Restricted κ Chain Expression in Early Ontogeny: Biased Utilization of \mathbf{V}_{κ} Exons and Preferential $\mathbf{V}_{\mathrm{k}}-\mathrm{J}_{\kappa}$ Recombinations
 By Carmen A. Medina and Judy M. Teale

From the Department of Microbiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7758

Abstract

Summary To determine the extent of κ chain diversity in the preimmune repertoire early in development, κ cDNA libraries were analyzed from $15-\mathrm{d}$ old fetal omentum, 18 -d-old fetal liver, and 3 -wk old bone marrow. An anchored polymerase chain reaction approach was used to avoid bias for particular V_{κ} families. From the sequence analysis of 27 bone marrow clones, 10 different families and 20 unique V_{κ} genes were identified. In contrast, the V_{κ} expression in the fetus is highly restricted and clearly differs from the broader distribution seen in 3 -wk-old bone marrow. Although several V_{κ} families were represented in the fetal library including $V_{\kappa} 9, V_{\kappa} 10, V_{\kappa} 4,5, V_{\kappa} 8$, and $\mathrm{V}_{\kappa} 1$, one or two members of individual families were observed repeatedly. The fetal liver and omentum libraries were found to be largely overlapping. Given the V_{κ} families/exons identified in the fetal sequences, the mechanism of κ rearrangements in the early repertoire appears to occur predominantly by inversion. Importantly, the fetal repertoire was further restricted by dominant $V_{\kappa}-J_{\kappa}$ combinations such as $V_{\kappa} 4,5-J_{\kappa} 5, V_{\kappa} 9-J_{\kappa} 4$, and $V_{\kappa} 10-J_{\kappa} 1$. Since in some cases independent rearrangements could be established, the results indicate a bias for particular $\mathrm{V}_{\kappa}-\mathrm{J}_{\kappa}$ joins. The results also suggest that clonal expansion/selection in the fetal repertoire takes place after light chain rearrangement as opposed to at the pre-B cell level in the bone marrow. The restriction observed in κ light chain expression together with known restrictions in gene usage and junctional diversity at the heavy chain level indicate a remarkably conserved fetal repertoire.

Diversity of the antibody repertoire is created by several genetic mechanisms. These include recombination of discrete DNA segments ($\mathrm{V}, \mathrm{D}_{\mathrm{H}}, \mathrm{J}$) that encode the variable region genes of both H and L chains, addition of nontemplated nucleotides during joining (N insertions), P additions, deletion of nucleotides during recombination, somatic mutation, and H and L chain pairing (for a review see reference 1). Together, such mechanisms allow for enormous repertoires with estimates of $10^{7}-10^{9}$ different antibody specificities (1).
Early in ontogeny, B lymphopoiesis occurs in the fetal liver, bone marrow, spleen, and omentum, whereas in the adult, B cell generation occurs mainly in bone marrow (2-4). Early interest in the developing antibody repertoire focused on the reproducible patterned appearance of specificities, suggesting a genetic program (5,6). Subsequent studies revealed a nonrandom use of V_{H} gene families with preference for D-proximal families $7183(7,8)$ and Q52 (9). This contrasts with the adult where V_{H} family usage in bone marrow correlates with the complexity of the families in the germline $(9,10)$ suggesting distinct differences in mechanisms of diversity. Importantly, fetal B cell progenitors propagated on adult bone marrow stromal cells still gave rise to fetal-like \mathbf{V} gene repertoires, indicating that fetal \mathbf{B} cell/progenitors
are distinct from their adult counterparts (11). Accumulating evidence continues to support this hypothesis (12-15), underscoring the importance of defining associated mechanisms and biological significance.

Among murine antibodies, κ light chains dominate and therefore contribute significantly to diversity (16). In the mouse, the κ locus has been classified into $24 \mathrm{~V}_{\kappa}$ groups according to amino acid similarities up to Cys 23 (17). More recently, 14-16 V_{κ} families have been defined based upon 80% nucleotide similarity and RFLP analysis (18,19). $\mathrm{V}_{\mathrm{K}} 32$, $\mathrm{V}_{\mathrm{k}} 33$, and $\mathrm{V}_{\mathrm{k}} 20$ are among the new families described by several groups (20,21). Importantly, up to 40% of the V_{k} genes appear to be in the opposite transcriptional orientation from J (22), and rearrangement by inversion appears to take place as efficiently as deletion mechanisms (23-26) that dominate H chain rearrangements. Moreover, secondary V_{κ} gene rearrangements are common and take place even when the initial rearrangement is a productive one $(27,28)$. Therefore, V_{κ} replacements may play a critical role in increasing the diversity of V_{k} gene usage.
Comparative analyses of adult and fetal/neonatal V_{k} gene family usage have been done (29-31). No evidence was found for a bias in J-proximal families early in ontogeny. Among
the studies, some differences were noted between adult and fetal V_{k} family usage. But, in general, the results were not dramatic and were somewhat conflicting in terms of differences in expression of particular families (29-31). Much of the discrepancy probably relates to the early use of V_{k} family probes containing the more conserved 3^{\prime} portions of V_{k} exons resulting in detection of more than one family (32 , 33). In general, V_{κ} families are more homologous in sequence to each other than V_{H} families, making $\mathrm{V}_{\boldsymbol{\kappa}}$ family analyses by probe hybridization less reliable (32).
To address more definitively V_{k} usage early in ontogeny, cDNA libraries were constructed and analyzed from fetal liver, fetal omentum, and 3 -wk-old bone marrow. An anchored PCR was used to minimize bias and allow for the detection of all V_{κ} gene families. The results indicate a consistent preference during fetal life for a small set of V_{κ} exons from multiple families. Diversity appeared to be further restricted by the repeated use of particular $\mathrm{V}_{\kappa}-\mathrm{J}_{\kappa}$ combinations.

Materials and Methods

Mice. All experiments were performed with BALB/c mice obtained from Sprague-Dawley, Inc. (Indianapolis, IN). Animals were bred and maintained at the animal facility of the University of Texas Health Science Center and were routinely evaluated for pathogens. Livers from four 18 -d-old fetuses were pooled. Omental tissue was obtained from a pool of six 15 -d-old fetuses. The gestational age was determined by considering the day of mating as day 0 or by the presence of vaginal plugs. Extreme care was taken when dissecting the omentum to avoid contamination from spleen or liver. Furthermore, tissues were transferred multiple times to petri plates containing fresh solutions of BSA in HBSS to avoid carry-over of individual contaminating cells. Bone marrow cell suspensions were prepared from the femurs and tibias of 3 -wk-old mice. Cells from three animals were pooled.
Preparation of cDNA Libraries. Total cellular RNA was isolated from tissues by lysis with guanidinium isothiocyanate followed by centrifugation over a cesium chloride gradient. First strand cDNA was generated using reverse transcriptase (SuperScript RNase H^{-}; GIBCO BRL, Gaithersburg, MD) and oligo-dT priming. Unincorporated nucleotides and primers were removed from the reaction mixture by separation through columns (Elutip-d; Schleicher \& Schuell, Inc., Keene, NH). Instructions provided by the manufacturer were followed except that all the solutions were prepared using potassium salts, as sodium is known to inhibit terminal deoxynucleotide transferase (TdT) ${ }^{1}$ activity. RNA-DNA hybrids were disrupted by alkaline hydrolysis with 0.2 N KOH followed by neutralization with 1 N HCl . Poly-dG tailing of the cDNA molecules using TdT (Stratagene, La Jolla, CA) was performed as described by Roth et al. (34). After phenol-chloroform extraction of the reaction mixture, DNA was precipitated, resuspended in $0.1 \times$ TBE and used as template for PCR.

