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The spontaneous emergence of coherent behavior through synchronization plays a key role in neural
function, and its anomalies often lie at the basis of pathologies. Here we employ a parsimonious
(mesoscopic) approach to study analytically and computationally the synchronization (Kuramoto)
dynamics on the actual human-brain connectome network. We elucidate the existence of a so-far-uncovered
intermediate phase, placed between the standard synchronous and asynchronous phases, i.e. between order
and disorder. This novel phase stems from the hierarchical modular organization of the connectome. Where
one would expect a hierarchical synchronization process, we show that the interplay between structural
bottlenecks and quenched intrinsic frequency heterogeneities at many different scales, gives rise to
frustrated synchronization, metastability, and chimera-like states, resulting in a very rich and complex
phenomenology. We uncover the origin of the dynamic freezing behind these features by using spectral
graph theory and discuss how the emerging complex synchronization patterns relate to the need for the
brain to access –in a robust though flexible way– a large variety of functional attractors and dynamical
repertoires without ad hoc fine-tuning to a critical point.

N
euro-imaging techniques have allowed the reconstruction of structural human brain networks, com-
posed of hundreds of neural regions and thousands of white-matter fiber interconnections. The
resulting ‘‘human connectome’’ (HC)1,2 turns out to be organized in moduli –characterized by a

much larger intra than inter connectivity– structured in a hierarchical nested fashion across many scales3–10.
On the other hand, ‘‘functional’’ connections between nodes in these networks have been empirically inferred
from correlations in neural activity as detected in electroencephalogram and functional magnetic resonance
time series. Unveiling how structural and functional networks influence and constrain each other is a task of
outmost importance. A few pioneering works found that the hierarchical-modular organization of structural
brain networks has profound implications for neural dynamics8,11–14. For example, neural activity propagates
in hierarchical networks in a rather distinctive way, not observed on simpler networks15; beside the usual two
phases –percolating and non-percolating– commonly encountered in models of activity propagation, an
intermediate ‘‘Griffiths phase’’16 emerges on the hierarchical HC network15,17,18. Such a Griffiths phase stems
from the existence of highly diverse relatively-isolated moduli or ‘‘rare regions’’ where neural activity remains
mostly localized generating slow dynamics and very large responses to perturbations15–18.

Brain function requires coordinated or coherent neural activity at a wide range of scales, thus, neural synchron-
ization is a major theme in neuroscience7,19,20. Synchronization plays a key role in vision21, memory22, neural
communication23, and other cognitive functions24. An excess of synchrony results in pathologies such as epilepsy or
Parkinsonian disease, while neurological deficit of synchronization has been related to autism and schizophrenia25.

Our aim here is to scrutinize the special features of synchronization dynamics26 –as exemplified by the
canonical Kuramoto model27–29– running on top of the best available human connectome mapping1,2,30. This
consists of a network of 998 nodes, each of them representing a mesoscopic population of neurons –able to
produce self-sustained oscillations31– whose mutual connections are encoded by a symmetric weighted connec-
tivity matrix W1,2. The validity of this admittedly simplistic Kuramoto model as a convenient tool to explore the
generic features of complex brain dynamics at a large scales has been recently emphasized in the literature31–33.
Here, we uncover the existence of a novel intermediate phase for synchronization dynamics –similar in spirit to
the Griffiths phases discussed above– which stems from the hierarchical modular organization of the HC and
which gives rise to very complex and rich synchronization dynamical patterns. We identify this novel phase as the
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optimal regime for the brain to harbor complex behavior, large
dynamical repertoires, and optimal trade-offs between local segrega-
tion and global integration.

