416 Current Genomics, 2009, 10, 416-429

Inference of Gene Regulatory Networks Using Time-Series Data: A Survey
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Abstract: The advent of high-throughput technology like microarrays has provided the platform for studying how
different cellular components work together, thus created an enormous interest in mathematically modeling biological
network, particularly gene regulatory network (GRN). Of particular interest is the modeling and inference on time-series
data, which capture a more thorough picture of the system than non-temporal data do. We have given an extensive review
of methodologies that have been used on time-series data. In realizing that validation is an impartible part of the inference
paradigm, we have also presented a discussion on the principles and challenges in performance evaluation of different
methods. This survey gives a panoramic view on these topics, with anticipation that the readers will be inspired to
improve and/or expand GRN inference and validation tool repository.
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1. INTRODUCTION

Biological system has been traditionally studied via
reductionism approach, that is, explaining cell behaviors by
studying functions of individual cellular components.
Though the knowledge being insightful, it has been
increasingly apparent that the understanding of the complex
cellular system requires understanding of how different
components work together. The advent of high-throughput
technology like microarrays, where cellular activities can be
measured at genome-wide scale, has provided just this
platform and thus created an enormous interest in
mathematically modeling biological network, particularly
gene regulatory network (GRN). The goal is to mimic the
biological network in some abstract level, and a better
understanding of the underlying biological system could be
achieved through the analysis on the resulted mathematical
model. To do so, it is critical to have a reliable modeling and
inference procedure.

Amid the explosion of efforts in inferring biological
network models that has been witnessed by the last decade,
there have been accordingly a number of reviews on these
different methodologies. Some of these reviews are focused
on one specific type of modeling, for example, on Bayesian
Network and Dynamic Bayesian Network (graphical model)
[1, 2], or topologies (random v.s. scale-free v.s. hierarchical)
[3]. Others describe models in different categories: Cho et al.
reviewed methods that incorporate prior knowledge as well
as machine learning approaches (e.g., Genetic Algorithm or
Neural Net) [4], in addition to the general methods we
reviewed in this paper; Schlitt ez al. ordered the modeling
methods according to their complexity [5], from simple ones
that are just an aggregation of different functional
components, to those that are trying to model the dynamics
and have a myriad of parameters to tune. van Someren ef al.
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took a unique approach, listing the models in a chronological
order along with pointing out the key differences between
them [6]. Lastly there is a good review by de Jong [7] which
provided a concise mathematical background and
formulation for many widely used models.

A lot of those early efforts have been focused on non-
temporal data, largely due to the paucity of time-series data.
As the biological system is inherently complex and GRN is
essentially an ensemble of genes which evolve over time,
time-series data will clearly capture a more thorough picture
of the system than non-temporal data do, which only take
snapshots of the system at one given time point. Table 1 lists
some of the time-series data sets that have been used. (Bar-
Joseph has a general review of gene expression time-series
data [26]). It is therefore our interest to present a survey of
study on models and inference methodologies for time-series
data, its promises and unique challenges. In addition to our
focus of time-series data inference, there are two other
distinctive aspects of our review work that are different from
others: (1) we will take a practitioner's view, reviewing
different implementations within one modeling framework
as well as different modeling frameworks; (2) we have a
special interest in performance evaluation: the validation of
the methodologies and comparison studies where it is
possible. It is our hope that at the end of paper, readers will
have a rather complete knowledge of the methods in the
literature, and be inspired to improve and/or expand this tool
repository.

This paper is organized as follows: modeling and
inference methods focusing on inferring the structure of the
network will be reviewed in Section 2, which include the
Relevance Network, Bayesian Network and Dynamic
Bayesian Network (DBN). This is followed by Section 3 in
which methods inferring both structure and dynamics will be
reviewed. Among them, Boolean Network and Probabilistic
Boolean Network (PBN) have their states in discrete space
and Markov Model (MM), State Space Model (SSM), and
Ordinary Differential Equation (ODE) typically have their
states in continuous space. The prominent characteristics of

©2009 Bentham Science Publishers Ltd.
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Table1. Time Series Data Sets Used to Infer GRNs
Organism Brief Description Ref. Time Points Year of Publication
B. subtilis Expression in MMGE environment [8] 8 1995
Yeast Diauxie shift; response to medium growth conditions [9] 7 1997
Yeast Cell cycle synchronization [10] 18,24,14* 1998
Yeast Cell cycle synchronization [11] 17 1998
Yeast Yeast Sporulation [12] 7 1998
House Mouse Development of the central nervous system of rats [13] 8 1998
Human Human Fibroblasts [14] 13 1999
Yeast Yeast meiotic expression [15] 9 2000
E. coli Tryptophan rich, starving [16] 8 2000
Drosophila Life cycle [17] 74 2002
Human T-cell activation [18] 10 2004
Synechocystis Light intensity experiment [19] 47,27* 2004
Rat Circadian rhythmicity of gene expression [20] 12 2005
B. subtilis During feed-batch protease production process [21] 20 2005
E. coli Perturbation of the SOS system [22] 6 2006
Human Endothelial cell apoptosis in blood vessel [23] 7 2007
Mouse IL-2-stimulated immune response [24] 12 2007
Human Migration of skin keratinocyte [25] 7 2008

*multiple data sets.

these models are shown in Fig. (1). After a discussion on
performance evaluation of the models in Section 4, we
conclude the paper in Section 5.

We need to point out that the placement of DBN in
Section 2 is due to its close kinship with Bayesian Network
and we feel it is more natural to introduce them together. It
would have well fallen into Section 3 otherwise. In fact DBN
was shown to be related to a lot of models in Section 3:
Léhdesméki et al. showed that variables in both discrete-
valued DBN and PBN can have the same joint probability
distribution [27]; DBN can also be considered as a
generalization of Boolean Network [28], or SSM [29].