PCR Amplification, Cloning, and Sequencing. PCR was performed in $50-\mu$ r reactions containing 2.5 U Taq polymerase (Promega Corp., Madison, WI), $1.5 \mathrm{mM} \mathrm{MgCl}, 50 \mathrm{mM} \mathrm{KCl}, 0.01 \%$ gelatin, 25 pmole of each primer (Genosys Biotechnologies, Inc., The Woodlands, TX), and 5μ of each cDNA template. To prevent mispriming events, all the components were added to the reaction except the

[^0]polymerase. After one cycle of 7 min at $95^{\circ} \mathrm{C}$, the temperature of the thermocycler was lowered to $72^{\circ} \mathrm{C}$. At this time, 2.5 U of the Taq polymerase was added to each reaction and samples were overlaid with $50 \mu \mathrm{l}$ of mineral oil. The samples were subjected to 30 cycles of 1 min at $94^{\circ} \mathrm{C}, 2 \mathrm{~min}$ at $47^{\circ} \mathrm{C}$, and 1.5 min at $72^{\circ} \mathrm{C}$. All PCR were terminated with a $15-\mathrm{min}$ extension. Extreme precautions were taken to prevent contamination. All reactions were carried in a laminar hood, and equipment and tubes were UV irradiated. Mock samples that were subjected to all the enzymatic treatments served as negative controls.

The sequences of the primers used in the amplifications were as follows: 5^{\prime} end, 5^{\prime}-CAC-GAT-CCG-CGG-TGC-CCC-CCC-CCC-CCC-3'; 3^{\prime} end, 5^{\prime}-CAC-CAT-ATC-GAT-TTG-GTG-CAA-CAT-CAG-3'. To facilitate cloning, the primer at the 5^{\prime} end included a SacII restriction site and the one at the 3^{\prime} end $\left(\mathrm{C}_{k}\right)$ a ClaI site.

PCR bands were resolved in 1% agarose gels and the appropriate size products were excised. DNA was eluted from the agarose gels by centrifugal membrane filtration through $0.45-\mu \mathrm{m}$ low binding membranes (Durapore; Millipore Corp., Bedford, MA). Agarose contaminants were removed by treatment with glass milk (Bio 101, Inc., Vista, CA). Purified fragments were cloned into p-Bluescript SK-vector (Stratagene) using the SacII and ClaI restriction sites. DH5 $\alpha \mathrm{F}^{\prime}$ or DH11S competent cells (GIBCO BRL) were transformed with the ligation reaction and plated onto nitrocellulose filters.

To screen for positive clones, a consensus J_{κ} and the C_{κ} primer used in the amplifications were endlabeled with $\left.{ }^{32} \mathrm{P}\right]$ ATP using T7 polynucleotide kinase (New England Biolabs, Inc., Beverly, MA). Double positive $\left(\mathrm{J}^{+}, \mathrm{C}_{\kappa}{ }^{+}\right)$clones were expanded, and single stranded DNA obtained by superinfection with M13K07 helper phage (GIBCO BRL). DNA sequencing was performed using the dideoxy nucleotide termination method with Sequenase 2 (United States Biochem. Corp., Cleveland, OH).

Sequence Analysis. Nucleic acid similarities between sequences in GenBank and EMBL data banks and our sequences were determined using the FASTDB program (35).

Results and Discussion

Multiple V_{κ} Exons Are Expressed in 3 -wk-old Bone Marrow. To evaluate the expressed repertoire of κ light chains, bone marrow was pooled from three 3 -wk-old BALB/c mice. Immunocytochemical staining with anti-Ig showed that the proportion of plasma cells in the cell preparation was very low ($<0.1 \%$). 3 wk of age was chosen since it was anticipated from previous V_{H} gene analyses that the repertoire would be mostly adultike with the possibility for some overlap with the early repertoire. cDNA templates were amplified using anchored PCR to avoid bias for particular V_{κ} families. $\mathrm{V}_{\kappa}-\mathrm{J}_{\kappa}$ rearrangements were identified after cloning and sequencing of the amplified cDNA fragments. All of the rearrangements analyzed appeared to be productive ones. The data are summarized in Table 1. Clones representing probable independent rearrangements are listed separately. If two or fewer substitutions were found between individual clones they were grouped as identical since two substitutions approximated the error calculated for the Taq polymerase. An exception to this was when an identical substitution was found in more than one clone or a different library making an error with the Taq polymerase unlikely. In this case, the clones were considered as independent rearrangements.

Table 1. 3-wk-old Bone Marrow Clones

Clone	V_{k}	Jx	Frequency	Percent match	Specificity	Reference
BM-17N	4,5	1	1/27	99.6*	Germline, $\mathrm{V}_{\kappa} \mathrm{Ox}{ }^{\text {S }}$	36
				$(84 . \mathrm{CON})^{\ddagger}$		
BM-12	4,5	1	1/27	100	Germline, $\mathrm{V}_{\mathrm{k}} \mathrm{Ox}$	54
				(R9)		
BM-6	4,5	1	1/27	98.9	Germline, $\mathrm{V}_{\kappa} \mathrm{Ox}$	54, 39
				(H3, CH5)		
BM-2n	4,5	4	1/27	99.3	Germline, $\mathrm{V}_{\mathrm{K}} \mathrm{Ox}$	36
				(76.CON)		
BM-10n	4,5	2	1/27	99	Germline, $\mathrm{V}_{\mathbf{k}} \mathrm{Ox}$	54
				(R13)		
BM-10	4,5	5	2/27	100	Germline, $\mathrm{V}_{\mathrm{k}} \mathrm{Ox}$,	54, 49
BM-41				(H4, T6-416)	Hemagglutinin	
BM-5n	8	1	1/27	100	Hemagglutinin	49
				(T5-626)		
BM-29	8	2	1/27	99.7-100	Hemagglutinin Plasmacytoma	55, 56, 25
				(220GL, NC12-H5, PC3609)		
BM-23n	8	2	2/27	98.3	Histone	57
BM-15				(MRB2)		
BM-11	8	5	1/27	100	PC	58
				(M603)		
BM-46	1	1	1/27	99.7	Germline, DNA, dextran, Arsonate	31, 59
				$\begin{gathered} \left(\mathrm{V}_{\kappa} 1.6, \mathrm{DNA} 14,42-4 \mathrm{~B}-12,\right. \\ 1210.7) \end{gathered}$		
BM-8n	23	2	1/27	99.3	Germline	31
				(V_{K} 23.32)		
BM-36	23	1	1/27	84.6	Germline	31
				($\left.\mathrm{V}_{\mathrm{k}} 23.32\right)$		
BM-4n	20	5	1/27	100	DNA	21
				(C8.5)		
BM-26n	20	2	1/27	99.6	Colon-carcinoma antigen	60
				(33.28)		
BM-1	19	5	1/27	99.6	Plasmacytoma	25
				(PC7043)		
BM-21N	21	5	1/27	99.0-99.7	Germline, multireactive	61, 62
				($\mathrm{V}_{\kappa} 21 \mathrm{E1.6}, \mathrm{BrM8}$)		
BM-3	32	1	1/27	99.6-99.3	DNP	20, 56
				(AN04K, NC6-C8)		
BM-16	10	1	2/27	99.6-100	Germline, V_{k} Arsll, Multireactive	63, 64, 39
BM-37				(KL2.21, CH 12$)$		
BM-9	9	1	1/27	99.3-99.6	Germline, RBC and T cells, Hemagglutinin	65, 66, 67
				(MOPC41, S2-14.2, H220-23)		
BM-8 BM-18	9	1	2/27	99.3-99.6	Germline, RBC and T cells, Hemagglutinin	65, 66, 67
				(MOPC41, S2-14.2, H220-23)		
BM-30	9	2	1/27	99.6-100	Germline, RBC and T cells, Hemagglutinin	65,66, 67
				(MOPC41, S2-14.2, H220-23)		
BM-16a	9	4	1/27	99.6-99.3	Germline, RBC and T cells, Hemagglutinin	65, 66, 67
				(MOPC41, S2-14.2, H220-23)		

