in 0.9% (w/v) saline solution. Subsequently, to
investigate the enzymatic changes and quality proper-
ties, samples were stored until day 5 at a temperature
of 2 6 2�C. Samples were taken at day 0, day 1, day 3,
and day 5. Data for day 0 were used as the untreated
control.
pH

Ground breast meat samples in the amount of 5 g were
homogenized with 45 mL of distilled water using a ho-
mogenizer (PH91; SMT Co., Ltd., Tokyo, Japan) for
1 min at a constant speed of 13,000 rpm. The pH value
of homogenate was determined by pH meter probe
(Seven Easy pH; Mettler-Toledo GmbH, Schwerzen-
bach, Switzerland) in triplicate.
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Shear Force Value

After subjected to marination, the sample was put
into a plastic bag and subjected to boiling in a water
bath at a temperature 75�C for 35 min or until the final
core temperature reached 71�C. The degree of meat
tenderness was expressed as shear force value, where a
lower value indicates a more tender meat. The measure-
ment of shear force value was performed by using a TA-
XT2i Plus (Stable Micro Systems, Surrey, UK). Briefly,
the boiled sample was formed into a rectangular size
with a size of 1.5 cm ! 1.5 cm. Each sample was placed
under the V blade and cut with a constant speed (assay
parameters were: pretest speed: 2.0 mm/s; test speed:
1.0 mm/s; posttest speed: 10 mm/s). Each sample was
repeated 5 times.
Myofibrillar Fragmentation Index

The determination of myofibrillar fragmentation in-
dex (MFI) was referring to a method by Culler et al.
(1978) with slight modifications. Each of the marinated
samples was prepared in triplicate. To ensure the elimi-
nation of visible fat and connective tissue, the sample
was minced into a smaller size and fat was removed.
Minced sample in the amount of 2 g was homogenized
for 20 s in 10 vol (v/w) of precooled isolating buffer
(0.01 mmol/L EDTA, 20 mmol/L K3PO4, 100 mmol/L
KCl, and 1.0 mmol/L CaCl2; pH was adjusted to 7.0).
Centrifugation was performed at 1,500 rpm for 15 min
followed by a removal of supernatant. Precipitate was
subjected to homogenization in 10 vol (v/w) of isolating
buffer, centrifuged at same the condition. The superna-
tant was removed and precipitate was next resuspended
in 2.5 vol (v/w) of separating buffer. Filtration was con-
ducted by using Whatman paper no 1, while the addi-
tional of 2.5 vol (v/w) isolating buffer was used to
rinse the precipitate. The absorbance was measured at
at 540 nm was by using spectrophotometer. The optical
density was multiplied with 200 to obtain the MFI.
Instrumental Surface Color

The instrumental surface color was recorded by
measuring International Commission on Illumination’s
system for lightness (CIE L*), redness (CIE a*), and
yellowness (CIE b*) using a chroma meter (CR-400,
Konica Minolta Inc., Tokyo, Japan). The light source
of illuminant C (2� observer) with 8 mm aperture
and attached-closed cone was calibrated using a white
plate (Y 5 93.6, X 5 0.3134, y 5 0.3194). Whiteness
was calculated using the following formula: 100 – [(100
– CIE L*)2 1 (CIE a*2 ! CIE b*2)]1/2.
Adenosine 50-Monophosphate and Inosine
Monophosphate

The method for analyzing 50-nucleotide contents
(adenosine monophosphate, IMP, and guanine mono-
phosphate) was modified from the method of Jayasena
et al. (2014). The determination of 50-nucleoside was per-
formed on 5 g of breast meat samples by HPLC (Shi-
madzu Nexera X2 HPLC, Kyoto, Japan) equipped with
an SPD-M20A diode array detector at a wavelength of
254 nm. 50-Nucleoside concentrations were expressed as
mg of compound per 100 g of cooked matter (mg/100 g).
Activities of Calpains and Cathepsin-B