2. INFERRING STRUCTURE OF THE NETWORK

Given a set of genes as nodes for a network, the structure
is basically the assemble of all the interconnections among
the nodes. Depending on the models, these connections
usually take on different meanings, but generally specify the
relationships between one gene with another gene, or another
set of genes. Relevance Network, argued by some to be ad
hoc network, is the simplest model in this category.

2.1. Relevance Network

Relevance networks can be categorized as networks in
which relationship among genes can be defined using a
pairwise measure of relevance. Given a set of n genes

= v i i
G={g.2,8g,} and a set of observations D on genomic

profiling (e.g., gene expression) for m time points, a
relevance between g, and g, can be evaluated using

their  time-series  profiles,

[g1,1 &gir - gz,m] and
(g, &, - &,,]- Various relevance measures have been

used to infer relationships between two genes, from simple
correlation measures to biologically motivated relevance
measures.

One example of using a simple Pearson correlation
measure is the work of Remondini ef al., where they used
two sets of gene expression data from rat fibroblast cell lines
to construct correlation-based networks [30, 31]. Even
though such a correlation measure can be useful in many
cases, it cannot provide causal information. To overcome
this limitation, Gupta et al. used a slope metric (SR) to
elucidate not only the presence of a relationship between two
genes but also its directionality [32], which is used to
represent causality. In their study, the structure was
determined using a correlation measure with a preferred
threshold. The directionality of relevance was determined
using the following SR, based on the assumption that a gene
g, is linearly dependent on another gene g ie.,

g =a,thg,.
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Fig. (1). A summary of the models in the paper. Some abbreviations: BN - Boolean Network; PBN - Probabilistic Boolean Network; DBN -
Dynamic Bayesian Network; MM - Markov Model; SSM - State Space Model and ODE - Ordinary Differential Equation.

based on the biological assumption that a small change in the
source gene is associated with a large change in the target
gene. This method was applied to a time-series microarray

If SR=|b,|/|b, |, then the directionality is determined as data of B. subtilis [21] and showed some correspondence
’ ! with already known biological information.

B min(1b, 11D, 1)

= (1)
max(1b; 1,15 1)

g g, and if SR =| b,|/1b,1s then it becomes g, 8- )
Besides the approaches based on relevance measures for

This interpretation of the directed edge between two genes is the same time point, there are approaches to incorporate
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time-delay in measuring the relevance between genes.
Schmitt et al. used a time-lagged correlation to infer gene
regulatory networks [19]. For a transcription profile
represented by a series of 77 measurements taken at equally
spaced time points, the correlation between genes g and g,

with a time lag, 7 ,is R(7) = r(7), defined by

Si= 3, @ B)e o-7) @

(1) = D __ @)
T Jsi(n) Si (o)

where g denotes the expression of a gene g, at time ¢, g,
is the averaged expression value of a gene g, across all time
points, and S, is essentially the inner product between the

time-shifted profiles. This measure was used to analyze
whole genome DNA microarrays of Synechocystis under
various light intensity conditions [19]. Seed genes were
selected first based on the time-lagged correlation between
the expression profile and the light intensity profile across
the time points. These seed genes were expanded using the
time-lagged correlation between the average expression
profile of seeds and the expression profile of each gene.

Ma et al. and Barker et al. used a biologically motivated
approach to measure the dependency between two genes
using temporal information in time-series profiles [33-35].
After ternarizing the expression data into
highly/averagely/lowly expressed states (denoted by H/A/L
respectively), Ma et al. looked for dependencies between g,

b}

being ‘H’ at one time and g, also being ‘H’ at next time

point [33, 34]. Specifically, they computed a statistics on the
difference between the number of occurrences of g being

‘H’ at one time AND g, also being ‘H’ at next time point,

and the expected number of these occurrences. The latter
was computed by averaging the product of the number of g,

being ‘H’ at one time (regardless of g, 's state at next time
point) and number of g, being ‘H’ at next time point
(regardless of g 's state at previous time point). A 95 percent

confidence level was then used to determine whether the
dependency is deemed significant. Using this method, the
authors constructed a gene interaction diagram from a yeast
data set [10]. Similarly, Barker et al. proposed a method to
determine whether g, is regulated by g based on three

ratios of samples, the ratio of g, activating g,, the ratio of
g, repressing g, and the ratio of g, doing nothing on g,

[35]. With threshold values to those three ratios, the final
structure of a GRN is constructed. These methods investigate
the relationship between two time-series profiles with single
epoch-delay, thus assuming Markov condition regarding the
time-point, where an observation at some time point is
dependent on that of the previous time-point only.
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Kwon et al. proposed a method based on string alignment
to infer transcriptional regulation relationships from time-
series gene expression data, in which relevance with
arbitrary time-delay can be considered [36]. They converted
the time-course of each gene into a string composed of
rising(R), constant(C) or falling(F). The similarity between
two event strings is evaluated by string alignment algorithm
using scoring matrix that describes similarity score between
each pair of event characters. This method was applied to a
yeast cell-cycle data [10] and showed it could find some
already known transcriptional regulation relationships.

There were also efforts to enhance the quality of inferred
relevance network through post processing using additional
criteria. Bickel used decisive false discovery rate (dFDR) to
estimate the probability of spurious connections between
genes in GRNs [37]. After building a network using a time-
lagged correlation measure, three kinds of probabilities were
evaluated for each edge, i) the probability of being a false
positive connection, ii) the probability of being a connection
with wrong time order and iii) the probability of being a
connection with a time-delay while there is actually no time-
delay. This method was applied to yeast cell-cycle data [10]
and showed it could successfully find already known genetic
relationships.