[^1]$\mathrm{v}_{\mathbf{k}}{ }^{4,5}$
\[

$$
\begin{array}{lllllllllllllll}
\mathbf{M} & \mathrm{D} & \mathbf{F} & \mathbf{Q} & \mathbf{V} & \mathbb{Q} & \mathbf{I} & \mathbf{F} & \mathbf{S} & \mathbf{F} & \mathrm{~L} & \mathrm{~L} & \mathrm{I} & \mathrm{~S} & \mathrm{~A}
\end{array}
$$ \mathrm{~S}
\]

$\begin{array}{cccccccccccccccc}V & I & M & S & R & G & Q & I & V & L & T & Q & S & P & A & 10\end{array}$ BM-17n BM-12 $B M-6$
$B M-2 n$
$B M-10 n$

$B M-10$ | GA |
:---:

 --
 -C
-C
-C
$\mathrm{I}-\mathrm{C}$
-C ------
$-\mathrm{C-}---$
-G- ----- -... -... TCC AGA GGA CAA ATT GTT CTC ACC CAG TCT CCA GCA ATC
$\mathrm{V}_{\mathbf{K}^{1}}$ BM-46

$V_{K}{ }^{20}$

 BM-4n G-

$V_{k}{ }^{21}$ BM-21n
 BM-16 CTC AGC CTG GAC ATG ATG TCC TCT GCT CAG TTC CTT GGT CTC CTG TTG CTC TGT TTT CAA GGT ACC AGA TGT GAT ATC CAG ATG ACA CAG ACT ACA TCC TCC
 CTC AGC ATG GAC ATG AGG GCT CCT GCA CAG ATP TTT GGC TTC TTG TTG CTC TTG TTT CCA GGT ACC AGA TGT GAC ATC CAG ATG ACC CAG TCT CCG TCC TCC
 -- --- --- --- --- --- --- --- --- ---

BM

BM-2n
BM-10n
BM-10
 tac acc atc agc atg agg gTC cto gct gag ctc ctg gge ctg ctg ctg ttc tge ttt tta ggt gtg aga tgt gac atc cag atg anc cag tct cea tcc agt
 BM-5n CTG GCT GTG TCT GCA GGA GAA AAG GTC ACT ATG AGC TGT AAG TCC AGT CAA AGT GTT TTA TAC AGT TCA AAT CAG AAG AAC TAC TTG GCC TGG TAC CAG CAG BM-29 --A --- --- -- -- ----- AG-
$V_{K}{ }^{1}$ BM

 bm-1 atg tcc aca tca gta gga gac agg gtc agc gtc acc tge adg gcc agt cag aat gtg ggt act ant gta gcc *** ****** *** *** *** tge tat can cag
 bm-21n tta gct gta tct ctg ggg cag agg gce acc atc tca tge agg gcc age cal agt gtc agt aca tct agc tat agt tat atg cac *** a** tgg tac can cag

Figure 1. Nucleotide sequences of bone marrow κ clones. Sequences are grouped according to V_{k} gene family and are shown relative to one member of the family. (- -) Identity. (*) Gaps were introduced to facilitate alignment of the sequences. The deduced amino acid sequences for the representative member of each family is numbered according to Kabat et al. (69) and the locations of CDRs are shown. Sequence data for BM36 and FL31 are available from EMBL under accession numbers Z 17400 and Z 17401 , respectively.

Table 2. Summary of J_{x} Utilization

		Percent sequences expressing			
cDNA library	No. sequences analyzed	$\mathrm{J}_{\kappa} 1$	$\mathrm{~J}_{\kappa} 2$	$\mathrm{~J}_{\star} 4$	$\mathrm{~J}_{\kappa} 5$
3-wk-old bone marrow	27	44.4^{*}	25.9	7.4	22.2
Fetal liver	26	30.8	7.7	34.6	26.9
Omentum	22	40.9	4.5	18.2	36.4

* Data taken from Tables 1, 3, and 4.

The data in Table 1 reveals a pattern of considerable V_{κ} sequence diversity. In all, 10 different families and 20 unique V_{κ} genes were identified among the 27 clones sequenced. Even though the presence of plasma cells cannot be ruled out, their contribution appears minimal based upon the frequency of independent rearrangements and the diversity of V_{κ} exons found. Some of the same V_{κ} genes identified have been previously described for LPS-stimulated bone marrow cells $(29,30)$ and bone marrow pre-B cell lines (31). Rearrangements involving identical V_{κ} genes but different J_{κ} segments added to the diversity of the κ chains.
The bone marrow sequences are shown in Fig. 1. Of particular interest is $B M-36$, a $\mathrm{V}_{k} 23$, which only shows 83% homology to the closest gene, $\mathrm{V}_{k} 23.32$. Therefore, it likely represents a new $\mathrm{V}_{\mathrm{k}} 23$ germline gene.
As discussed previously (33), it is difficult to accurately assess the extent of V_{κ} family usage in terms of family complexity since the number of functional genes for most of the families is not known. Nevertheless, it is interesting that the family estimated to be the largest is $\mathrm{V}_{\mathrm{x}} 4,5$ ($\geqslant 16$ members), and this family was represented most frequently in the bone marrow cDNA library (26%). Recently, analysis of a genomic library of the $\mathrm{V}_{\mathrm{k}} 4,5$ family ($\mathrm{V}_{k} \mathrm{Ox}$) confirms multiple, functional V_{κ} genes (36). Based upon use of the more specific $5^{\prime} \mathrm{V}_{\mathrm{k}}$ family probes used by Kalled and Brodeur (33), $\mathrm{V}_{\mathrm{k}} 8$ (4-7 members) and $\mathrm{V}_{k} 9$ (5-10 members) are also relatively large families and are represented prominently in the library shown here. In contrast, $\mathrm{V}_{k} 21$ (13 members) and $\mathrm{V}_{\kappa} 19$ (5 members) were found infrequently. However, the splenic cDNA libraries analyzed by Kalled and Brodeur (33) for V_{κ} gene family utilization also showed unexpectedly low frequencies of $\mathrm{V}_{\mathrm{K}} 21(3.8 \%)$. None of the smaller V_{K} families with one, two, or three members were found with unexpectedly high frequencies in the bone marrow library. In general, these data support the lack of bias for particular V_{κ} families using the anchored PCR.

