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Depletion of chondrocyte primary cilia reduces the compressive
modulus of articular cartilage
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a b s t r a c t

Primary cilia are slender, microtubule based structures found in the majority of cell types with one cilium
per cell. In articular cartilage, primary cilia are required for chondrocyte mechanotransduction and the
development of healthy tissue. Loss of primary cilia in Col2aCre;ift88fl/fl transgenic mice results in up-
regulation of osteoarthritic (OA) markers and development of OA like cartilage with greater thickness
and reduced mechanical stiffness. However no previous studies have examined whether loss of primary
cilia influences the intrinsic mechanical properties of articular cartilage matrix in the form of the
modulus or just the structural properties of the tissue. The present study describes a modified analytical
model to derive the viscoelastic moduli based on previous experimental indentation data. Results show
that the increased thickness of the articular cartilage in the Col2aCre;ift88fl/fl transgenic mice is associated
with a reduction in both the instantaneous and equilibrium moduli at indentation strains of greater than
20%. This reveals that the loss of primary cilia causes a significant reduction in the mechanical properties
of cartilage particularly in the deeper zones and possibly the underlying bone. This is consistent with
histological analysis and confirms the importance of primary cilia in the development of a mechanically
functional articular cartilage.

& 2013 The Authors. Published by Elsevier Ltd.

1. Introduction

The primary cilium is a single cytoskeletal organelle that, in
most cells, projects into the extracellular environment. It is
composed of a characteristic array of microtubule doublets
which are assembled by a process of intraflagellar transport
(IFT) (Satir et al., 2010). The primary cilium functions as a
signaling hub for an expanding range of pathways including
hedgehog signaling, wnt signaling and mechanotransduction
(for review see Berbari et al., 2009; Satir et al., 2010). Articular
chondrocytes express primary cilia, which are typically 1–2 mm
in length in situ, but longer in isolated cells in 2D culture
(Wilsman, 1978; Poole et al., 1997; Jensen et al., 2004;
McGlashan et al., 2008; Farnum and Wilsman, 2011). Recent
studies have shown that chondrocyte primary cilia are required
for mechanotransduction and associated up-regulation of extra-
cellular matrix synthesis (Wann et al., 2012). Cilia are also

involved in the response of chondrocytes to inflammatory
cytokines (Wann and Knight, 2012) and the development of
osteoarthritis (OA) associated with aberrant hedgehog signaling
(Kaushik et al., 2009; Lin et al., 2009). Recent studies from
Serra’s group investigated the role of primary cilia in the
development of articular cartilage (Chang et al., 2012) and
growth plate (Chang and Serra, 2013). Studies used Col2aCre;
ift88fl/fl transgenic mice in which the chondrocytes lack primary
cilia resulting in increased expression of OA markers including
MMP13, ADAMTS5, COLX and RUNX2 (Chang et al., 2012) with
changes in both the cartilage and the underlying bone. The study
also attempted to characterize the mechanical properties of the
articular cartilage in mutant and wild type mice using microinden-
tation. However, although there was a reduction in stiffness for the
Col2aCre;ift88fl/fl cartilage, this was associated with a significant
increase in tissue thickness. Thus, it was not possible to use the
stiffness measurements as an indication of material properties of
the cartilage, namely the modulus. In the current study we
reanalyze the raw data to derive the viscoelastic moduli based
upon the analytical models of Hayes et al. (1972) and Zhang et al.
(1997). In so doing, we present a method for deriving cartilage
moduli values frommicroindentation and show that loss of primary
cilia reduces the moduli of articular cartilage, particularly in the
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deep zone. This correlates with alterations in the histology of the
cartilage from wild type and Col2aCre;ift88fl/fl mice. The study adds
further evidence demonstrating the importance of chondrocyte
primary cilia in the development of articular cartilage.

2. Materials and methods

2.1. Mechanical testing of cartilage

Chang, Ramaswamy et al. (2012) used microindentation to examine the
mechanical properties of cartilage from 2 month old Col2aCre;ift88fl/fl transgenic
mice and wild type controls. To review briefly, tibia were mounted in bone cement
and the articular cartilage on the tibial plateau was indented using a computer
controlled electromechanical test system (Bose LM1), with a 200 g load cell
(Sensotec). A plane ended impermeable cylindrical indenter (178 mm diameter)
was advanced onto the tissue with a tare load of 0.05 g held for 200 s. Indentation
was then applied in increments of 5 mm with 200 s relaxation time between each
increment. Typical displacement and force versus time data is shown in Fig. 1.
Following testing, the cartilage thickness was measured using the needle indenta-
tion method.

2.2. Moduli calculation

For each 5 mm displacement increment, the instantaneous modulus was
calculated from the instantaneous or peak load and the equilibrium modulus was
calculated from the subsequent minimum load at equilibrium. Previous studies by
Hayes et al. (1972) have shown theoretically that the relationship between
indentation load (P), indenter displacement (ω0), indenter radius (a), Poisson’s
ratio (ν) and shear modulus (G) is determined by a scaling factor (κ), as shown by

Fig. 1. Representative plots showing indentation versus time (A) and force versus
time (B). This original raw data from Chang et al. (2012) was used here to calculate
the instantaneous and equilibrium moduli at each strain increment. A total of six
displacement increments were applied creating a maximum indentation of
0.03 mm (30 mm) which corresponds to a strain of 57% for this sample with
a thickness of 53 mm.