The determination of calpain and cathepsin-b enzyme
was in accordance with a method by He et al. (2019).
About 0.5 g of homogenated samples in 1.0 mL precooled
lysate (25 mmol/L Tris-HCl, 150 mmol/L NaCl,
50 mmol/L EDTA, 1.0 mmol/L DTT, and 1.0%
Triton-100; pH 5 7.6) were centrifuged at 4�C,
12,000 g for 40 min. The protein concentration was
measured by Biuret method. The supernatant of the
samples were mixed with reaction buffer (115 mmol/L
NaCl, 1.0 mmol/L KH2PO4, 5.0 mmol/L KCl,
2.0 mmol/L CaCl2, 1.2 mmol/L MgSO4, 25 mmol/L
HEPES, and 0.6 mmol/L substrate (Suc-LY-AMC for
calpains and ARR-AFC for cathepsin-B, respectively);
pH 5 7.4) at the ratio 1:1, and incubated at 37�C for
2 h. In control, the supernatant was replaced by
ddH2O. The absorbance value of the mixture was
detected at the wavelength of 380 nm/460 nm (excita-
tion/emission) for calpains, and 400 nm/505 nm (excita-
tion/emission) for cathepsin-B. The enzyme activity was
shown as the relative absorbance value per min, per mg
to control.
Activity of Caspase-3

Caspase-3 enzyme activities were determined in accor-
dance with a method by He et al. (2019). About 0.5 g of
homogenated samples in 1.0 mL lysate (100 mmol/L
HEPES, 20% glycerol, 0.5 mmol/L EDTA, 5.0 mmol/
L DTT, and 0.2% SDS; pH 5 7.5) were centrifuged at
the speed of 12,000 rpm for 20 min. The protein concen-
tration of the supernatant was determined using the
Biuret method. The supernatant was then mixed with
the reaction buffer (100 mmol/L HEPES, 20% glycerol,
0.5 mmol/L EDTA, and 5.0 mmol/L DTT; pH5 7.5) at
the ratio of 1:1. In control, the supernatant was replaced
by ddH2O. After incubation at 37�C for 10 min,
1.0 mmol/L Ac-DEVD-pNA (dissolved in DMSO) was
added in to react at 37�C for 1 h. The mixture was
rapidly put in ice to terminate the reaction and the
absorbance value of the mixture was detected at a wave-
length of 405 nm. The enzyme activity was shown as the
relative absorbance value per min, per mg to control.
Statistical Analysis

The data analyses in this study performing two-way
multivariate analysis of variance using R-version 3.6.1
(The R-foundation for Statistical Computing, Vienna,
Austria) with a respect to treatments and storage day.
The significant mean value of each group was continu-
ously analyzed by using the Duncan’s multiple range
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test, with a consideration as significant for P-values
lower than 0.05.
RESULTS AND DISCUSSION

pH Value

The alterations in pH value after treatment with AMP
during storage time are shown in Table 1. Spent hen
meat samples treated with AMP, regardless of the con-
centration, possessed a significantly higher pH value
than the control group throughout the storage day (P
, 0.05). In a fresh state, as recorded on day 0, the initial
pH value was 5.68, which is within the normal range of
5.67 to 6.22 (Sulcerova et al., 2014). During storage,
the ultimate pH value at day 5 in all meat samples was
lower than that of day 1 (P , 0.001) but slightly higher
than day 0, except for the control group (P . 0.05). A
similar trend was reported by Wang et al. (2015), who
reported an increasing pH value in duck breast meat af-
ter treatment with AMP.