Nonrandom Features of the V_{κ} Bone Marrow Repertoire. Although multiple V_{κ} families and exons were found in the library analyzed, indicating considerable diversity, the utilization of V_{k} genes was not random. One member of $V_{k} 9$ was preferentially used in the bone marrow library. Although independent rearrangements were likely in these clones, there appeared to be a clear bias for the MOPC41 germline gene,
the same gene that is used preferentially in the fetal repertoire as described below. Whether this is due to remnants of the fetal repertoire in 3 -wk-old animals is not clear. However, repeats were also observed in other sets of clones, e.g., BM-16/BM37 (KL2.21) and BM23n/BMB15 (MRB2), and these genes were not found in the fetal libraries.
Also nonrandom was the utilization of individual J_{k} segments with $\mathrm{J}_{\kappa} 1$ preferentially used and $\mathrm{J}_{\kappa} 4$ underutilized (Table 2). Similar frequencies of the use of individual J_{k} segments have been reported by others (33) further validating that the anchored PCR approach was not introducing a bias. A possible mechanism for the nonrandom use of $\mathrm{J}_{\mathrm{\kappa}} 1$ was recently reported (37). The DNA binding protein KLP was shown to bind at a site 5^{\prime} of the $\mathrm{J}_{\kappa} 1$ segment, an event that could target the recombinase to this region and increase the frequency of rearrangements involving $\mathrm{J}_{\mathrm{K}} 1$.
Restricted $V_{\kappa} J_{k}$ Gene Expression in Fetal Liver. $\mathrm{V}_{\kappa}-\mathrm{J}_{\kappa}$ rearrangements were also examined in 18 -d-old fetuses by generating a cDNA library from fetal liver using anchored PCR. The data are summarized in Table 3 with representative sequences shown in Fig. 2. Most of the sequences are highly homologous to known germline genes. However, FL-31 showed only 96% homology with $\mathrm{V}_{\kappa} 1.6$ (11 substitutions in the coding region). Therefore, FL-31 may represent a new $\mathrm{V}_{\mathrm{K}} 1$ germline gene.
The results indicate a highly restricted V_{κ} repertoire in the 18 -d-old fetal liver compared with that observed with 3 -wkold bone marrow. In a collection of 26 clones, some sequences were noted repeatedly. Several families were represented in the library including $\mathrm{V}_{\kappa} 4,5, \mathrm{~V}_{\kappa} 9, \mathrm{~V}_{\kappa} 10, \mathrm{~V}_{\kappa} 8$, and $\mathrm{V}_{\kappa} 1$, and presumably a more extensive library would have revealed additional V_{κ} families. However, only one or two members of each family were identified, suggesting a highly restricted repertoire. Even more striking was the repeated use of particular $\mathrm{V}_{\kappa}-\mathrm{J}_{\kappa}$ combinations such as $\mathrm{V}_{\kappa} 9-\mathrm{J}_{\kappa} 4, \mathrm{~V}_{\kappa} 10-\mathrm{J}_{\kappa} 1$, and $\mathrm{V}_{\kappa} 4,5-\mathrm{J}_{\mathrm{K}} 5$. This is unlikely to be artifact since the same combinations found in the fetal library were also found in two separate omentum libraries described below. Moreover, in several cases among the three libraries, independent rearrangements could be established. This suggests that these particular $\mathrm{V}_{\kappa}-\mathrm{J}_{k}$ joins are genetically favored or that B cells undergoing such rearrangements are selected.
Analysis of the $V_{\kappa} J_{k}$ Repertoire in Omentum. Recent re-

Table 3. Fetal Clones

Clone	$\mathrm{V}_{\boldsymbol{k}}$	J_{κ}	Frequency	Percent match	Specificity	Reference
FL-17						
FL-23						
FL-1						
FL-15						
FL-7	9	4	9/26	98.6-99.3*	Germline, RBC and	65, 66, 67
FL-16				(MOPC41, S2-14.2, H220-23) ${ }^{\ddagger}$	T cells, hemagglutinin	
FL-12						
FL-25						
FL-26						
FL-13						
FL-4						
FL-32	10	1	6/26	99.6-100	Germline, $\mathrm{V}_{\mathrm{k}} \mathrm{Arss}$,	68, 67
FL-21				(V10.1b, L2-10C1)	hemagglutinin	
FL-18						
FL-11						
FL-29						
FL-6	4,5	5	3/26	99.6-100	Germline, $\mathrm{V}_{\mathrm{x}} \mathrm{Ox}{ }^{\text {II, }}$,	54, 49
FL-5				(H4, T6-416)	hemagglutinin	
FL-3						
FL-30	4,5	5	3/26	99.6-100	Germline, $\mathrm{V}_{\mathrm{k}} \mathrm{Ox}$,	36
FL-28 (261.CON, NQ2/6.1) 2-phenylox						
FL-20 ${ }^{1}$	4,5	5	1/26	100	Germline, $\mathrm{V}_{\mathrm{k}} \mathrm{Ox}$,	36
				(261.CON, NQ2/6.1)	2-phenyloxazolone)	
FL-14	1	1	1/26	99.7	Germline, DNA, dextran,	31, 59
				$\begin{gathered} \left(\mathrm{V}_{\kappa} 1.6,\right. \text { DNA14, 42-4B-12, } \\ 1210.7) \end{gathered}$	Arsonate	
FL-31	1	2	1/26	96.3	Germline, DNA, dextran,	31, 59
				$\left(\mathrm{V}_{\kappa} 1.6,\right. \text { DNA14, 42-4B-12, }$	Arsonate	
FL-2	8	1	1/26	99.6	Hemagglutinin	49
				(T'5-626)		
FL-27	8	2	1/26	99.7-100	Hemagglutinin,	55, 56, 25
				(220GL, NC12-H5-PC3609)	Plasmacytoma	

* Percent homology through the coding regions of the variable gene.
\ddagger Germline designation or hybridoma or cell line from which the gene was sequenced and/or cloned.
S Germline gene associated with the antiarsonate response.
${ }^{\|}$Germline gene associated with the anti-2-phenyl oxazolone response.
I Two substitutions in J_{k}.
ports indicate that the microenvironment of the the fetal omentum supports the development of B cells $(4,38)$. More importantly, the omentum seems to contain precursors that exclusively give rise to $\mathrm{CD} 5^{+}$(B1a) and CD^{-}(B1b) sister B cell subpopulations (4). Therefore, it was interesting to compare the V_{κ} repertoire in omentum with that of the fetal
liver. For this purpose, two $15-\mathrm{d}$-old omentum cDNA libraries were constructed from fetuses from two separate litters. Day 15 of gestation was used since this appears to be when the amount of B cell lymphopoietic omental tissue is maximal (Solvason, N., personal communication). There was some concern whether κ^{+}cells would be found at this stage since

 fl-29 gac aga atg gat ttt cag gtg cag att ttc agc ttc ctg cta atc agt gcc tca gtc ata atg tcc aga gea caa att gtt ctc ace cag tct cca gca atc

 $\begin{array}{ll}\text { PL-14 } & \mathrm{C}-- \\ \mathrm{OM}-2213 & \mathrm{C}--\end{array}$ \qquad
\qquad
 fl-2 agg gge atc ahg atg gat tca cag act cag gtc ttc ctc tce ctg ctg ctc tge gta tet get ace tgt gge ade git atg atg aca cag tcg cca tca tct

$\mathrm{V}_{\mathbf{K}}{ }^{9}$

20 - CDR1

 OM-6 OM-9

 fl-29 atg tct gca tct cca gge gag abg gtc ace ata tce tge agt gec agc tca agt gta agt tac atg tac *** ********* *** ****** tge tac cag cag

 FL-14

 $v_{x} 9$
————CDR2
 FL-15

 fl-29 agg cea gga tce tce ccc ana cec tgg att tat cge aca tcc anc ctg get tet gga gic cct get cge ttc agt gge agt gge tct gge acc tct tac tct