2.2. Bayesian Network

A Bayesian network model is a graphical representation
of a joint probability distribution of random variables. A
Bayesian network B is defined as a tuple of (G,®), where
G is a graph structure that represents conditional
dependency relationships between random variables and ®
is a set of parameters describing conditional probability
distribution. In modeling GRNs, G corresponds to the
topology of a GRN, where each node represents a gene as a
random variable and each edge represents dependency
between genes. With Markov assumption on dependency
relationships, the joint probability distribution of genes
G ={g,.8,,---8,} 1s described as follows:

P(g,:85:---8,) =1L P(g; | Pa(g,),0) “)
where Pa(g,) is a set of parents of g in G and 6 is a

statistics from D. In this framework, a Bayesian network
represents a static joint probability distribution of a set of
random variables. For this reason, most of applications of
Bayesian networks do not incorporate the temporal
information in time-series data. Usual assumption in using
Bayesian networks for time-series data is that the time-series
is from the stationary state of the target biological system.
One may use the temporal information to determine the
direction of edges in Bayesian networks. However, it is
important to notice that the direction of an edge in Bayesian
networks does not necessarily represent causality between
random variables.

Learning a Bayesian network B = (G,®) from observed

data D implies learning the dependency structure G and
learning the set of probabilistic parameters @ . Learning ®
is a relatively easy problem once G and D are given, and
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learning G can be done by finding G" with maximum
P(G D). However, learning G given D is a hard problem
because the number of possible graph structures increase
exponentially as the size of a network increases. For this
reason, most of approaches using Bayesian networks focus
on small problems or take heuristics to handle large
problems. One popular heuristic approach is restricting the
G to a certain category.

One of the first applications of Bayesian networks for
genetic networks is the work by Friedman et al. with the
strategy of restricting G [38]. In this study, learning
Bayesian networks was applied to microarray gene
expression data for cell-cycle of S. cerevisiae [10]. By using
Bayesian network learning, the authors analyzed gene
expression data for Markov relation between genes and the
coverage of influence for each gene, where the coverage of
influence was measured by counting the number of
descendants in the graph structure for that gene. They used
sparse candidate algorithm, which restricts the candidate
parents of each node in G during the search. In their study,
800 genes related to cell-cycle were considered as random
variables. Their result was evaluated through literature
mining and statistical significance test. Even though they
used time-series expression data, temporal information was
not used in their study due to the previously mentioned
reason.

Considering the problem of learning Bayesian networks
as an optimization problem for the objective function
P(G | D), search algorithms for large solution spaces can be
also used. One of such methods is an estimation of
distribution algorithm (EDA) and Dai et al. used the EDA
for learning genetic networks with a Bayesian network
model [39]. With EDA, they evolved a population of Gs
that have high Bayesian information criterion (BIC) scores.
After some iterated evolution process, k graph structures
with highest scores were chosen to build final aggregated
genetic networks. Their method was applied to two sets of
time-series data [10, 11], and was evaluated by Gene
Ontology (GO) search and literature mining.

2.3. Dynamic Bayesian Network

A Dynamic Bayesian Network (DBN) is an extension of
a Bayesian network model to incorporate temporal concept.
Compared to conventional Bayesian networks, DBNs
include random variables {g, ,.g,, .....&,,,} of time step

t—1 in addition to {g,.g,,...g,,} of time step 7. A

.....

transition network is composed of those 2n random
variables with no edges from time step ¢ to t—1. It is
assumed that the transition probability P(g | g ), where g,

represents the values of n genes at time ¢, is homogeneous
across entire observation. Learning DBNs can be done using
the same idea of learning Bayesian networks. The only
difference is that we need to consider additional random
variables of time ¢ —1. From this perspective, Friedman et
al. extended some scoring rules for learning structures from
Bayesian networks to the case of DBNs [40].

Sima et al.

The difficulty in learning DBNs is its heavy
computational complexity. Because additional n random
variables are considered compared to conventional Bayesian
networks, learning algorithms should consider much more
candidate graph structures and probabilistic parameters. For
this reason, most of applications of DBN usually target
smaller systems compared to the study of Bayesian
networks. Further, heuristics to restrict candidate graph
structures are widely used in the applications of DBNs.

Ong et al. used DBNs to infer regulatory network for
tryptophan metabolism in E. coli [41]. By using prior
knowledge (operon map), they restricted possible network
structures into predetermined category. Then a DBN was
learned using Expectation-Maximization (EM) method with
gene expression data of 8 time points [16]. Missal et al. used
mutual information between two gene expression profiles
and applied y>-test for the significance of the mutual

information to determine the structure of a DBN [42]. Zhao
et al. took a similar approach of using mutual information
[43], but they used minimum description length (MDL)
principle [44] to determine the threshold of the significance,
and to remove indirect or false links in a post-pruning
process. However, by using different encoding schemes, this
method can generate non-unique results that need ad hoc
adjustment. Dougherty et al. overcome this drawback by
measuring the description length based on a universal model:
normalized maximum likelihood model [45]. Zou et al. used
DBNs with various time-delay, by shifting time-series
profiles with properly predicted amount of time steps [46],
and applied their method to the yeast cell-cycle data of Chou
etal [11].

Variables in DBNs can take continuous values as well as
discrete values. When random variables are continuous in a
DBN, conditional probability tables, which are used in the
discrete case, cannot be used. To model P(g,, |Pa(g,,)) in

a continuous domain, Kim ez al/. assumed a nonparametric
additive regression model with Gaussian noise [47-49],

& =MypPy ot tmp,+ & (1) (%)

where g is the number of parents of g,,, p; is the jth
parent of g, and g (¢) is a Gaussian noise of g, at time 7.

A scoring measure for DBN structures was proposed based
on the regression model. This method was applied to yeast
cell-cycle data of Spellman et al. [10]. A nonlinear
regression extension was proposed by Ferrazzi et al. in

which DPijia in Eqn. (5) is replaced by tanh(p,;, ) where
tanh(-) is the hyperbolic tangent function [50].