The pH value indicates the biochemical reactions
within the meat muscle (Juncher et al., 2001; Huff-
Lonergan and Lonergan, 2005). It correlates with other
meat quality traits, such as the ability of a muscle to
retain water (Barbut et al., 2005), surface color, and
physiological and inner muscle environments (Honikel
et al., 1986). In general, after the animal is euthanized,
there is a conversion of muscle into meat, led by the acti-
vation of glycolytic enzymes that break down glycogen
into lactic acid and pyruvic acid as the final products
(Lana and Zolla, 2016). A continuous decline in pH value
is indeed a threat to meat quality, where an abnormally
low pH value is responsible for the denaturation of sarco-
plasmic protein (Huff-Lonergan and Lonergan, 2005),
causing the inability of a muscle to retain water and
eventually lowering the cooking yield and eating satis-
faction (Shao et al., 2016). Treatment with AMP
increased the pH value, which seemed to be caused by
the ionic strength of AMP that improves the binding
ability into meat protein, changes the surface environ-
ment (Song et al., 2020) and improves its capacity to
retain immobilized water (Shao et al., 2016).
Shear Force Value

After treatment with AMP at various concentrations,
the shear force value of spent hen meat can be seen in
Table 1. pH value of spent hen breast meat after treated
storage at 2 6 2�C.

Storage (day)

Treatments (mmol/L)

0 15 30 45

0 5.68x 5.68z 5.68z 5.68z 5
1 5.70c,x 5.90b,x 6.19a,w 6.23a,x 6
3 5.61b,xy 5.81a,y 5.83a,y 5.85a,y 5
5 5.59c,y 5.75b,yz 5.93a,x 5.86ab,y 5

a-cMeans within the same row are significantly different amon
x-zMeans within the same column are significantly different d
Table 2. Its value was significantly lower (P , 0.001)
in all treatment groups, with the lowest value obtained
in the 60 mmol/L group, signifying great tenderness. A
gap of 15 mmol/L was found to generate an improve-
ment in meat tenderness (P , 0.05). Storage day was
also found to increase the tenderness of spent hen
meat, where the ultimate storage day had a significantly
lower value than that of day 0 (P , 0.001). Along with
taste and nutritional content, meat tenderness is recog-
nized as an important factor that determines eating
satisfaction (Nadzirah et al., 2016). Generally, chicken
breast meat is defined as acceptable with a shear force
value ranging from 1.21 to 1.65 kgf (Zhuang et al.,
2013). Therefore, the inferior texture of spent meat is
apparently a factor that limits continuous consumption
(Nowsad et al., 2000).
It is widely understood that actomyosin dissociation

and the breakdown of myofibrillar structure during post-
mortem aging at specific temperatures are directly asso-
ciated with meat tenderness (Culler et al., 1978).
Recently, to improve meat tenderness practically,
without requiring spacious storage and costly opera-
tions, marination has mostly been used (Arshad et al.,
2016). As revealed by this study, in addition to its func-
tion as a flavor enhancer, marination with AMP
improved the tenderness of spent hen meat, thus over-
coming its inferior texture. This might be attributed to
the synergistic effect of its phosphate chain to weaken
cross-linkage bonds between actin and myosin, disso-
ciate more actomyosin (Barbut, 1993; Spudich, 2001),
and release free actin (Okitani et al., 2009). The ionic
strength of AMP leads to the alteration of the meat sur-
face environment, thus affecting its stronger capacity to
retain water (Shao et al., 2016) and the creation of more
space within myofibrils to avoid intracellular release of
water (Honikel et al., 1986). These significant findings
corresponded to previous studies on the semimembrano-
sus muscle of cattle (Zou et al., 2019) and duck breast
meat (Wang et al., 2015).
Myofibrillar Fragmentation Index

The degree of MFI was significantly higher in AMP-
treated samples than in samples not subjected to any
treatment (P , 0.001). As seen in Table 3, the highest
MFI was found in spent hen meat marinated with
60 mmol/L. The increased gap of 15 mmol/L tended
to exhibit a significantly higher MFI (P , 0.05).
with adenosine monophosphate (AMP) during cold

SEM

P value

60 Sample Storage Storage ! sample

.68z 0.00 ,0.001 ,0.001 0.15

.29a,w 0.05

.83a,y 0.02

.97a,x 0.04

g treatment (P , 0.05).
uring storage day (P , 0.05).



Table 2. Shear force value (kgf) of spent hen breast meat after treated with adenosine monophosphate (AMP)
during cold storage at 2 6 2�C.