 OM-2213 - \qquad
\qquad

Figure 2. V_{κ} sequences of selected 18 - d -old fetal liver and 15 - d -old omentum cDNA clones. For a description of the symbols, see legend of Fig. 1.
sIg $^{+}$cells were absent at day 13 (4). However, sIg^{+}cells were detected in human omentum at 8-12 wk of gestation (38). Moreover, a significant PCR reaction was obtained using the C_{κ} primer for both libraries. Further amplification was not required for either library.
The data obtained from the omentum is shown in Table 4 and Fig. 2. Since the sequence obtained with both libraries were similar, the data were combined. The V_{k} families identified have been found previously in known CD5 ${ }^{+}$cells including $V_{k} 9$ and $V_{k} 4,5$ which are predominant in the bromelain-RBC/phosphatidyl choline reactivity (39,40). In general, a similar V_{κ} repertoire was observed using the fetal omentum and fetal liver libraries. The same set of restricted V_{κ} exons were repeatedly used. Moreover, identical $\mathrm{V}_{\kappa}-\mathrm{J}_{\kappa}$ combinations were identified with $\mathrm{V}_{\kappa} 10-\mathrm{J}_{\mathrm{J}} 1, \mathrm{~V}_{\kappa} 4,5-\mathrm{J}_{\kappa} 5$, and $\mathrm{V}_{\kappa} 9-\mathrm{J}_{k} 4$ recombinations dominating. J_{κ} usage in the omentum library is different from that of the bone marrow library with increased use of $J_{\kappa} 4$ and $J_{\mathrm{K}} 5$ and decreased use of $\mathrm{J}_{k} 2$ (Table 2). The results of $\mathrm{V}_{k}-\mathrm{J}_{k}$ usage indicate significant overlap of the fetal omentum and fetal liver repertoires. Similarities in the B cell compartments of human omentum and fetal liver were also noted by Solvason and Kearney (38). This would be consistent with previous conclusions that B cells in early development are dominated by CD5 ${ }^{+}$B cells including the fetal liver (15). However, we have also begun analyzing the V_{H} repertoire of the omentum using the same omental RNA used here to generate cDNA V_{k} libraries. Initial results indicate that the omental V_{H} library may be more restricted than the fetal liver library (Teale, J., and E. J. Morris, manuscript in preparation).

Diversity at the $V_{\kappa}-J_{\kappa}$ Junction. Diversity at the V-J junction is mainly the result of exonuclease activity with the
removal of bases at either V or J . This introduces variability in the CDR3 even when identical $\mathrm{V}_{k}-\mathrm{J}_{k}$ combinations are used. Residues located 3' of the V_{κ} exon appear to be used sometimes during recombination to create a longer CDR3 (36). A probable example of this is BM-16 (Fig. 1) and the FL and OM sequences (Fig. 2) of $\mathrm{V}_{\kappa} 9$ (MOPC41). This results in an extra Pro at position 96. An analysis of junctional diversity was used, in part, to establish independent rearrangements in the sequences shown here.

Milstein et al. (36) recently analyzed a genomic library of $\mathrm{V}_{\kappa} 4,5$ rearrangements in adult spleen and found evidence for asymmetric trimming with more bases being removed from V than from J. In the sequences shown here where the germline V_{κ} sequence could be clearly identified, some degree of asymmetry was found as well (Table 5).

Evidence has also been reported for the addition of bases at the $\mathrm{V}_{\mathrm{t}}-\mathrm{J}_{\mathrm{t}}$ junction through N or P residues (36,41). BM17 N may represent one such example. The CDR3 of this clone appeared to lack the highly conserved Pro at position 95 and contained only eight amino acid residues. A close inspection of the V-J junction in this sequence showed two residues, TC, that do not seem to originate from the V or J genes. However, if this does represent nontemplated addition of nucleotides, it is rare for L chains as noted elsewhere (41).

Importantly, the H chain CDR3 of fetal/neonatal antibodies has been shown to be shorter than adult-derived antibodies. This is due to lack of N insertions as well as targeted rearrangements in early development involving homologous overlapping sequences (12-14). In the case of the fetal κ sequences, there may be slightly less trimming of bases at J during V-J joining compared with the bone marrow (Table 5). However, the average lengths of the L chain CDR 3 s are

Table 4. Omentum Clones

Clone	V_{k}	J_{κ}	Frequency	Percent match	Specificity	Reference
OM-5						
OM-6	10	1	4/22	99.3-100*	Germline, $\mathrm{V}_{\mathrm{k}} \mathrm{Ars}^{\text {s }}$	68, 67
OM-3				(V10.1b, L2-10C1) ${ }^{\ddagger}$	Hemagglutinin	
OM-1313						
OM-513 ${ }^{\prime \prime}$	10	1	2/22	99.3	Germline, V_{k} Ars,	68, 67
OM-1913 ${ }^{\prime \prime}$				($\mathrm{V}_{\kappa} 10.1 \mathrm{~b}, \mathrm{~L} 2-10 \mathrm{C} 1$)	Hemagglutinin	
OM-9 ${ }^{1}$	10	1	1/22	98.9	Germline, V_{K} Ars, Hemagglutinin	68,67
				(V10.1b-L2-10C1)		
OM-1613**	10	1	1/22	99.3	Germline, V_{K} Ars, Hemagglutinin	68, 67
				($\mathrm{V}_{\kappa} 10.1 \mathrm{~b}, \mathrm{~L} 2-10 \mathrm{C} 1$)		
OM-13						
OM-2313	4,5	5	3/22	99.6-100	Germline, $\mathrm{V}_{\mathrm{k}} \mathrm{Ox}^{\ddagger \ddagger}$, Hemagglutinin	54, 49
OM-7				(H4, T6-416)		
OM-46	4,5	5	4/22	99.6-100	Germline, $\mathrm{V}_{\kappa} \mathrm{Ox}$,	36
OM-913				(261.CON, NQ2/6.1)	2-phenyloxazolone	
OM-813OM-1713						
OM-1413ss	4,5	5	1/22	100	Germline, $\mathrm{V}_{\kappa} \mathrm{Ox}$, 2-phenyloxazolone	36
				(261.CON, NQ2/6.1)		
OM-713						
OM-1513	9	4	4/22	98.6-99.3	Germline, RBC and T cells, hemagglutinin	65, 66, 67
OM-313				(MOPC41, S2-14.2, H220-23)		
OM-8						
OM-2213	1	1	1/22	99.3	Germline, DNA, dextran, arsonate	31, 59
				($\mathrm{V}_{\kappa} 1.6$, DNA14, 42-4B-12		
				12.10.7)		
OM-1113	8	2	1/22	99.7-100	Hemagglutinin, Plasmacytoma	55, 56, 25
				(220GL, NC12-H5,		
				PC3609)		

* Percent homology through the coding regions of the variable gene.
\ddagger Germline designation or hybridoma or plasmacytoma from which the gene was cloned and/or sequenced.
S Germline gene associated with the antiarsonate response.
\| One replacement in the CDR1; one silent mutation in the CDR2.
1 One replacement in the FR1; two silent mutations in the FR1 and FR3.
** Designated as a nonproductive rearrangment.
\# Germline gene associated with the anti-2-phenyloxazole response.
©s Two substitutions in J_{κ}, same as FL-20.
essentially identical in all of the libraries analyzed arguing against major differences in junctional diversity. Selection may also contribute to these minor differences.
κ Gene Expression in Early Ontogeny. No sequences from the $\mathrm{V}_{\mathrm{K}} 21$ family, the most J-proximal family (18), were identified in the fetal libraries. This is consistent with previous results indicating relatively low or no $\mathrm{V}_{\mathrm{k}} 21$ family expres-
sion in LPS-stimulated fetal and neonatal B cells (29, 30). Instead, several families are expressed that appear to be spread throughout the κ locus. This argues against a positiondependent regulation of V_{κ} gene expression as has been argued for V_{H} gene usage (7). (It should be noted however, that constraints independent of mapping position appear likely in H chain gene rearrangement (11, 13, 42, 43]). The lack