The Kuramoto dynamics on a generic network (see30 for a nice and
comprehensive review) is defined by:

_hi tð Þ~vizk
XN

j~1

Wij sin hj tð Þ{hi tð Þ
� �

, ð1Þ

where hi(t) is the phase at node i at time t. The intrinsic frequencies vi

– accounting for node heterogeneity– are extracted from some arbit-
rary distribution function g(v), Wij are the elements of the N 3 N
connectivity matrix W, and k is the coupling strength. Time delays,
noise, and phase frustration could also be straightforwardly imple-
mented. The Kuramoto order parameter is defined as Z tð Þ~
R tð Þeiy tð Þ~ eihi tð Þ� �

, where 0 # R(t) # 1 gauges the overall coherence
and y(t) is the average global phase. In large populations of well-
connected oscillators without frequency dispersion, perfect coher-
ence (R 5 1) emerges for any coupling strength; on the other hand,
frequency heterogeneity leads to a phase transition at some critical
value of k, separating a coherent steady state from an incoherent
one27–30. Analytical insight onto this phase transition can be obtained
using the celebrated Ott-Antonsen (OA) ansatz, allowing for a pro-
jection of the high-dimensional dynamics into an evolution equation
for Z(t) with remarkable accuracy in the large-N limit34,35.

Results
Novel phase between order and disorder in the HC. We have
performed a computational study of the Kuramoto model running
on top of the HC network (details are given in the Methods section).
Our results reveal the existence of an intermediate regime placed
between the coherent and the incoherent phase (see Fig. 1). This is
characterized by broad quasi-periodic temporal oscillations of R(t)

which wildly depend upon the realization of intrinsic frequencies36,37.
Anomalously large sampling times would be required to extract good
statistics for the actual mean values and variances. Collective oscil-
lations of R(t) are a straightforward manifestation of partial syn-
chronization and they are robust against changes in the frequency
distribution (e.g. Gaussian, Lorentzian, uniform, etc.) whereas the
location and width of the intermediate phase depend upon details. As
this phenomenology is reminiscent of Griffiths phases –posed in
between order and disorder and stemmig from the existence of
semi-isolated regions15–17– it is natural to investigate how the HC
hierarchical modular structure affects synchronization dynamics.

Any network with perfectly isolated and independently synchro-
nized moduli trivially exhibits oscillations of R(t), with amplitude
peaking at times when maximal mutual synchronization happens to
be incidentally achieved. Such oscillations can become chaotic if a
finite and relatively small number of different coherent moduli are
coupled together38. Thus, in a connected network without delays or
other additional ingredients, oscillations in the global coherence are
the trademark of strong modular structure with weakly intercon-
nected moduli.

Strong modular organization into distinct hierarchical levels is
indeed present in the HC as reveled by standard community detec-
tion algorithms9,39 and as already discussed in the literature (see e.g.15

and references therein). For instance, we have found that the optimal
partition into disjoint communities –i.e. the partition maximizing
the modularity parameter40– corresponds to a division in 12 com-
munities (see Fig. 1d) while, at a higher hierarchical level, a separa-
tion into just 2 moduli –the 2 cerebral hemispheres– is obtained2

(Fig. 1d). Obviously these 2 coarser moduli include the 12 above as
sub-moduli. Although more levels of hierarchical partitioning could
be inferred (see e.g.10 and refs. therein), for the sake of simplicity we
focus on these two levels l, l 5 1 and l 5 2 with 12 and 2 moduli,
respectively.

Figure 1 | Global synchronization dynamics in the human connectome. (a) Time average of the order parameter R(t), for Kuramoto dynamics on the

HC network for a specific and fixed set of frequencies extracted from a N(0, 1) Gaussian distribution. A broad intermediate regime separates the

incoherent phase (low k) from the synchronous one (high k). In this regime, coherence increases with k in an intermittent fashion, and with strong

dependence on the frequency realization. (b) Raster plot of individual phases (vertical axis) showing local rather than global synchrony and illustrating the

coexistence of coherent and incoherent nodes (k 5 2.7) as time runs. (c) R(t) for 4 values of k (arrows in the main plot). (d) Adjacency matrix of the HC

network with nodes ordered to emphasize its modular structure as highlighted by a community detection algorithm (main text), keeping the partition

into the 2 hemispheres (dashed lines). Intra-modular connections (shown in color) are dense while inter-modular ones (grey) are limited to tiny subsets,

acting as interfaces between moduli. Integration between hemispheres is mostly carried out by the 3 central moduli. This plot visually illustrates the