Storage (day)

Treatments (mmol/L)

SEM

P value

0 15 30 45 60 Sample Storage Storage ! sample

0 3.28x 3.28x 3.28x 3.28x 3.28x 0.01 ,0.001 ,0.001 0.99
1 3.22a,x 2.49b,y 2.25b,c,x 1.97c,y 1.22d,y 0.13
3 3.15a,x 2.42b,y,z 2.17b,c,x 1.89c,y 1.13d,y,z 0.13
5 2.93a,x 2.18b,z 1.91b,c,y 1.62c,z 0.92d,z 0.13

a-dMeans within the same row are significantly different among treatment (P , 0.05).
x-zMeans within the same column are significantly different during storage day (P , 0.05).
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Storage day was also associated with a significantly
higher MFI (P , 0.05), with day 5 showing a signifi-
cantly higher value than day 0. The cycle of AMP pro-
duction is determined by the concentration of Ca21 ions
(Harary et al., 1976) that exhibit a high ionic strength
capacity. This ion caused a calcium-specific effect that
maintains the interaction between actin and myosin
(Lawrie et al., 1991) that is eventually responsible for
the architectural changes of myofibril protein
(Nurmahmudi and Sams, 1997) as a result of extracted
protein and liberated actin (Culler et al., 1978). The
higher MFI value indicates a significant change in the
structure of meat myofibril. Generally, an MFI value
in chicken breast meat of more than 75 could positively
contribute for the enhancement of meat tenderness
(Kim et al., 2016). In addition, the high MFI value
for AMP-treated samples, as explained by Chen et al.
(2020), might be attributed to the ability of the AMP
phosphate chain to dissociate the sarcomere protein
that ultimately modifies muscle cell integrity. This
result was coincidental with a previous study by
Wang et al. (2015), who revealed that curing with
AMP possibly increases the MFI value through alter-
ations of meat microstructural composition, especially
the I-band and Z-line in duck breast meat. The MFI
is an essential index that is directly correlated with
meat tenderness (Takahasi et al., 1967). The quantifica-
tion of MFI is based on the amount of extracted myofi-
brillar proteins, the background of postmortem meat
tenderization (Gordon and Barbut, 1989).
Instrumental Surface Color

The surface color of spent hen meat is shown in
Table 4. A significantly lower L* value was recorded in
the treatment groups than in the control group on stor-
age days 1 and 5 (P , 0.001). By contrast, the redness
Table 3. Myofibrillar fragmentation index (MFI) of spent hen
(AMP) during cold storage at 2 6 2�C.

Storage (day)

Treatments (mmol/L)

0 15 30 45

0 34.57z 34.57z 34.57z 34.57z

1 36.76e,z 80.96d,y 121.53c,y 121.53b,y

3 86.36c,y 206.80b,x 210.30b,x 213.11b,x

5 154.17c,x 199.90b,c,x 200.73b,c,x 256.83a,b,w

a-eMeans within the same row are significantly different among tre
w-zMeans within the same column are significantly different during
value was found to be significantly higher after treat-
ment with AMP throughout storage than the control
group (P , 0.001). A similar trend was also observed
for the yellowness, where treated samples displayed a
higher value than the control (P , 0.001). The lower
lightness of the meat surface is considered to be corre-
lated with the higher water content within muscle myo-
fibrils. This condition is regarded as profitable for
economic traits because it affects a higher water holding
capacity (Barbut, 1993). This value is within the normal
range for chicken breast meat, which is 48-53 (Qiao
et al., 2001). In addition, the more red color on the
meat surface is likely visually preferable for consumers.
It could be used as a parameter to determine the fresh-
ness and quality of meat (Barido et al., 2020).
Adenosine 50-Monophosphate and Inosine
Monophosphate