Table 5. Analysis of Junctional Diversity

	Bone marrow	Fetal liver	Omentum
Range of no. of nucleotides	$\mathrm{V}: 0-5 \mathrm{~J}: 0-1$	$\mathrm{~V}: 0-5 \mathrm{~J}: 0-1$	(23)
removed*	$(17)^{\ddagger}$	$\mathrm{V}: 2.3 \mathrm{~J}: 0.04$	$\mathrm{~V}: 0-5 \mathrm{~J}: 0-1$
Average no. of nucleotides	$\mathrm{V}: 2.8 \mathrm{~J}: 0.23$	(23)	(20)
removed/sequence analyzed	(17)	9.3	$\mathrm{~V}: 3.0 \mathrm{~J}: 0.05$
Average length of CDR3	8.7	(26)	(20)
	(27)		9.2
			(22)

* For sequences when the germline V_{κ} was known, the number of bases trimmed from either V or J was determined.
\ddagger Number of sequences analyzed.
of any evidence for position-dependent effects may relate to the fact that over 40% of the V_{κ} genes appear to be in the opposite transcriptional orientation from J_{κ} and rearrange by inversion (22). Importantly, with the exception of $\mathrm{V}_{\kappa} 1$, all of the fetal sequences identified here are from V_{k} families known to rearrange by inversion (22). Moreover, in some cases the individual members used have been indicated to rearrange by inversion, i.e., $\mathrm{V}_{\kappa} 9$-MOPC41 (24) and $\mathrm{V}_{K} 8$ PC3609 (25). Two of the three known functional $\mathrm{V}_{\mathrm{K}} 10$ members rearrange by inversion (22). The mechanism of rearrangement for the third member is not known. Several members of the $\mathrm{V}_{k} 4,5$ family also rearrange by inversion (22, 26,44). This suggests that the early κ repertoire is dominated by inversion-type rearrangements.

Also likely to be biologically important is the apparent preference for particular $\mathrm{V}_{\kappa}-\mathrm{J}_{\kappa}$ combinations in the fetal repertoire. This is particularly striking since some of the same V_{κ} exons are found in the bone marrow library with multiple J_{κ} exons. Given their frequency in three different libraries, they presumably represent primary rearrangements. Interestingly, Kalled and Brodeur (44) recently reported on κ rearrangements in A -MuLV-transformed pre-B cell lines in which 84% resulted in a $V_{k} 4,5-\mathrm{J}_{k} 5$ recombination, one of the predominant rearrangements observed here. It has been suggested that primary inversion rearrangements may make $5^{\prime} \mathrm{V}_{k}$ exons more accessible for secondary rearrangements (22,44). However, recombination to $\mathrm{J}_{\kappa} 5$ would prevent functional secondary rearrangements. Similarly, the $\mathrm{V}_{\kappa} 9-\mathrm{J}_{\mathrm{k}} 4$ would significantly limit secondary rearrangements particularly given the 5^{\prime} location of $\mathrm{V}_{\kappa} 9$. Moreover, the repeated identification of $\mathrm{V}_{\kappa} 10-\mathrm{J}_{\kappa} 1$ rearrangement in plasmacytomas/ cell lines (22) suggests that this may also represent a stable recombination event less prone to functional secondary rearrangements. Since secondary κ rearrangements are thought to provide another mechanism for Ig diversity and increase chances for effective H and L chain pairing (27), a limitation on secondary rearrangements would result in a more restricted fetal repertoire.

Several lines of evidence indicate that the H chain fetal repertoire is significantly restricted compared with the adult repertoire. These include biased usage of particular $\mathrm{V}_{\mathrm{H}}, \mathrm{D}$, and
J_{H} exons, a preferred D reading frame, and lack of junctional diversity (for a review see reference 1). The relative role of developmental, functional, and evolutionary pressures on the early repertoire remain unclear. It has been argued by many that a highly conserved early repertoire would effectively counteract ubiquitous bacterial pathogens (45). The propensity for self-reactivities also suggests an immunoregulatory role (46, 47). A conserved repertoire would necessitate restricted L as well as H chain diversity. L chains have recently been shown to contribute significantly to the fine specificity of antibodies. For example, the H9 heavy chain used in antiDNA antibodies will also react with other antigens such as cardiolipin/RNA depending upon the L chain with which it pairs (48). Also of interest are recent molecular studies of the influenza hemagglutinin (HA) antigen system in which the antibody response to slight changes in a HA epitope were analyzed (49). It was shown that the altered epitope was accommodated in the antibody response, not by changes in the CDR3, but rather by changes in H and L chain pairing. Therefore, if there is evolutionary pressure to restrict the early repertoire, limitation at the L chain level is probably critical. Part of this limitation may be imposed at the genetic level. Fetal H chain expression is restricted and the lengths of the CDR3 significantly shorter. This may limit the number of L chains that can effectively pair with the fetal H chains. The ability to achieve H and L chain pairing may also underlie the observed $\mathrm{V}_{\kappa}-\mathrm{J}_{\kappa}$ preferences.
Results of a highly restricted fetal κ repertoire also impact on theories of selection and clonal expansion. H chain rearrangement normally precedes L chain rearrangement ($1-3$), although exceptions have been reported (50). This appears to be true of all stages of development since pre-B cells antedate B cells. In bone marrow, it appears that pre-B cells are clonally expanded perhaps by selection through the H chain-surrogate L chain complex (51,52). The expanded cells then appear to independently rearrange L chain genes resulting in a diverse set of B cells (51,53). This is consistent with our bone marrow library where multiple κ rearrangements were found. However, given the highly restricted, repeated sequences in the three fetal libraries shown here, and the likelihood that H chain rearrangement precedes L chain rearrange-
ment, it appears that clonal expansion/selection in the early repertoire occurs after L chain gene rearrangement. Alternatively, fetal B lineage cells may expand at both the pre-B cell and B cell stages. Expansion at the B cell level would further restrict the fetal repertoire by increasing the number of cells with identical H and L chain pairs. It also indicates a unique clonal selection/expansion mechanism for the early repertoire.

In summary, the early repertoire is restricted in terms of both H and L chain expression. The available data do not allow definitive conclusions to be drawn as to whether the underlying mechanisms involve primarily genetic forces, environmental forces, or a combination of both. Fetal pre-B cells develop in vitro with a fetal-like V_{H} repertoire even when supported by adult bone marrow stromal cells (11).

This, combined with lack of TdT and differences in CDR3s (1) suggest that at least some of the differences between fetal and adult repertoires are due to distinct progenitors and rearrangement strategies. The restriction in L chain expression shown here may also be due, in part, to genetic mechanisms. Certain $V_{K}-J_{K}$ recombinations may be preferred. In addition, L chain expression may be restricted on the basis of the ability to pair with a more limited fetal H chain repertoire. Selection mechanisms may also be operative. Once L chain rearrangement and expression occurs in fetal B cells, there appears to be considerable expansion, perhaps by selection through the intact Ig receptor. The end result is a highly conserved fetal repertoire.

The authors thank Drs. Iñaki Sanz and Anthony Infante for critical review of the manuscript; Ms. Frances Martinez for technical assistance; and Ms. Diana Hinojosa for help in manuscript preparation.
This work was supported by grants AI-9896, AI-20313, and AI-27994 from the National Institutes of Health.
Address correspondence to J. M. Teale, Department of Microbiology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284-7758.

Received for publication 21 September 1992 and in revised form 10 February 1993.