hierarchical modular organization of the human connectome network.
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A simplistic model for global oscillations. To shed further light on
the properties of synchronization on the HC, we consider a very
simple network model –allowing for analytical understanding–
which will constitute the elementary ‘‘building-block’’ for subse-
quent more complex analyses. This consists of a few blocks with
very large internal connectivity and very sparse inter-connectivity.
Each block is composed by a bulk of M?1 nodes that share no
connection with the outside and a relatively small ‘‘interfacial’’ set
that connects with nodes in other blocks. For instance, in the simplest
realization, consisting of just two blocks connected by a single pair of
nodes (Fig. 2), each block is endowed with local coherence rA,B,
average phase yA,B, and average characteristic frequency vA,B,
while 1-node interfaces have perfect coherence r 5 1, phase QA,B,
and characteristic frequency nA,B. In this case, N 5 2M 1 2, and the
OA ansatz can be safely applied to each block (large M) but not to
single-node interfaces. In the particular case (convenient for
analytical treatment) in which g(w) are zero-mean Lorentz distri-

butions g vð Þ~ 1
p

d

v{V0ð Þ2zd2 with spreads dA,B, the resulting set

of OA equations can be easily shown to be:

_yA~vAzk
1zr2

A

2rA
sin QA{yAð Þ

_rA~{dArAzk
1{r2

A

2
MrAzcos QA{yAð Þ½ �

_QA~nAzk MrA sin yA{QAð Þzsin QB{QAð Þ½ �

ð2Þ

(together with r 5 1 for each 1-node interface), and a symmetric set
(A « B) for block B. The solution of Eq.(2) –displayed in Fig. 2–
reveals a transition to local coherence within each block at a certain
threshold value of k < 0.02. As soon as local order is attained, rA,B < 1
and _yA,B<0, from Eq.(2) the mutual synchronization process obeys

_QA< nAzMvAð Þzksin QB{QAð Þ ð3Þ

and a symmetrical equation for _QB. For small k, the right-hand side is
dominated by nA 1 MvA: whereas the average value vA becomes ar-
bitrarily small within blocks (assuming that M is large), the frequency
nA does not. Consequently, synchronization between the two blocks
through the interfacial link is frustrated: each block remains inter-

nally synchronized but is unable to achieve coherence with the other
over a broad interval of coupling strengths. This interval is delimited
above by a second transition at k , max{MjvA,Bj, nA,B}, where k is
large enough as to overcome frustration and generate global
coherence. This picture is confirmed by numerical integration of
the full system of N coupled Kuramoto equations as well as by its
OA approximation (Eq.(2)), both in remarkably good agreement.
Therefore, local and global coherences have their onsets at two
well-separated transition points35 and –similarly to the much more
complex HC case– R oscillates in the intermediate regime (Fig. 2).
Similar results hold for versions of the model with more than two
moduli (e.g. 4; see below). The existence of two distinct (local and
global) transitions had already been reported in a recent study of
many blocks with much stronger inter-moduli connections than
here35 (even if, owing to this difference, no sign of an intermediate
oscillatory phase was reported). In particular, the value of two-block
models has already been explored in the past, for systems of identical
oscillators with non-zero phase lags, in which each node is coupled
equally to all the others in its community, and less strongly to those in
the other41. In such systems, local coherence emerged for large
enough values of the phase lag. Our two-block model shows that
the presence of ‘‘structural bottlenecks’’ between moduli combined
with heterogeneous frequencies at their contact nodes (interfaces)
are essential ingredients to generate a broad region of global oscilla-
tions in R, even in the absence of phase lag. Still, it is obviously a too-
simplistic model to account for all the rich phenomenology emerging
on the HC, as we show now.

Oscillations of local coherence in the HC. Fig. 3 shows numerical
results for the local order parameter r(l) for some of the moduli at the
2 hierarchical levels, l 5 1 and l 5 2 in the HC network. It reveals that
(Fig. 3a) local coherences exhibit oscillatory patterns in time (with
characteristic frequencies typically between 0.01 and 0.1 Hz) and
that (Fig. 3b) the transition to local coherence at progressively
higher hierarchical level occurs at progressively larger values of k;
i.e. coherence emerges out of a hierarchical bottom-up process as
illustrated above for the for the two-block model (see35,42). Observe,
however, that local oscillations were not present in the two-block
model. This suggests that the 12 moduli in the HC are on their turn
composed of finer sub-moduli and that structural frustration, as