Several recent studies focused on using different types of
gene expression data. Dojer et al. proposed a method to
handle perturbed gene expression data in using DBNs [51].
In their approach, candidate regulators for each gene were
inferred from only a subset of entire data, where the target
gene was not perturbed. The motivation of this approach is
based on the assumption that data with a specific gene
perturbed may not be used in the process of inferring
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regulators of that gene, because knocking out a gene can
disable regulations toward that gene. But since knocking out
a gene may represent under-expression of that gene, the
targets of a perturbed gene may still have regulation effect
from the perturbed gene. The effectiveness of this method
was shown using simulated data from an ordinary
differential equation model. Lihdesméki et al. proposed a
method for learning DBN's from mixture of steady state data
and time-series data [52]. If a steady state data is D, and a

time-series data is D_, learning a DBN structure G requires
the evaluation of the marginal likelihood P(D,,D, |G). By
assuming D, and D_ are independent given (G,®), where

® is a set of probabilistic parameters, the marginal
likelihood can be evaluated as follows:

P(Ds, DAl G) =j P(D4, DAG, @) P(®| G) dd (6)
= [ PDAG, ®) P(DAI G, ®) P@IG) d (7)

Evaluation of P(D, | G,®) can be done in the same way of
static Bayesian networks and the evaluation of P(D, | G,®)

is done using the steady-state distribution of the DBN.

3. INFERRING STRUCTURE AND DYNAMICS

Structure alone does not completely describe the
network. Often we are interested in the evolution of the
system from a given condition, or the response to a particular
perturbation, which require a network model that is able to
characterize the dynamics and describe the system transitions
into future time. The states, defined as the values for the
vector of genes, can be either in continuous domain or
constrained to be in discrete space.

3.1. Discrete State Space

A discrete state space model characterizes a system using
quantized data. The most popular approaches are Boolean
network and probabilistic Boolean network (PBN).

Boolean network assumes that the gene expression takes
just two levels: ON/1 and OFF/0, and the functional
relationship between the genes is determined by logical
rules. A Boolean network consists of n nodes
G={g.g,,--..g,} and a list of Boolean functions

F={f, /... /,} - Eachnode g € {0,1} is a binary variable
that represents the state (expression) of gene i . The Boolean
function g = fi(Pa(g,,)) specifies how the value of node
g, at next time point 7 + 1 is determined by the values of its

input nodes Pa(g,) at current time point 7.

REVEAL [53] proposed by Liang ez al. is one of the first
Boolean-network-based inference scheme. Based on
information theory, if the mutual information of the input
and output is equal to the entropy of the output, the input
fully determines the output. Hence for each node, REVEAL
searches for the minimal input node set that can fully
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determine the output. Rather than using mutual information,
Akutsu et al. chose to check consistency for all logic rules
[54], and later extended the inference to noisy data [55].
Furthermore, Akutsu et al. proved that, if the maximum
number of input nodes is bounded by a constant and
transition pairs are randomly picked, the sample size needed
to reconstruct the original Boolean network is in O(logn)

[54]. However, for limited sample size, there exist
considerable number of valid networks that are consistent
with the given data. Rather than pick one or a few networks,
Martin et al. enumerate all the consistent networks and
aggregate them by network's attractors [24]. Their results
show that most networks share only a few common
attractors, which indicate similar network dynamics.

Some view the binary-state system like Boolean network
as oversimplification that has significant information loss.
Laubenbacher and Stigler introduced a multi-state system
where the gene-gene relationship is determined by the
computational algebra of the finite field [56]. Normally the
solution is not unique, and the inference scheme will pick the
minimal network functions by removing all redundant terms.
Like REVEAL, this approach assumes noiseless data and the
performance suffers when noise presents.

The Boolean network and the multi-state extension are
based on the assumption of deterministic gene-gene
relationship. Probabilistic Boolean network adds a sense of
randomness into the Boolean network by allowing the nodes
to have more than one associated Boolean functions. So for a
PBN, the nodes G 's associated functions are now denoted as
F={F.F,,...F,}, where F ={fl(’)’f2’>,_..’f/(<,’)>}, i.e., each

node's output is now associated with I possible Boolean

functions. At any time point, PBN allows each node i to
take only one Boolean function from F. Hence there are

altogether Hillm realizations of a PBN. Perturbation

probability and selection probability were later introduced to
allow the network be perturbed in current realization or
switched between realizations, respectively.

It was suggested in Shmulevich et al. that Coefficient of
Determination can be used to infer the network [57]. Later
Marshall ez al. implemented an inference procedure for PBN
that successfully infers all the constituent Boolean networks,
at well as all the perturbation and selection probabilities
associated with them [58]. Unfortunately, as they pointed out
in the paper, the amount of temporal data needed for
inference is huge. A more practical way to infer PBN is to
approximate the network by multivariate Markov model, as
shown by Ching et al. [59]. In this model, the state of gene i
at time point / takes a binary probability distribution
denoted by vector b, =1P(g,=0).P(g, = 1]. The

model assumes

ﬁi,m = zkyzyﬁj,x’ ®
Jj=1
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where T, is the probability transition matrix from gene j to

gene i, and A the non-negative weight factor that has
2_,:1/14/ =1

3.2. Continuous State Space

A continuous state space model can characterize a system
without discretizing the data, a step argued to result loss of
information. One of the straightforward modeling strategies
here is to describe the system evolution as a Markov
Process, and this gives the Markov Model networks.

3.2.1. Markov Model

Dewey et al. studied a simple linear Markov model in the
form of

§I+l = 7?! (9)
in which g denotes the gene expression levels at time 7,

and the matrix 7 is the transition for genes between two
time points [60, 61]. Assuming a total of m time points, this
model can be written in another form

G,=TG (10)

Where GH =[§2 g} "‘gln] and G =[gl gZ "'g’mfl]’ a'nd the
transition matrix 7 can be calculated as G,G", G* being
the pseudo-inverse of G obtained by using singular value
decomposition (SVD). They further extended it to include
non-linear terms that capture both between-time (contained
in GG") and between-gene (contained in GG ) correlations
by considering the form G, =7,G+7,G'G+GG'T,, as
well as higher order Markov terms [60].