Table 5 shows the concentration of AMP in spent hen
meat samples on day 1 after marination with exogenous
AMP. The results showed that the concentration of
AMP remained unchanged even after treatment with
the highest concentration of 60 mmol/L (P . 0.05).
Adenosine 50-monophosphate is responsible for an
umami-like taste. It is a nucleotide compound commonly
found in all living organisms, including chickens (Wang
et al., 2015). Adenosine 50-monophosphate is involved in
energy metabolism for the production of ATP and ADP
(Xiao et al., 2011). However, after being subjected to the
storage and processing stage, the existence of AMP in
the meat may be broken or converted into another
form (Takakura et al., 2014; Zhang et al., 2013). There-
fore, the exogenous addition of AMP as a compound is
addressed as a flavor enhancer in the food industry.
The insignificant difference in AMP concentration found
in this study after treatment might be caused by the
breast meat after treated with adenosine monophosphate

SEM

P value

60 Sample Storage Storage ! sample

34.57z 0.00 ,0.001 ,0.001 0.61
161.16a,y 8.35
230.27a,x 9.73
272.97a,w 12.04

atment (P , 0.05).
storage day (P , 0.05).



Table 4. Instrumental surface color of spent hen breast meat after treated with adenosine monophosphate (AMP) during cold
storage at 2 6 2�C.

Variable Storage (day)

Treatments (mmol/L)

SEM

P value

0 15 30 45 60 Sample Storage Storage ! sample

0 65.74x 65.74x 65.74x 65.74x 65.74x 0.00
CIE L* 1 66.91a,x 63.65a,b,x 62.24b,x,y 56.75c,z 61.26b,y 0.85 ,0.001 ,0.001 ,0.05

3 62.65a,x 62.28a,x 59.26a,y,z 60.49a,y 62.12a,x,y 0.52
5 62.77b,x 65.31a,x 57.69c,z 59.18c,y 61.97b,y 0.61
0 0.35x 0.35y 0.35y 0.35z 0.35z 0.00

CIE a* 1 0.42d,x 0.76c,d,x 1.34b,x 2.47a,x 1.95a,b,x 0.16 ,0.001 ,0.001 ,0.05
3 0.34b,x 0.93a,x 0.49b,y 1.15a,y 0.85a,y 0.08
5 0.24c,x 0.72b,x 0.31c,y 1.32a,y 1.19a,y 0.17
0 2.89x 2.89y 2.89x,y 2.89y 2.89y 0.00

CIE b* 1 2.85a,x 2.47a,b,y 1.76a,b,y 0.83b,z 1.51a,b,z 0.26 ,0.001 ,0.001 ,0.05
3 2.58b,x 5.01a,x 3.84a,b,x 5.53a,x 4.97b,x 0.39
5 2.14b,y 4.79a,x 2.73b,x,y 4.79a,x 4.99a,x 0.28

a-cMeans within the same row are significantly different among treatment (P , 0.05).
x-zMeans within the same column are significantly different during storage day (P , 0.05).
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conversion of AMP into IMP and ammonia by the AMP
deaminase enzyme (Yang et al., 2020). This was similar
to our previous study on the effect of chicken soup
cooked with the addition of high AMP content mush-
rooms (Barido et al., 2020).

Accordingly, as also shown in Table 5, the concentra-
tion of IMP, which is another factor affecting flavor pro-
file, was shown to be elevated by the higher
concentration of AMP, with a different range of
15 mmol/L significantly increasing the concentration
of IMP (P , 0.05). This study, as explained by Wang
et al. (2015), showed that thoroughly permeating AMP
into duck breast meat would result in biochemical con-
version into inosinic acid and ammonia. Inosinic acid is
widely used as a flavor enhancer in the food industry
because it provides a raw umami-like taste and is consid-
ered a highly effective salt (Voet and Voet 2010).
Although chicken meat also comprises IMP, because it
is the derivative product of post–rigor mortis (Yang
et al., 2020), the addition of processed meat with IMP
aimed to give a richer taste after a possible loss by pro-
cessing stage (Jayasena et al., 2014). The rich umami-
like flavor chicken meat enriched with the addition of
either pure or plant origin flavor enhancer is preferable
(Barido et al., 2020). Therefore, the marination of spent
hen breast meat with AMP could potentially improve
flavor variations.
Calpain System