Figure 2 | Two-block model. (a) Sketch of the two-block model. (b) Global order parameter for the two-block model with M 5 128 and two interfacial

nodes. Results of the numerical integration of the 258 Kuramoto equations (blue points) are in strikingly good agreement with the integration of

Eqs.(2) (solid blue line). Local block-wise order parameters are shown for comparison (small symbols; dashed lines are guides to the eye). A first

transition, where local order emerges, occurs at k < 0.02, while global coherence is reached at k < 90. In the intermediate region, R(t) oscillates (inset),

revealing the lack of global coherence. Despite the simplicity of this toy model, these results constitute the essential building-block upon which further

levels of complexity rely (see main text).
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introduced above, affects all hierarchical levels. The average variance
of local coherences (called chimera index, x)44 exhibits a marked peak
–reflecting maximal configurational variability– at the transition
point for the corresponding level (Fig. 3b–c and Methods section).
Similar intra-modular oscillatory patterns –dubbed chimera states–
have been recently found41,43–45 in Kuramoto models in which explicit
phase lags induce a different kind of frustration, hindering global
synchronization. Strictly speaking, chimeras are defined in systems
of identical oscillators. In such a case, a non-zero phase lag term is
essential for partial synchronization to occur. Realistic models of the
brain, however, require oscillators to be heterogenous. States of
partial synchronization in empirical brain networks with frequency
heterogeneity have been found for Kuramoto models with explicit
time delays31. In contrast, the chimera-like states put forward here
have a purely structural origin, as they arise from the network
topology. It was noted in the past that synchronization in a
synthetic network with hubs could be limited to those hubs by
tuning clustering properties, and global order could be attained in
a monotonous step-like fashion upon increasing k46. Fig. 3b instead
reveals that the ordering process in the hierarchical modular HC may
be non-monotonous: coherence does not systematically grow with k.
Indeed, the emergence of local order in some community may hinder
or reduce coherence in others, inducing local ‘‘desynchronization’’
and reflecting the metastable nature of the explored states.

Anomalous dynamics on the HC. Fixing all intrinsic frequencies to
be identical allows us to focus specifically on structural effects. Thus,
we consider, without loss of generality, the simple case vi 5 0, and
define the ‘‘activity’’ r 5 1 2 ÆRæ. In this case, perfect asymptotic
coherence should emerge for all values of k but, as illustrated in
Fig. 3d, the convergence towards r 5 0 turns out to be extremely
slow (much slower than exponential). This effect can be analytically
investigated assuming that, for large enough times, all phase diffe-

rences are relatively small. Then, up to first order, _hi~{k
X

j
Lijhj

where Lij 5 dijSlWjl 2 Wij are the elements of the Laplacian
matrix47,48. Solving the linear problem, hi tð Þ~

X
l,j

e{kll tvl
iv

l
jhj 0ð Þ,

where ll denotes the l-th Laplacian eigenvalue (0 5 l1 , l2 , … ,

lN) and vl
i the i-th component of the corresponding eigenvector.

Given that the averaged order parameter can be written as

Z tð Þ<
X

j
1zihj{

1
2

h2
j

� ��
N , averaging over initial conditions,

and considering that (as the Laplacian has zero row-sums48) l1 5

0, we obtain

r tð Þ~ s2

2

XN

l~2

e{2kll t , ð4Þ

where s is the standard deviation of the initial phases. This
expression holds for any connected network. As usual, the larger
the spectral gap l2, the more ‘‘entangled’’48 the network and thus
the more difficult to divide it into well separated moduli (l2 5 0
only for disconnected networks)47,48. For large spectral gaps all
timescales are fast, and the last expression can be approximated by
its leading contribution, ensuing exponential relaxation to r 5 0, as
in fact observed in well-connected network architectures (Erdős-
Rényi, scale free, etc.40). This is not the case for the HC matrix, for
which a tail of small non-degenerate eigenvalues is encountered (see
Fig. 3e and15). Each eigenvalue li in the tail corresponds to a natural
division of moduli into submoduli48, and the broad tail reflects the
heterogeneity in the resulting modular sizes. As a consequence, each
of these eigenvalues –with its associated large timescale, ti 5 1/li–
contributes to the sum above, giving rise to a convolution of
relaxation processes, entailing anomalously-slow dynamics, which
could not be explained by a single-level modular network (see
Fig. 3d–e): slow dynamics necessarily stems from the existence of a