Holter et al. performed SVD [62-64] on the data
D=[g, &,...8,]=UZI"" and took the first 7 rows in

>V, r being the number of non-zero eigenvalues of DD,
as the dominant patterns, or modes [65]. The temporal
expression for each gene is therefore a linear combination of

these modes X, =[x x,...x,, ],i=1,...,r. The linear
Markov model they considered is in the form of
xl,/+] xl,t
xz,.r+1 —7 x?,r (11)
X

The modes transition matrix 7 is then estimated by
minimizing the divergence of the trajectory from the
observed values.

Wiggins et al. took a Bayesian approach and rewrote the
transition dynamics with added term of Gaussian noise & . as

[66]:
gt+l_§t =(T_[)gt+ét (12)

Sima et al.

where [ is the identity matrix. Given the biological prior
which was modeled in 7, they were able to derive the
posterior probability for 7 and used the expectation of 7T to
represent the transition dynamics. They also considered an
augmented model which treated latent variables as additional
“hidden degrees of freedom” and derived the expected T
after integrating out these latent variable.

Another variation of Markov model was studied by Li et
al. in which the transition of gene expression g, , is modeled

as power functions:
81 = angj,i:j +(- ﬁi)gi,/ +E, (13)
J

where Q, is the rate of transcription and B, is the rate of

degradation [67, 68]. To find the most-likely structure of the
network, the authors used either guided simulated annealing
method [67, 69] or Genetic Algorithm [68] to optimize a
score function which is essentially the likelihood function
with a penalty term that penalizes complex models (complex
in the sense that number of parameters being too large).
Used on a set of yeast Saccharomyces Cerevisiae microarray
data [10], this procedure recovered 31 out of 42 and 17 out
of 22 regulation relationships which are consistent with those
found experimentally [67, 68].

3.2.2. State Space Models

State Space Model (SSM) can be viewed as an extension
to Markov models, based on the assumption that gene
expression levels are hidden states and cannot be directly
observed, and are related with the observed values by some
transformation. A general linear SSM with input takes the
form as:

8., =Tg +Au, + & (14)
yl = Cgr +B\7r + év,/ (15)

where g denotes the state of the genes for the system, ) the
observed data for g, T the state transition matrix, C the

state to observation matrix, and A and B are the inputs
influence matrices for inputs 3, and v,, respectively. Here

§gﬁr and 5};,1 are white noise terms. If A=0 and B=0,

this is reduced to the basic linear SSM, or standard SSM.

Rangel et al. and Beal et al. used SSM with input and set
the inputs as the observations from previous time point [18,
70]. Specifically, their system is described as:

8, =T3, +Ay, + & (16)

Yo =Cg +By_, + & 17)
Notice the above equation can be rewritten as

yo=CTg_ +Ay,_ +&,)+By_+E&: (18)
= (CA+B)y,_,+ C(T g,_,+ Cég,t—l) + En (19)

Therefore the matrix T° = CA+ B captures the transition in
the observation domain over time, through the hidden states
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g,, and the authors focused their interests in 7’ . Rangel et

al. estimated the model parameters using EM algorithm and
constructed confidence interval on T’ by using bootstrap,
while Beal et al. used what they called Variational Bayesian
EM Algorithm, which can be considered as a Bayesian
extension of the standard EM algorithm, to derive a posterior
estimation on 7.

Both Hirose ef al. and Yoshida et al. argued that the
dimension k of the hidden states g, which they called

“modules”, is less than the number of dimension for
observations y, [71, 72] . Using standard SSM and assuming

the noise term £, has a diagonal covariance matrix R and

some other constraints, the authors carefully designed a
projection transformation matrix H such that the denoised
observation vector y°=R'?(y —€,,) can be projected to

lower dimension k (g, = H)”;,O to be exact) and the system

follows a dynamic as described in:

=0 S0 Lz

y/ = TM yr—l + Sg()’r (20)

where 7 and ¢ | are appropriately transformed from T
M gt

and §g ,» respectively. All module-module interactions are
presented in the transition matrix 7° . Yoshida et al. further
M

argued that the network structure may not be the same over
time, and they proposed what they called “Markov
switching” [71]. In essence, this is an inhomogeneous SSM,
where at each time point the system is allowed to change its
structure. They put the inference in a Bayesian framework,
and introduced an additional vector of hidden variables
which served as indicators of whether the system is
switching at each time points. Posterior distribution of model
parameters were estimated by using Gibbs sampling. Hirose
et al. on the other hand, did a comparison study with the
models in the work by Rangel ef al. and Beal et al. [18, 70]
and investigated the benefits of using multiple replicates of
time course data.

Kasabov et al. also used the standard SSM and proceeded
to estimate 7" using Kalman filter, and constructed the
network from two sets of human leukemic cell line data,
which have 32 pre-selected genes and 4 time points [73].
They also showed the potential application in larger data sets
with more genes by implementing Genetic Algorithm
(fitness function evaluated by using Kalman Filter estimated
likelihood) for gene selection. The validation of the networks
is rather weak, however, as they merely showed that the
observed data fall on the estimated trajectories for four of the
genes they selected for the network.

3.2.3. Ordinary Differential Equations

Ordinary differential equations can be used to describe
the gene products, e.g., mRNA and protein, and their
interactions. A general form of an n -node ODE system can
be written as:
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dg(1) .