References

1. Klinman, N., and J. Urbain. 1992. B cell ontogeny and repertoire expression. Int. Rev. Immunol. 8:1.
2. Melchers, F., H. von Boehmer, and R.A. Phillips. 1975. B lymphocyte subpopulations in the mouse. Organ distribution and ontogeny of immunoglobulin-synthesizing and mitogensensitive cells. Transplant. Rev. 25:26.
3. Osmond, D.G. 1975. Formation and maturation of bone marrow lymphocytes. J. Reticuloendothel. Soc. 17:99.
4. Solvason, N., A. Lehuen, and J.F. Kearney. 1991. An embryonic source of Ly 1 but not conventional B-cell. Int. Immunol. 3:543.
5. Klinman, N.R., and J.L. Press. 1975. Expression of specific clones during B cell development. Fed. Proc. 34:47.
6. Teale, J. 1985. B cell repertoire diversifies in a predictable temporal order in vitro. J. Immunol. 135:954.
7. Yancopoulos, G., S.V. Desiderio, M. Paskind, J.F. Kearney, D. Baltimore, and F. Alt. 1984. Preferential utilization of the most J_{H}-proximal V_{H} gene segments in pre-B cell lines. Nature (Lond.). 311:727.
8. Perlmutter, R.M., J.F. Kearney, S.P. Chang, and L.E. Hood. 1985. Developmentally controlled expression of V_{H} genes. Science (Wash. DC). 227:1597.
9. Jeong, H.D., and J. Teale. 1988. Comparison of the fetal and adult functional B cell repertoire by analysis of V_{H} gene family expression. J. Exp. Med. 168:589.
10. Dildrop, R., U. Krawinkel, E. Winter, and K. Rajewsky. 1985. V_{H} gene expression in murine lipopolysaccharide blasts distributes over the nine known V_{H}-gene groups and may be random. Eur. J. Immunol. 15:1154.
11. Jeong, H.D., and J.M. Teale. 1989. V ${ }_{H}$ gene family repertoire of resting B cells. Preferential use of D-proximal families early
in development may be due to distinct B cell subsets. J. Immunol. 143:2752.
12. Gu, H., I. Förster, and K. Rajewsky. 1990. Sequence homologies, N sequence insertion, and J_{H} utilization in $V_{H} D J_{H}$ joining: implications for the joining mechanism and the ontogenic timing in $\mathrm{Ly}-1 \mathrm{~B}$ cell and B-CLL progenitor generation. EMBO (Eur. Mol. Biol. Organ) J. 9:2133.
13. Bangs, L.A., I.E. Sanz, and J.M. Teale. 1991. Comparison of $\mathrm{D}, \mathrm{J}_{\mathrm{H}}$, and junctional diversity in the fetal, adult, and aged B cell repertoires. J. Immunol. 146:1996.
14. Feeney, A.J. 1990. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J. Exp. Med. 172:1377.
15. Hardy, R.R., and K. Hayakawa. 1991. A developmental switch in B lymphopoiesis. Proc. Natl. Acad. Sci. USA. 88:1150.
16. McIntire, K.R., and M. Rouse. 1970. Mouse immunoglobulin light chains: alterations of the kappa:lambda ratio. Fed. Proc. 29:704 (Abstr.).
17. Potter, M., J.B. Newell, S. Rudikoff, and E. Haber. 1982. Classification of mouse V_{κ} groups based on partial amino acid sequence to the first invariant tryptophan. Impact of 14 new sequences from IgG myeloma proteins. Mol. Immunol. 19:1619.
18. D'Hoostelaere, L.A., K. Huppi, B. Mock, C. Mallet, and M. Potter. 1988. The immunoglobulin kappa light chain allelic groups among Ig κ haplotypes and Ig κ crossover populations suggest a gene order. J. Immunol. 141:652.
19. Kofler, R., M. Duchosal, and F. Dixon. 1989. Complexity, polymorphism, and connectivity of mouse V_{k} gene families. Immunogenetics. 29:65.
20. D'Hoostelaere, L.A., and D. Klinman. 1990. Characterization
of new mouse V_{x} groups. J. Immunol. 145:2706.
21. Schefner, R., R. Mayer, A. Kaushik, P. D'Eustachio, C. Bona, and B. Diamond. 1990. Identification of a new V_{κ} gene family that is highly expressed in hybridomas from an autoimmune mouse strain. J. Immunol. 145:1609.
22. Shapiro, M.A., and M. Weigert. 1987. How immunoglobulin V_{x} genes rearrange. J. Immunol. 139:3834.
23. Lewis, S., N. Rosenberg, F. Alt, and D. Baltimore. 1982. Continuing kappa-gene rearrangement in a cell line transformed by Abelson murine leukemia virus. Cell. 30:807.
24. Höchtl, J., and H.G. Zachau. 1983. A novel type of aberrant recombination in immunoglobulin genes and its implications for V-J joining mechanism. Nature (Lond.). 302:260
25. Feddersen, R.M., and B.G. VanNess. 1985. Double recombination of a single immunoglobulin K -chain allele. Implications for the mechanism of rearrangement. Proc. Natl. Acad. Sci. USA. 82:4793.
26. Blackwell, T.K., B.A. Malynn, R.R. Pollock, P. Ferrier, L.R. Covey, G.M. Fulop, R.A. Phillips, G.D. Yancopoulos, and F.W. Alt. 1989. Isolation of scid pre-B cells that rearrange kappa light chain genes: formation of normal signal and abnormal coding joints. EMBO (Eur. Mol. Biol. Organ) J. 8:735.
27. Harada, K., and H. Yamagishi. 1991. Lack of feedback inhibition of V_{κ} gene rearrangement by productively rearranged alleles. J. Exp. Med. 173:409.
28. Feddersen, R.M., and B. VanNess. 1990. Corrective recombination of mouse immunoglobulin kappa alleles in Abelson murine leukemia virus-transformed pre-B cells. Mol. Cell. Biol. 10:569.
29. Teale, J.M. and E.G. Morris. 1989. Comparison of V_{κ} gene family expression in adult and fetal B cells. J. Immunol. 143:2768.
30. Kaushik, A., D.H. Schulze, C. Bona, and G. Kelsoe. 1989. Murine V_{K} gene expression does not follow the V_{H} paradigm. J. Exp. Med. 169:1859.
31. Lawler, A.M., J.F. Kearney, M. Kuehl, and P.J. Gearhart. 1989. Early rearrangements of genes encoding murine immunoglobulin κ chains, unlike genes encoding heavy chains; use variable gene segments dispersed throughout the locus. Proc. Natl. Acad. Sci. USA. 86:6744.
32. Strohal, R., A. Helmberg, G. Helmberg, G. Kroemer, and R. Kofler. 1989. Mouse V_{κ} gene classification by nucleic acid sequence similarity. Immunogenetics. 30:475.
33. Kalled, S.L., and P.H. Brodeur. 1991. Utilization of individual V_{x} exons: implications for the available B cell repertoire. J. Immunol. 147:3194.
34. Roth, M.S., G.J. Weiner, E.A. Allen, V.H. Terry, C.E. Harnden, M. Boehnke, M.S. Kaminski, and D. Ginsburg. 1990. Molecular characterization of anti-idiotype antibody-resistant variants of a murine B cell lymphoma. J. Immunol. 145:768.
35. Brutlag, D.L., J.P. Dautricourt, S. Maulik, and J. Relph. 1990. Improved sensitivity of biological sequence database searches. Comput. Appl. Biosci. 6:237.
36. Milstein, C., J. Even, J.M. Jarvis, A. Gonzalez-Fernandez, and E. Gherardi. 1992. Non-random features of the repertoire expressed by members of one V_{κ} gene family and of the V-J recombination. Eur. J. Immunol. 22:1627.
37. Martin, D.J., and B.G. VanNess. 1990. Initiation and processing of two kappa immunoglobulin germline transcripts in mouse B cells. Mol. Cell. Biol. 10:1950.
38. Solvason, N., and J. Kearney. 1992. The human fetal omentum: a site of B cell generation. J. Exp. Med. 175:397.
39. Pennell, C.A., L.W. Arnold, G. Haughton, and S.H. Clarke. 1988. Restricted Ig variable region gene expression among