Figure 3 | Local synchronization in the human connectome. (a) Oscillations of the local order parameters (‘‘chimera-like states’’) in one particular

modulus in the partitions of the HC into 12 (green, l 5 1, and k 5 3) and 2 (magenta, l 5 2, and k 5 10) moduli, respectively. The characteristic frequency

of these oscillations is typically between 0.01 and 0.1 Hz (a range which coincides with slow modes detected in brain activity; see e.g.32). (b) Average of the

local order parameter over all moduli and (c) chimera index for moduli at levels as in a), as a function of k. Global order (thin black line in b)) emerges only

after local order is attained at lower levels. (d) Average decay of activity r for identical frequencies v 5 0 in the HC network and comparison with a single-

level modular network (made up of 4 similar random moduli at a single hierarchical level) of the same size and average connectivity as the HC network.

Symbols stand for different values of k. (e) Characteristic decay times corresponding to the inverse of the first 1000 non-trivial eigenvalues of the Laplacian

matrix (x axis) as a function of their respective ordered indices (y axis), for networks as in (d). The stretched exponential behavior in (d) is the result of the

convolution of slow time scales associated with small eigenvalues in (e).
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hierarchy of moduli and structural bottlenecks. As explained in
Methods, in the case of the HC the convolution of different times
scales gives rise to stretched-exponential decay, which perfectly fits
with numerical results in Fig. 3. It was noted in the past that strongly
modular networks exhibit isolated eigenvalues in the lower edge of
the laplacian spectrum. Synchronization would develop in a step-
wise process in time, where each transient would be given by each
isolated eigenvalue42. In our case, the depth of the hierarchical
organization and the strength of topological disorder produce
instead a quasi-continuous tail of eigenvalues, and the step-wise
process is replaced by an anomalous stretched-exponential behavior.

A more refined model: hierarchical modular synthetic networks.
To shed additional light on the previous findings for the HC –i.e. the
emergence of chimera-like states and anomalously slow dynamics–
we suggest to go beyond the single-level modular network model and
study hierarchical modular networks (HMN) in which moduli exists
within moduli in a nested way at various scales3–6,8,9. HMN are
assembled in a bottom-up fashion: local fully-connected moduli
(e.g. of 16 nodes) are used as building blocks. They are recursively
grouped by establishing additional inter-moduli links in a level-
dependent way as sketched in Fig. 4(top)15,49.

Our computational analyses of the Kuramoto dynamics on HMN
substrates (see Fig. 4) reveal: (i) a sequence of synchronization tran-
sitions for progressively higher hierarchical levels at increasing
values of k, (ii) chimera-like states at every hierarchical level, result-
ing in a hierarchy of metastable states with maximal variability at the
corresponding transition points, (iii) extremely slow relaxation
toward the coherent state when all internal frequencies are identical.
Furthermore, anomalies in the Laplacian spectrum analogous to
those of the HC network are observed for HMN matrices; in particu-
lar, the lower edge of the HMN Laplacian spectrum has been recently

shown to exhibit a continuous exponential Lifshitz tail p lð Þ*e{1=la

for N R ‘, with a < 115. Taking the continuum limit of Eq.(4), we

find r tð Þ< s2

2

ð
dlp lð Þe{2klt , which can be evaluated with the

saddle-point method (see Methods), leading to

r tð Þ*e{
ffiffiffiffiffi
8kt
p

, ð5Þ

i.e. anomalous stretched-exponential asymptotic behavior, in excel-
lent agreement with computational results (see Fig. 4d). Therefore,
hierarchical modular networks constitute a parsimonious and
adequate model for reproducing all the complex synchronization
phenomenology of the HC.

A crucial role in the emergence of such behavior is played by
disorder. One would be tempted to believe that all networks char-
acterized by a finite spectral dimension could potentially give rise to
this phenomenology. This is obviously not the case for a regular
lattice, where the spectral gap is always well defined. A fractal lattice
or an ordered tree, on the other hand, could exhibit a hierarchy of
discrete low eigenvalues, whose multiplicities reflect system symmet-
ries. The introduction of disorder, as in HMNs, is then necessary in
order to transform such hierarchy of discrete levels into a continuous
Lifshitz tail, leading eventually to the behavior predicted by Eq. (5).