—— = f(g(0),1) + S(1), @1
dt

where g(¢) is the gene product concentrations of n nodes,
f(g(t),t) the regulation function, and S(¢) the external

stimulus. For genetic regulation network, the most popular
ODE model is the linear time-invariant model:

? = Rg(t) + Ws (1), (22)
t

where R is an nXn matrix denoting the direct regulation
among n nodes, and § a kX1 constant vector whose
effects on n nodes are intermediated by the n X k constant
matrix W . In practice the available data are sampled at
limited time points, so most methods actually solve
Difference Equations like

gwl - g: = Rgl + VVS;. (23)

In reality, noise, whether significant or slight, is always
present in the observed raw data. Some approaches explicitly
incorporate the noise into the system as error terms &, :

gt+l - gt = Rgr + W‘i:t + Et’ (24)

Note that this form closely resembles Eqn. (12) in Markov
model.

For any node i, its regulation is defined by the i -th row
of R, ie, R =[r,....r,,]. The signs of [r,.....r,]
determine the network structure: for node j, r, # 0 means it

is an input of node i, and depending on whether 5 is

positive or negative, node j activates or inhibits node i,

respectively. If 7, 0, then the node i is self-regulated. The

(st
production/degradation rates of node i . For most algorithms,
the objective is to estimate R, especially the network
structure. Furthermore, they normally decouple the problem
and work on the regulation of one gene at a time based on
dg,(t)/dt = R g(t)+Ws(t).

actual values of determine the

Taking s =0, Chen et al. provided two estimation
solutions of R [74]. One solution used Fourier transform. It
assumed that several cell cycles are observed, and the system
is stable enough to be approximated by g(f)= Qe , where

Q is constant matrix and A the eigenvalues of R.

Assuming that each node's input set size is small and fixed,
the other solution used Minimal Weight Solutions to Linear
Equations [75] to solve the difference equations.

Instead of fixing input set size, de Hoon ez al. allowed the
network to have input sets of different sizes [76]. They
assumed that the error terms are normally distributed so log-
likelihood of proposed network can be calculated. The search
for the network of maximal log-likelihood was regulated by
Akaike's Information Criterion (AIC): AIC = -2[log-
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likelihood] + 2[number of parameters]. The approach limited
the size of nodes it can handle to be smaller than the number
of time points. Bourque and Sandkoff preferred a forward
search approach [77]. For gene i, the fitness of its input set
is measured by the sum of squared errors (SSE). To add a
new input to the existing input set, the decrease of SSE must
pass F-test at given significance level. The authors also
extended the inference to multiple related networks, where
the fitness includes not only SSE, but also evolution cost,
which is the sum of pairwise symmetric differences of all
networks. Chan et al. put connection constraints on linear
model through sparse Bayesian learning [78]. In this
approach, SSE is regulated by a parameter magnitude
function, in which the magnitude of each connection r is

weighted by a hyperparameter. The optimization is
conducted in a recursive way where the regulation matrix R
and hyperparameters are estimated alternately.

The linear assumption limits the range of networks the
model can emulate. To add nonlinearity to the model,
Perkins et al. introduced a hybrid model by coupling the
concentration value of each node with its logical state [79].
The approach normalizes the concentration to a range of [0,
1], discretizes the production rate to either on or off, and
fixes the degradation rate. By this means, the regulation
function f of gene i is reduced to a logical function plus

the degradation term.

Another popular non-linear differential equation model is
the S-system form, where the production/degradation rate is
a product of power-law functions:

dg,(n/dt = J[X" - B]]X". (25)
j=1 j=1

where ¢ and are rate constants, i and y_ are kinetic
i i > % ij

orders. The earlier work of Akutsu ef al. was based on
qualitative modeling and used linear programming which
can only determine loge, _IOgﬁ and U, —v, [55]. Later

work like Marino and Voit used Levenberg-Marquardt
method to find the parameters that minimize SSE [80].
Daisuke and Horton used distributed genetic algorithm to
overcome the local minima [81]. The algorithm is seeded
with networks that follow the scale-free property and results
in multiple candidates that are later aggregated to determine
the network structure. Novikov and Barillot converted
differential equations into integral equations :

g ()= zj (1,08, (X)dx + 5,31, 1,), (26)
=10

where the 7;; and s, are modeled by nonlinear time-variant

kernel functions: polynomial, exponential or delta-function
models [82]. Similar to Bourque and Sandkoff [77], the
network is inferred by using forward search, but with 2

criterion value replacing F-test's p-value.

Sima et al.

Recurrent Neural Network (RNN) is another popular
model that can capture the nonlinear dynamics of various
systems. Xu ef al. used the model of the following form:

dg,(t)/dt =(0(REM)+Ws +b)— g 1))/ T, (27)

where o(:) is the sigmoid function, 5, the bias term, A the
self-degradation rate, and 7, the time constant [83]. The

network is learned with particle swarm optimization [84].
Busch er al. studied the gene regulation network of the
migration of human skin keratinocytes with RNN [25]. The
model used in their work follows the form

dg,(t)/ dt = [in,o(gj (t=AT)+b) - g+ sl-(t)J /7,,(28)

where At, is the time delay associated with gene j. The
network is learned with Genetic Algorithm.

Cavelier and Anastassiou pursued a hybrid of linear and
nonlinear functions, where linear functions are used for
translation and nonlinear functions for transcription [85].
The authors considered three nonlinear functions of
increasing complexity: sigmoid-type function, Hill function
and thermodynamically derived function. The authors further
assumed that the network structure is available through prior
knowledge in the literature, so the algorithm focuses on the
estimation of the production/degradation parameters through
the so-called evolution strategies. Another way to add
nonlinearity is through time-delay, as described by Kim
etal. [86]:

dg,(t)/dt = iri,(gj(t —T,)+¢€y), 29

where g, is a noise term.