The involvement of the calpain system in meat
tenderization is species-dependent (Zhao et al., 2017)
and has been polemicized (Herrera-Mendez et al.,
Table 5. Adenosine monophosphate (A
(IMP) profile of spent hen breast meat

Variable

Treatments (mm

0 15 30

AMP (mg/g) 0.051 0.048 0.049
IMP (mg/g) 1.03e 2.23d 3.36c

a-e Means within the same row are sig
(P , 0.05).
2006). Although its activity is mentioned to have a
specific effect on duck breast meat (Chang and Chou,
2012), pork meat (Bee et al., 2007), and chicken breast
meat (Zhao et al., 2017), tenderization during post-
mortem storage has a low effect on cattle meat
(Veiseth et al., 2001). However, in this study, as seen
in Figure 1, a slightly higher activity of calpain enzyme
was only detected for the meat sample treated with the
highest concentration of AMP at 60 mmol/L. There
was no significant difference observed between the con-
trol and remaining treatment groups (P . 0.05), signi-
fying that this calpain activity was well activated
without the addition of AMP. The activation of the
postmortem calpain enzyme, as mentioned by
Melloni et al. (1996), is regulated through a complex
interaction among muscle environments, especially
the concentration of Ca21 ions and phospholipid bind-
ing. Therefore, although the need for free Ca21 ions for
the activation of calpain enzymes is not as high as in
mammals, marination with exogenous AMP appar-
ently did not provide sufficient free Ca21 ions for
greater activation of the calpain system. In addition,
as explained by Kaur et al. (2020), although this
enzyme system is considered to play a major role dur-
ing postmortem tenderization, the activity of the cal-
pain system seemed to be less stable. The same trend
was observed in duck breast meat; during postmortem
tenderization, the contribution of calpain enzymes was
lower than that of cathepsin-B and caspase-3 enzymes
(He et al., 2019). This indicates that the calpain
enzyme in spent hen breast meat did not significantly
play a major role as a single enzyme for meat tenderi-
zation during the postmortem period.
MP) and inosine monophosphate
after treated with AMP.

ol/L)

SEM P Value45 60

0.050 0.055 0.008 0.06
4.31b 5.27a 0.289 ,0.01

nificantly different among treatment
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Figure 1. Calpain enzyme activities expressed in relative absorbance
value per min, per mg to control of spent hen breast meat after treated
with adenosine monophosphate (AMP) during cold storage at 2 6 2�C.
C1 (control), T1 (15 mmol/L AMP), T2 (30 mmol/L AMP), T3
(45 mmol/L AMP), and T4 (60 mmol/L AMP) stand for different range
of AMP treatment.
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Cathepsin-B Enzyme

The activity of the cathepsin-B enzyme after AMP
treatment is shown in Figure 2. Spent hen meat
treated with AMP at a concentration of more than
45 mmol/L exhibited better activity than the control
and remaining treatment groups (P , 0.05)
throughout storage. No differences were recorded be-
tween the control and treatment groups of 15 and
30 mmol/L (P . 0.05) at the beginning of storage;
however, all AMP-treated samples maintained a
higher activity of cathepsin-B enzyme. Moreover, all
AMP-treated samples showed stable and significantly
higher activities at the final storage day compared
with that of day 0. After rigor mortis, the pH decline
affects the destruction of the sarcoplasmic reticulum
(Zhao et al., 2017), depletion of endogenous Ca21