Discussion
Simple models of synchronization dynamics exhibit an unexpectedly
rich phenomenology when operating on top of empirical human
brain networks. This complexity includes oscillatory behavior of
the order parameter suggesting the existence of relatively isolated
structural communities or moduli, that –as a matter of fact– can
be identified by using standard community detection algorithms.
Even more remarkably, oscillations in the level of internal coherence

Figure 4 | Synchronization in hierarchical modular networks. Top panel: sketch of the HMN model. At hierarchical level 1, 2s basal fully connected

blocks of size M are linked pairwise into super-blocks by establishing a fixed number a of random unweighted links between the elements of each (a 5 2 in

the Fig.). Newly formed blocks are then linked iteratively with the same a up to level s, until the network becomes connected. (a), (b), (c) as in Fig. 3, but

for a HMN with N 5 512, s 5 5, and a 5 4. Hierarchical levels are i 5 1 R 5 in black, blue, green, magenta and red respectively (not all shown in a) for

clarity). (d) Time relaxation of activity r for homogeneous characteristic frequencies v 5 0, for logarithmically equally spaced values of k. Averages over

106 realizations of HMNs with N 5 4096 and s 5 11. Inset: as in the main plot (d), but representing as a function of t1/2 and confirming the predicted

stretched exponential behavior. (e) Inverse tail-eigenvalues (as in Fig. 3) for a HMN as in e).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5990 | DOI: 10.1038/srep05990 5



are also present within these moduli, suggesting the existence of a
whole hierarchy of nested levels of organization, as also found in the
recent literature relying on a variety of approaches3–10. Aimed at
unveiling this complex behavior we have introduced a family of
hierarchical modular networks and studied them in order to assess
what structural properties are required in order to reproduce the
complex synchronization patterns observed in brain networks.

In the absence of frequency dispersion, perfect coherence is
achieved in synthetic hierarchical networks by following a bottom-
up ordering dynamics in which progressively larger communities –
with inherently different timescales– become coherent (see42).
However, this hierarchically nested synchronization process is con-
strained and altered by structural bottlenecks –as carefully described
here for the simpler two-block toy model– at all hierarchical levels.
This structural complexity brings about anomalously-slow dynamics
at very large timescales. Observe that the HC, in spite of being a
coarse-grained mapping of a brain network, already shows strong
signals of this ideal hierarchical architecture as reflected in its anom-
alously slow synchronization dynamics as well as in the presence of
non-degenerate eigenvalues in the lower edge of its Laplacian spec-
trum, acting as a fingerprint of structural heterogeneity and com-
plexity. We stress that such a complex phenomenology would be
impossible to obtain in networks with stronger connectivity patterns
(e.g. with the small world property) such as scale free-networks or
high-degree random graphs. Even the generic presence of simple
communities may not be sufficient to grant the emergence of frus-
tration: the uniqueness of the human connectome, and of hierarch-
ical modular networks in general, resides in the strong separation
into distinct levels, which the synchronization dynamics is able to
resolve only at well-separated values of the coupling k.

On the other hand, in the presence of intrinsic frequency hetero-
geneity, the described slow ordering process is further frustrated.
Actually, for small values of the coupling constant k the system
remains trapped into metastable and chimera-like states with traits
of local coherence at different hierarchical levels. In this case, inter-
moduli frequency barriers need to be overcome before weakly con-
nected moduli achieve mutual coherence. This is clearly exemplified
by the separation between distinct peaks in the chimera index x(l) in
Figs. 3–4, each one signaling the onset of an independent synchron-
ization process at a given level (see Methods). The result is a complex
synchronization landscape, which is especially rich and diverse in the
intermediate regime put forward here.

Including other realistic ingredients such as explicit phase frustra-
tion44 or time delays31,45 to our simplistic approach should only add
complexity to the structural frustration effect reported here. It is also
expected that more refined models –including neuro-realistic ingre-
dients leading to collective oscillations– would generate similar
results, but this remains to be explored in future works.