Rather than inferring the exact chemical kinetic equations
regulating every node, Sontag et al. estimated the influence
of node i onthe node j by measuring the change of node i
production rate relative to the change of node
concentration at any give network status [87]. To do so, they
proposed an experiment protocol in which a series of
perturbations is applied and the unperturbed and perturbed
time-series data are compared and evaluated: for an n -gene
network, the protocol needs about n® perturbations with
perfect measurement to fully infer all the influences. Bansal
et al. also proposed an inference scheme based on
perturbation [22]. The difference equation is now written as

G, =|R+ I,W]{ﬂ, (30)

where I is the identity matrix, G=[g,&,....]>
G, =1¢g,,8;--.], and S=[5.5,,...] The network structure
is then estimated through the dominated singular values of

the PCA decomposition of [(:]. With PCA decomposition,
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this approach can handle a lot more genes with limited
observations.

Arguing that the accuracy of single best regulation
parameter set is prone to error due to limited data, Nam et al.
aggregated the most likely regulator sets through voting [88].
Similarly, Kim et al. used noise injection to improve
inference robustness [89]. In their model, 7 is a time-

varying function r, (1) = o, sin(wt+¢,)+ ﬁu , where o,, 0,

9, and ﬂ‘/ are unknown parameters. The effects of gene j

on gene i are assessed on the 2D trajectory map of
1&g, (1)1, (Dg (D)} - By injecting random noise to the original

data to generate several slightly different data sets, only the
connections that shows certain degree of stability across all
data sets are picked.

4. PERFORMANCE EVALUATION

With the abundance of proposed models and inference
algorithms, it is essential to have a validation protocol so that
the merit of each proposed method can be assessed, and
guideline can be established in aiding practitioners to choose
the right modeling and inference procedure. Validation
therefore should be considered as an impartible part of the
complete inference scheme.

4.1. Distance Measure

Ideally one would compare the inferred network N,,
with ‘ground truth’ network N, the one from which data

used for inference are derived. The validation is given
quantitively in the form of the distance measure D(N,,N,),

as shown in Fig. (2a). Two critical issues arise from here, as
discussed below.
4.1.1. Lack of ‘Ground Truth’

Although N as the underlying biological network is the

ultimate golden standard that the inferred network should be
evaluated against, unfortunately it is almost guaranteed that
we will not be blessed with this knowledge for any
biological system of non-trivial size (as a matter of fact, we
lack the knowledge for even trivial-sized system, for
example, the three gene oscillating network of E. Coli [90]).

T

inference

D(N;, Ne) Uf

\l N,r
(a)

e —

::::
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To circumvent this problem, two common approaches have
been used.

The first approach is to use ‘partial ground truth’, which
is most often in the form of regulation relationships gleaned
from literature. This is demonstrated in Fig. (2b), in which
D(N,,NZ) can be thought as an approximation of

D(N,,N,). This approach has being widely utilized. For

example: Hirose er al. found genes in each “module” are
related to the same molecular function according to Gene
Ontology (GO) [72]; in addition to GO, Dai et al. also
searched Saccharomyces Genome Database to find
relationships which are consistent to their findings; both Kim
et al. and Novikov et al. compared their yeast cell cycle
pathway networks with those selected from KEGG (Kyoto
Encyclopedia of Genes and Genomes) [47, 82], and Kim et
al. further compared with the metabolic pathway reported by
DeRisi et al. [9]. Although versatile and bearing immediate
biological interpretation, this approach is limited by the
thoroughness and accuracy of reports from literature, and
subject to the bias in mining the literature.

The second approach is the use of synthetic network
generator, so we know every aspect of the underlying
network N . Illustrated in Fig. (2¢), the synthetic network

N, serves as a surrogate of the original N, and ideally,
should mimic the real biological system. In reality, N;, can
only model a subset of the properties in N and this leads to

a inherent bias where certain class or classes of inference
methods could be favored unintentionally. Setting up the
synthetic network that is free of this bias is not trivial, but
sometimes this obstacle can be overcome by carefully
aligning synthetic network properties with those in the study
objectives.

One immediate advantage of using N/ is that we can

easily study the properties of the proposed inference
algorithms. As an example, robustness property can be
analyzed by perturbing and adding noise to the network.
These learned properties often lead to improvement on the
inference. For example, Bansal er al. randomly generated
100 networks for each of the two sizes, one with 10 gene and
5 time points, and the other with 1000 gene and 10 time

"

s
a

inference inference

DWNTNE) U DNTNEG)

(b) (c)

Fig. (2). Validation paradigms. N’ and N, represent the "partial ground truth’ and synthetic network, respectively.
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points, and added white Gaussian noise of different standard
deviations to the generated time series data [22]. The tuning
of parameters in inferring network from real data was
facilitated by examining the performances on these synthetic
network data. Perkins et al. fixed input set size for each node
for their ODE model, and randomly selected the elements in
input node sets and the associated Boolean functions [79].
They were able to derive the number of data points needed to
fully infer the network structure and regulation functions in
different scenarios. An intensive simulation study on DBN
by Yu et al. evaluated various combinations of Bayesian
scoring metrics, search heuristics, discretization levels,
sampling interval, quantity of data and data interpolation
using simulated data from a stochastic linear Markov model
[91]. As a result, they published a series of guidelines for
various factors in DBN learning. The benefits associated
with using synthetic network in validating inference
algorithms make it a practical and fruitful choice as surrogate
of N .