from cells, and eventually interferes with the enzy-
matic mechanism (Quali, 1992). Rapid degradation
of calpain activity is another consequence of endoge-
nous ionic loss. Therefore, cathepsin enzymes, espe-
cially cathepsin-B, are considered to play a more
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Figure 2. Cathepsin-B enzyme activities expressed in relative absor-
bance value per min, per mg to control of spent hen breast meat after
treated with adenosine monophosphate (AMP) during cold storage at
2 6 2�C. C1 (control), T1 (15 mmol/L AMP), T2 (30 mmol/L AMP),
T3 (45 mmol/L AMP), and T4 (60 mmol/L AMP) stand for different
range of AMP treatment.
significant effect on spent hen meat tenderization
considering their stability (Kaur et al., 2020). This
study was in accordance with a previous study (He
et al., 2019) in duck breast meat, where the
cathepsin-B activity was well maintained until storage
day 4 with or without additional treatment, and
another study (Lee et al., 2008) that revealed the
greater effect of cathepsin-B enzyme after the calpain
system was degraded. The upregulation mechanism
of the cathepsin-B enzyme by AMP is not well under-
stood; however, it is apparently caused by the
increased liberation of cathepsin enzymes from lyso-
somes (Bowker et al., 2010; Lana and Zolla, 2016) as
the effect of cell extraction by the strong ionic capacity
of AMP.
Caspase-3

Treatment with AMP greatly upregulated the activ-
ity of the caspase-3 enzyme, the enzyme responsible for
apoptosis (Kemp and Parr, 2008). The activity of the
caspase-3 enzyme was significantly higher in the
AMP-treated groups than in the control group (P ,
0.05), as shown in Figure 3. The increased concentra-
tion of 15 mmol/L AMP led to the higher activity of
caspase-3 in spent layer breast meat (P , 0.05), as
seen with a significant difference for each treatment
group. Compared with the initial storage day, the activ-
ity of caspase-3 enzyme in day 5 for all samples was
significantly higher, except for the control. The effort
to tenderize meat mainly focuses on the weakening
bond between actin and myosin (Sentandreu et al.,
2002) and the alteration of the architectural structure
of myofibrillar proteins; namely, troponin-T, titin, des-
min, and nebulin (Huff-Lonergan and Lonergan, 2005;
Bowker et al., 2010). For many years, it has been
believed that the calpain system and cathepsin enzymes
are the major determinants of postmortem tenderiza-
tion (Kohmarie et al., 1991). However, in hypoxic-
ischemic conditions, after the oxygen supply by blood
is stopped, the cells are destroyed and considered
dead, therefore altering the muscle environment
(Ouali et al., 2006). This apoptosis condition should
be taken into account as part of the factors responsible
for postmortem meat tenderization (Lana and Zolla,
2016), especially the caspase-3 enzyme that induces
the occurrence of apoptosis (Chen et al., 2011). This
study found that AMP was able to upregulate
apoptosis-related enzymes. The reason might be that
in addition to its ability to modulate the proliferation
of various cells, including muscle cells (Jacobson
et al., 1999), the upregulation of caspase-3 enzyme is
attributed to a specific effect of AMP to bind onto spe-
cific g-subregulatory sites of adenosine monophosphate
kinase (AMPK), thus activating AMPK to induce a
greater occurrence of apoptosis (Yang et al., 2020)
and eventually contributing to postmortem meat
tenderization. A similar trend was also observed in
chicken meat (Nurmahmudi and Sams, 1997; Chen
et al., 2011) and duck breast meat (He et al., 2019).
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Figure 3. Caspase-3 enzyme activities expressed in relative absor-
bance value per min, per mg to control of spent hen breast meat after
treated with adenosine monophosphate (AMP) during cold storage at
2 6 2�C. C1 (control), T1 (15 mmol/L AMP), T2 (30 mmol/L AMP),
T3 (45 mmol/L AMP), and T4 (60 mmol/L AMP) stand for different
range of AMP treatment.
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CONCLUSION

Adenosine monophosphate could be used as a curing
agent to improve texture properties of the spent hen
meat. Marination of spent hen meat with AMP led to
the upregulation of tenderness-related enzymes, espe-
cially the cathepsin-B and caspase-3 enzymes, with a
slight effect on calpains enzyme. It also induced more
degradation of myofibrillar protein, which ultimately
improved its tenderness during the postmortem period.
The flavor enhancement was also a consequence of the
AMP conversion to IMP, which is responsible for the
umami-like flavor. This study suggested that the upregu-
lation of proteolytic enzymes by AMP could be part of
the mechanism for postmortem tenderization in spent
hen breast meat.
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