Addition of noise to the Kuramoto dynamics would allow the
system to escape from metastable states. Stochasticity can overcome
the ‘‘potential barriers’’ between mutually incoherent moduli as well
as re-introduce de-synchronization effects. These combined effects
can make the system able to explore the nested hierarchy of
attractors, allowing one to shed some light into the complex syn-
chronization patterns in real brain networks. Actually, spontaneous
dynamical fluctuations have been measured in the resting state of
human brains50; these are correlated across diverse segregated mod-
uli and characterized by very slow fluctuations, of typical frequency
,0.1 Hz, in close agreement with those found here (Fig. 3).
Accordingly, it has been suggested that the brain is routinely explor-
ing different states or attractors51 and that –in order to enhance
spontaneous switching between attractors– brain networks should
operate close to a critical point, allowing for large intrinsic fluctua-
tions which on their turn entail attractor ‘‘surfing’’ and give access to
highly varied functional configurations51–55 and, in particular, to
maximal variability of phase synchrony56.

The existence of multiple attractors and noise-induced surfing is
largely facilitated in the broad intermediate regime first elucidated
here, implying that a precise fine tuning to a critical point might not
be required to guarantee functional avantages usually associated with
criticality52,57,58: the role usually played by a critical point is assumed
by a broad intermediate region in hierarchically architectured com-
plex systems15. Finally, let us remark that our results might also be of
relevance for other hierarchically organized systems such as gene
regulatory networks59 for which coherent activations play a pivotal
role60.

Methods
Numerical simulation of the Kuramoto model. The Kuramoto model is simulated
by numerically integrating Eq. (1). Computations are carried out using both a 4th
order Runge-Kutta method of fixed step size h 5 1023 and an 8th order Dormand-
Prince method with adaptive step size. Both methods lead to compatible results
within precision limits. The robustness of the observation of a novel intermediate
phase –between incoherent and coherent ones– is assessed by choosing different
functional forms for the frequency distribution g(v) (Lorentzian, Gaussian, uniform),
and by implementing variations of Eq. 1 in which the matrix W is weight-
normalized30 for simulations of the HC and degree-normalized for simulations in
HMNs. No qualitative change in the phenomenology is observed.

Chimera index x(l) and hierarchical synchronization. In the main text, the chimera
index x(l) is introduced as a measure of partial synchronization at the community level
l. At any hierarchical level l, a hierarchical network can be divided into a set of
communities. Following44, x(l) is defined as follows: (i) in the steady (oscillatory) state,

and for each time t, local order parameters r lð Þ
i tð Þ for each community i are calculated

and their variance across communities s
lð Þ

chi tð Þ is stored; (ii) the chimera index is

computed as the time average x lð Þ~ s
lð Þ

chi tð Þ
D E

t
. Having x(l) . 0 at a given hierarchical

level l implies that local order is only partial as r lð Þ
i fluctuates, giving rise to a chimera-

like state. On the other hand, x(l) 5 0 means that each local order parameter at that

level is r lð Þ
i <1, and local order has been attained. Figs. 3b–c and 4b–c show that at each

l (each color) a peak in the corresponding x(l) marks the onset of the local
synchronization processes: as soon as the peak vanishes upon increasing k, local order
at that level is attained. The sequence of separated peaks in x(l) for increasing values of l
is the direct evidence of a hierarchical synchronization process.

Lifshitz tail and stretched-exponential asymptotic behavior. In sparse HMNs, the
lower end of the Laplacian spectrum is characterized by an exponential tail in the
density of states p lð Þ*e{1=la

, known as Lifshitz tail15. In graphs, Lifshitz tails signal
the existence of non-trivial heterogeneous localized states governing the asymptotic
synchronization dynamics at very large times t. In the main text we have shown that in
the absence of frequency heterogeneity, the t R ‘ behavior of the activity is given by

r tð Þ< s2

2

ð
dlp lð Þe{2klt . This expression can be evaluated by applying the saddle

point method, yielding

r tð Þ< s2

2
exp { 1zað Þa{ a

1za 2ktð Þ
a

1za

h i
: ð6Þ

Substituting a < 1, as empirically found in HMNs15, leads to Eq. (5), whose square
root behavior is confirmed by simulations in Fig. 4d.
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