4.1.2. Choice of Criterion

When comparing two networks N, and N, D(N,,N,)
can take one of many possible forms. For example, the most
commonly used measures D(N,,N/) for structures are true

positive (TP), true negative (TN), false positive (FP), false
negative (FN), or some derivation from them (e.g., Receiver
Operating Characteristic, or ROC curves). Dougherty has
proposed a list of “semi-metrics” as validation measures for
goodness of the inference algorithms [92]. The list can be
grown to accommodate different objectives of studies. It is
important to notice that there doesn't exist a one-size-fit-all
criterion that works as a universal validation measure due to
two prominent reasons: (1) the goal and focus vary widely
from study to study, and the criterion has to be chosen to be
consistent with the objective of the study. For example, if the
purpose of the experiment is to discover pairwise gene-gene
interactions, then a proper measure could be to compare the
difference in connections (either directed or undirected) in
N, and N,. Or if the interest is in how system evolves, a

trajectory-based measure may be more appropriate [92]. (2)
Inference algorithms are typically designed for a certain
subtype of models, which in turn are proposed for some
specific aims of the study. Using a validation measure which
is more in line with the same goal will inevitably bias
favorably towards these methods. This makes comparing
across models particularly difficult, and is part of the reason
that we see very few comparative studies on inference
methodology. Even when such studies are carried out, they
are practically limited to one type of models [93].

4.2. Comparative Studies

Some efforts have been made to address the above issues.
Brun et al. proposed a steady-state trajectory based metric
between networks that is independent of nature of networks
[94], hence has immediate application in comparative
studies. Trajectory of each gene of the network is
decomposed into a transient part and a steady-state part, the
latter of which could be either constant or periodic, and

Sima et al.

assessed with an amplitude cumulative distribution [95].
D(N,,N,) is therefore the average (across all genes) of

distances, which are computed as some norm between
amplitude cumulative distributions. This metric could be
useful if it is the steady-state behavior of the network that is
of interest.

For comparison studies, Hartemink suggested that DBN
seems to work better than Bayesian Network [2]. Note the
author conceded that this is hardly a conclusion due to the
“different properties” of the data used for inference. A more
detailed study by Werhli ez al. [93] compared the Relevance
Network and Bayesian Network models, as well as the
Graphical Gaussian Model. The last model is based on the
assumption that genes are multivariate Gaussian distributed
and the partial correlation, calculated on the estimated
covariance matrix (through some stabilizing techniques),
describes the correlation between two genes. In addition to a
Raf signaling pathway protein expression data, they run the
study using two synthetic data generators (one linear and the
other nonlinear) so N/, is known. The evaluation was carried

out using 2 criteria: ROC, and comparison of TP given fixed
FP value, both of which are based on directed or undirected
edges, or connections, in the networks N, and N_,. Though

the edges carry different meanings in these three different
network models, the validation is appropriate in a broader
‘regulation relation’ sense.

Comparing networks of different natures has been
attempted by Bansal et al. [96]. Three inference procedures
were chosen: BANJO (Bayesian network) [97], ARACHE
(relevance network) [98], and NIR [99] and MNI [100]
(ODE), along with hierarchical clustering and random
inference which served as references. The choice of these
methods was due partially to the availability of their
software code. Data were generated from a linear ODE
model, and merits of inference were evaluated on the
networks using positive predictive value (PPV), a ratio of TP
and TP+FP, and sensitivity, a ratio of TP and TP+FN. Note
PPV and sensitivity are also referred to as precision and
recall and used by other researchers [101, 102] . It is very
interesting to notice the lackluster performances, as
demonstrated by being not far from the random method, for
all three inference algorithms, particularly on time-series
data, using the authors' model setups.

An applaudable endeavor by the DREAM initiative team
during the past couple of years allows researchers to validate

their networks N, inferred from the data, which are

generated from the N the team provides, in a competitive
setting [102]. N,
relationships, each tagged with a confidence probability.
Much like the work of Werhli et al. [93], each participant's
inferred network is evaluated against N, using the area-

is in the form of pairwise regulation

under-ROC-curve, but with an additional area-under-
prediction-versus-recall criterion. It is worth noting that both
of these scores are still structure based, and it is expected
that the team will have measures that target on the dynamics
of inferred networks in the future.
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4.3. Validation by New Experiments

As a completely different paradigm, the validation can be
done experimentally, and the protocol usually runs like this:

1. Inference of network from experiment data;

2. Prediction of certain response using the inferred
model;

3. Verification using new experiment.

If the confirmation from new experiment comes back as
negative, the model is expected to learn from the error and
revised. The feedback helps improving the inference
procedure, but from a pure validation point of view, this
protocol is particularly useful if we are interested in
biological network intervention, where the exact correctness
of the inferred network structure is of less importance; the
ultimate criterion there is whether it can successfully predict
the response given a perturbation. In practice the
experimental data typically are the responses to selective or
systematic perturbation (e.g., stimuli like starvation or
drugs), or system behaviors after gene knockout/knock
down, and are well suited for network intervention studies.

Such approach has already been taken by researchers. In
the study of keratinocyte migration [25], the authors used
gene ptgs? as migration indicator and built a recurrent
neural network (RNN) model with nine genes to predict the
migration behavior upon hepatocyte growth factor stimulus.
They were able to follow it by in vitro experiment and the
discrepancy with in silico predictions helped them build a
second RNN model that is more consistent with
experimental findings.

5. CONCLUSION

We have reviewed the modeling and inference of Gene
Regulatory Network (GRN) from time-series data,
categorized into those focused on structure, or those on both
structure and dynamics, the latter of which is further
bifurcated into discrete or continuous space models. The
richness of proposed methods calls for comparative
performance studies that can be used to establish merit of
each inference procedure and appropriateness for a given
application. These studies as we see are still lacking despite
some modest efforts, due to the fact that ‘ground truth’
network required by various validation schemes is not
readily available, and it is not always easy to find a criterion
that can effectively evaluate a motley of model types which
all have different design goals. On the other hand, the
validation can be carried out experimentally where the
requirement for ‘ground truth’ network is relaxed. This is
especially useful in perturbation-response experiments, and
the feedback from new experiments will aid the inferences as
well. This survey gives a panoramic view on these topics,
with anticipation that the readers will be inspired to improve
and/or expand GRN inference and validation tool repository.
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