Fig. 2. Instantaneous (A and B) and equilibrium moduli (C and D) calculated for articular cartilage from wild type (control) and Col2aCre;ift88fl/fl transgenic mice (mutant)
subjected to microindentation, with Poisson’s ratio of 0.2. Scatter plots (A and C) show all data points whilst the histograms (B and D) indicate the mean values for data
grouped within the range of 5–20% strain (n¼5–6 control, 9–11 mutant) and 20–40% strain (n¼6 control, 10–12 mutant). Error bars indicating standard deviations. Data
taken from a total of 34 measurements from 2 to 3 separate animals per group. Statistically significant differences are indicated at po0.001 (nnn).
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the following equation:

κ ¼ Pð1�νÞ
4aGω0

ð1Þ

The value for κ is dependent on the ratio between the indenter radius and the
cartilage thickness (a=h).

Meanwhile, Young’s modulus (E) can be calculated from the shear modulus by
using the following equation:

E¼ 2Gð1þνÞ ð2Þ
Substituting Eqs. (1) and (2), Young’s modulus can be determined from the
indentation results with the following equation:

E¼ Pð1�ν2Þ
2aκω0

ð3Þ

However, Hayes’s solution is based on two limiting assumptions. First, it was
derived for a linear single phase material, making it not suitable for non-linear
materials, including cartilage tissue. Second, Hayes’s solution also assumed very
small deformation, typically an indentation strain of 0.1%. This is not suitable for
most of indentation studies on cartilage, including the present study, where the
strain is often larger than 0.1% due to the precision of the displacement control and
irregularities in the tissue surface.

In order to overcome these limiting assumptions, Zhang et al. (1997) used
a finite element (FE) computational modeling approach, to provide a new sets of
κ values which are corrected for the non-linearity behavior of cartilage tissue upon
larger deformations. It is important to note that the a=h ratios considered in
Zhang’s study were between 0.2 and 2. This condition is met in the data from
Chang et al. which is analyzed in this study. In addition, the strains considered in
Zhang’s finite element model are between 0.1 and 15%. However, they state that the
κ value is approximately proportional to the indentation strain and hence the
κ values for the larger strains used in this study can be deduced by a linear
interpolation of Zhang’s data (Zhang , 1997).

Therefore we have calculated the moduli values from the original indenter load
and displacement data from Chang et al. (2012) using the solution from Hayes et al.
(1972) with a modified scaling factor derived from Zhang et al. (1997). Due to the
incompressibility nature of cartilage tissue upon the higher rate of loading,
Poisson’s ratio was assumed to be 0.2 based on previous values reported for
murine cartilage (Cao et al., 2006).

3. Results

Displacement values were converted to strain based on the
tissue thickness. The instantaneous and equilibrium moduli
values were successfully calculated at each loading increment
using the method described above. There were significant
positive correlations between the moduli and the indentation
strain for both Col2aCre;ift88fl/fl mutant and control cartilage
(Fig. 2). Moduli values were grouped according to the level of
applied indentation strain, namely 5–20% and 20–40%. Values at
strains above 40% were discarded due to the large mechanical
contribution of the underlying bone and the lack of data for
mutant mice (Fig. 2A and C). The Col2aCre;ift88fl/fl mutant
cartilage had lower instantaneous and equilibrium moduli,
approximately half that seen for wild type control cartilage,
although was only statistically significant at the higher level of
indentation (20–40%, po0.001) (Fig. 2B and D).

These studies used a Poisson’s ratio of 0.2. A sensitivity analysis
over a range of Poisson’s ratio previously used for cartilage (Jurvelin
et al., 1997; Wong et al., 2000) showed that increasing the ratio
reduced the moduli. The effect was greater for the thinner cartilage
from wild type mice where an increase in Poisson’s ratio from 0.1 to
0.5 produced an increase in instantaneous and equilibriummoduli of
approximately 0.2 MPa and 0.075MPa respectively. However for all
values of Poisson’s ratio the moduli calculated for cartilage from
Col2aCre;ift88fl/fl mutant mice were lower than those for wild type
controls (data not shown).

4. Discussion

Moduli values for wild type murine tibial cartilage are similar
to those previous reported for articular cartilage with

equilibrium moduli in the range of 0.1–0.5 MPa (Schinagl
et al., 1997; Korhonen et al., 2002; Simha et al., 2007;
Julkunen et al., 2009). However other studies report elastic
modulus for murine cartilage varying from 2 MPa based on
microindentation (Cao et al., 2006) to 0.05 MPa based on AFM
(Christensen et al., 2012). The increase in equilibrium moduli
with indentation strain reflects the increased contribution of
the stiffer underlying bone and the inherent inhomogeneity of
the cartilage with the deeper zone tissue having a higher
modulus. Loss of IFT88 and associated depletion of primary cilia
in articular cartilage of Col2aCre;ift88fl/fl mice resulted in a
reduction in cartilage moduli although this only reached statis-
tical significance at indentation of 20–40% (Fig. 2). This agrees
with the histology data, which shows that loss of ift88 prevents
normal apoptosis, particularly in the deep and calcified zones
leading to thickening of the cartilage and abnormal joint
formation in Col2aCre;ift88fl/fl mice (Fig. 3) (Chang et al., 2012).
Similar findings have also been reported using a IFT88 hypo-
morph model in which there is reduced chondrocyte hypertro-
phy in the developing growth plate (McGlashan et al., 2007).
These results show that primary cilia are essential for the
development of articular cartilage and the formation of a
mechanically robust extracellular matrix.
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Fig. 3. Histological sections stained with Toluidine blue showing abnormal joint
formation in 2-month-old Col2aCre;ift88fl/fl transgenic mice compared with wild
type controls. The mutants have thicker cartilage with abnormal cell morphology,
particularly in the deeper zones. Scale bar represents 50 mm.
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