Ly-1+ B cell lymphomas. J. Immunol. 141:2788.
40. Reiniger, L., A. Kaushik, S. Izui, and J.-C. Jaton. 1988. A member of a new V_{H} gene family encodes antibromelinized mouse red blood cell autoantibodies. Eur. J. Immunol. 18:1521.
41. Heller, M., J.D. Owens, J.F. Mushinski, and S. Rudikoff. 1987. Amino acids at the site of $\mathrm{V}_{\mathrm{K}}-\mathrm{J}_{\kappa}$ recombination not encoded by germline sequences. J. Exp. Med. 166:637.
42. Tutter, A., and R. Riblet. 1989. Conservation of an immunoglobulin variable region indicates a specific nonencoding function. Proc. Natl. Acad. Sci. USA. 86:7460.
43. Schroeder, H.W., Jr., J.L. Hillson, and R.M. Perlmutter. 1987. Early restriction of the human antibody repertoire. Science (Wash. DC). 238:791.
44. Kalled, S.L., and P.H. Brodeur. 1990. Preferential rearrangement of $\mathrm{V}_{\kappa} 4$ gene segments in pre-B cell lines. J. Exp. Med. 172:559.
45. Casali, P., and A.L. Notkins. 1989. CD5 ${ }^{+}$lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol. Today. 10:364.
46. Kipps, T. 1989. The CD5 B cell. Adv. Immunol. 47:117.
47. Herzenberg, L.A., A.B. Kantor, and L.A. Herzenberg. 1992. Layered evolution in the immune system. A model for the ontogeny and development of multiple lymphocyte lineages. Ann. NY Acad. Sci. 651:1.
48. Radic, M.Z., M.A. Mascelli, J. Erikson, H. Shan, and M. Weigert. 1991. IgH and L chain contributions to autoimmune specificities. J. Immunol. 146:176.
49. Stark, S.E., and A.J. Caton. 1991. Antibodies that are specific for a single amino acid interchange in a protein epitope use structurally distinct variable regions. J. Exp. Med. 174:613.
50. Kubagawa, H., M.D. Cooper, A.J. Carroll, and P.D. Burrows. 1989. Light-chain gene expression before heavy chain rearrangements in pre-B cells transformed by Epstein-Barr virus. Proc. Natl. Acad. Sci. USA. 86:2356.
51. Decker, D.J., N.E. Boyle, J.A. Koziol, and N.R. Klinman. 1991. The expression of IgH chain repertoire in developing bone marrow B lineage cells. J. Immunol. 146:350.
52. Kitamura, K., A. Kudo, S. Schaal, W. Müller, F. Melchers, and K. Rajewsky. 1992. A critical role of $\lambda 5$ protein in B cell development. Cell. 69:823.
53. Caton, A.J. 1990. A single pre-B cell can give rise to antigenspecific B cells that utilize distinct immunoglobulin gene rearrangements. J. Exp. Med. 172:815.
54. Even, J., G.M. Griffiths, C. Berek, and C. Milstein. 1985. Light chain germ-line genes and the response to 2-phenyloxazolone. EMBO (Eur. Mol. Biol. Organ) J. 4:3439.
55. Clarke, S., and S. McCray. 1991. A shared κ reciprocal fragment and a high frequency of secondary $J_{K} 5$ rearrangements among influenza hemagglutinin specific B cell hybridomas. J. Immunol. 146:343.
56. Pennell, C.A., E. Maynard, L.W. Arnold, G. Haughton, and S.H. Clarke. 1990. High frequency expression of $S 107 \mathrm{~V}_{\mathrm{H}}$ genes by peritoneal B cells of $\mathrm{B} 10 \mathrm{H}-2^{2} \mathrm{H}-4^{\mathrm{b}} \mathrm{P} /$ WTS mice. J. Immunol. 145:1592.
57. Novick, K.E., T.M. Fasy, M.J. Losman, and M. Monestier. 1992. Polyreactive IgM antibodies generated from autoimmune mice and selected for histone binding activity. Int. Immunol. 4:1103.
58. Claflin, J.L., J. Berry, D. Flaherty, and W. Dunnick. 1987. Somatic evaluation of diversity among anti-phosphocholine antibodies induced with Proteus morganii. J. Immunol. 138:3060.
59. Kofler, R., R. Strohal, R.S. Balderas, M.E. Johnson, D.J. Noonan, M.A. Duchosal, F.J. Dixon, and A.N. Theofilo-
poulus. 1988. Immunoglobulin κ light chain variable region gene complex organization and immunoglobulin genes encoding anti-DNA autoantibodies in lupus mice. J. Clin. Invest. 82:852.
60. Xu, D., and K.Y. Tsang. 1990. Nucleotide of a new Balb/c mouse kappa light chain variable region gene. Nucleic Acids Res. 18:1912.
61. Heinrich, G., A. Traunecker, and S. Tonegawa. 1984. Somatic mutation creates diversity in the major group of mouse immunoglobulin kappa light chains. J. Exp. Med. 159:417.
62. Conger, J.D., H.J. Sage, and R.B. Corley. 1992. Correlation of antibody multireactivity with variable region primary structure among murine anti-erythrocyte autoantibodies. Eur. J. Immunol. 22:783.
63. Wysocki, L.J., T. Gridley, S. Huang, A.G. Grandea III, and M.L. Gefter. 1987. Single germine V_{H} and V_{κ} genes encode predominating antibody variable regions elicited in strain a mice by immunization with p-azophelyarsonate. J. Exp. Med. 166:1.
64. Sanz, I., and J.D. Capra. 1987. V V_{κ} and J_{κ} gene segments of A/J Ars-A antibodies: somatic recombination generates the essential arginine at the junction of the variable and joining regions. Proc. Natl. Acad. Sci. USA. 84:1085.
65. Seidman, J.G., E.E. Max, and P. Leder. 1979. A kappaimmunoglobulin gene is formed by site specific recombination and without further somatic mutation. Nature (Lond.). 280:370.
66. Kasturi, K.N., R. Mayer, C.A. Bona, V.E. Scott, and C.L. Sidman. 1990. Germline V genes encode viable motheaten mouse autoantibodies against thymocytes and red blood cells. J. Imтииоl. 145:2304.
67. Kavaler, J., A.J. Caton, L.M. Staudt, D. Schwartz, and W. Gerhard. 1990. A set of closely related antibodies dominates the primary antibody response to the antigenic site CB of the $\mathrm{A} / \mathrm{PR} / 8 / 34$ influenza virus hemagglutinin. J. Immunol. 145: 2312.
68. Kim, S.O., I. Sanz, C. Williams, J.D. Capra, and P. Gottlieb. 1991. Polymorphism in V kappa 10 genes encoding L chains of antibodies bearing the Ars-A and A48 cross-reactive idiotypes. Immunogenetics. 34:231.
69. Kabat, E.A., T.T. Wu, M. Reid-Miller, H.M. Perry, and K.S. Gottesman. 1987. Sequences of proteins of immunological interest. U.S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD. vii-804.

[^0]: ${ }^{1}$ Abbreviation used in this paper: TdT , deoxynucleotide transferase.

[^1]: - Percent homology through the coding regions of the variable gene.
 \# Germline gene designation or hybridoma or cell line from which the gene was cloned and/or sequenced.
 S Anti-2-phenyloxazolone-related germline gene.
 || Antiarsonate-related germline gene.

