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Abstract

Background: Rate-limiting enzymes, because of their relatively low velocity, are believed to
influence metabolic flux in pathways. To investigate their regulatory role in metabolic networks, we
look at the global organization and interactions between rate-limiting enzymes and compounds
such as branch point metabolites and enzyme inhibitors in human liver.

Results: Based on 96 rate-limiting enzymes and 132 branch point compounds from human liver,
we found that rate-limiting enzymes surrounded 76.5% of branch points. In a compound conversion
network from human liver, the 128 branch points involved showed a dramatically higher average
degree, betweenness centrality and closeness centrality as a whole. Nearly half of the in vivo
inhibitors were products of rate-limiting enzymes, and covered 75.34% of the inhibited targets in
metabolic inhibitory networks.

Conclusion: From global topological organization, rate-limiting enzymes as a whole surround
most of the branch points; so they can influence the flux through branch points. Since nearly half of
the in vivo enzyme inhibitors are produced by rate-limiting enzymes in human liver, these enzymes
can initiate inhibitory regulation and then influence metabolic flux through their natural products.

Background
The liver is the largest organ to metabolize most
compounds in the body [1]. The interaction between
biochemical compounds and enzymes is the fundamen-
tal mechanism for dynamically adapting to a variety of
environmental or in vivo conditions [2,3]. In recent years
rapid development of high-throughput proteomics
technology, such as mass spectrometry, provide the

opportunity to investigate metabolic flux at a systematic
level [4-6].

Before high-throughput flux analysis, many concepts
were proposed to explain the dynamic flux control in
individual pathways, including rate-limiting enzymes
and branch point compounds [7-9]. All these concepts
focus on flux control coefficients of an isolated enzyme
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or compound in a pathway. According to the rate-
limiting concept, at least one reaction far from equili-
brium is catalyzed by rate-limiting enzymes at a
relatively lower velocity than other enzymes in the
same pathway. The rate of this reaction is not deter-
mined by substrate concentration, but only by the
activities of these enzymes. At the compound level,
compounds located at branch points are described as
essential molecules that influence flux [10-13], and the
kinetic properties of these branch points confirm their
role in directly determining the flux rate [12].

Despite their importance in flux control, the global
organization and interactions among rate-limiting
enzymes and branch points have not been explored to
date. Several rate-limiting enzymes were reported to
interact with branch points, including isocitrate dehy-
drogenase and inosine 5’-monophosphate dehydrogen-
ase [14-16]. Since many small-scale studies of rate-
limiting enzymes and branch points are scattered
throughout the literature, it has been difficult, so far,
to investigate the global interactions between rate-
limiting enzymes and branch points.

Studying an individual pathway is not sufficient to
identify the properties of global organization. The extent
to which flux is controlled by rate-limiting enzymes in
an individual pathway is not the most important feature
at the systematic level [17]. The crucial question at the
systematic level is, whether rate-limiting enzymes as a
whole can respond to regulatory signals and trigger
subsequent metabolic events [18]. To do systematic
analysis of rate-limiting enzymes, we manually curated
383 rate-limiting enzymes in five organisms, human, rat,
mouse, yeast and E. coli and constructed the first
literature-based Rate-Limiting Enzyme database
(RLEdb) [19].

Enzyme inhibition is a short-term regulatory interaction
between compounds and enzymes. Thousands of
enzyme inhibitors have been used in vitro and in vivo
to study metabolic enzyme properties [20]. Using such
data, biochemists can set objective functions to estimate
the regulatory effectiveness of inhibitors at the pathway
level [21,22]. At the genome level, although enzyme
inhibition and activation networks have been studied
[23], the focus was on global properties of their
metabolic regulatory networks and the chemical struc-
tures of inhibitors. The relations between inhibitors and
essential enzymes for flux control, such as rate-limiting
enzymes, have not yet been studied.

Here, we made an extensive collection of rate-limiting
enzymes, branch points and inhibitors from human liver
and attempted to answer basic questions about the

global organization and interactions between these
molecules. How many rate-limiting enzymes are located
before and after branch points? How do they influence
flux together and transmit regulatory signals? How many
enzymes can be regulated by in vivo inhibitors? What
kind of enzymes can produce in vivo inhibitors? What are
the ideal inhibited targets able to accept and transmit
metabolic signals among different pathways?

Results
Our study is based on five distinct datasets: (i) 687
metabolic enzymes of human liver compiled from the
HPRD database [24] and KEGG ligand database [25,26];
(ii) all 1033 products of these 687 enzymes; (iii) 96 liver
rate-limiting enzymes manually collected from 2682
PubMed abstracts; (iv) 132 branch points curated from
KEGG pathway maps; a branch point is defined to be any
compound connected with three or more enzymes, at
least one of which should be able to produce that
compound and one that can consume it; and (v) 202
enzyme inhibitors collected from the BRENDA database
[20]. Based on these datasets, we constructed two types
of metabolic network. One was the compound conver-
sion network taken from the KEGG ligand-rpair database
[25,26]; the other was the inhibitory network compiled
from the BRENDA database [20].

Rate-limiting enzymes surround 76.5% of the
branch point compounds in total
To survey the pathway distribution of all rate-limiting
enzymes and branch points, we classified all the rate-
limiting enzymes into six pathway groups according to
the KEGG hierarchy pathway annotation: Carbohydrate
metabolism, Lipid metabolism, Nucleotide metabolism,
Amino acid metabolism, Cofactor and vitamin metabo-
lism and Others metabolism. On average, both branch
points and rate-limiting enzymes made up less than
20% of the compounds and enzymes in human liver
(Figure 1). Different pathway groups showed different
topological structures in terms of the composition of
branch points. The proportion of branch points in
nucleotide metabolism was a little higher than in the
other pathway groups. The fraction of rate-limiting
enzymes was similar in all pathway groups. This meant
that the proportion of the flux control point, such as a
rate-limiting step, was almost the same.

From global topological organization, a large proportion
of branch points in each pathway group were sur-
rounded by rate-limiting enzymes (Figure 1). In total,
76.5% of the branch points were surrounded by 60 rate-
limiting enzymes. Since the reactions surrounding a
branch step can be used to modulate metabolic flux, the
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enzymes surrounding branch points can influence the
branch flux in the pathway.

Furthermore, to survey the topological relations of all
rate-limiting enzymes and branch points in the different
types of pathways, we annotated all the rate-limiting
enzymes into 4 classes according to functional hierar-
chies and ontologies of KEGG BRITE: central, catabolic,
anabolic and energetic pathways. In the dataset of
human liver, no significant differences were found

between the number of rate-limiting enzymes located
before and after branch points (Table 1). Also, no
evident difference was found between the numbers of
branch points as substrates of rate-limiting enzymes and
branch points as products of rate-limiting enzymes. In
addition, the distribution of topologic relations of rate-
limiting enzymes and branch points in the 4 classes of
enzymes also did not differ much (Table 1).

Branch points show high degree, betweenness centrality
and closeness centrality in compound conversion network
To study the function of branch points in human liver,
we constructed an undirected compound conversion
network by combining information on all the rpair
entries in human liver from the KEGG database. Each
rpair entry records a pair of compounds which are
converted directly via certain enzymes. In this network, a
node represented an individual compound produced by
any enzyme. Two compounds were connected if they
shared a rpair entry and the enzymes to convert the pair
of compounds also occurred in human liver. We
assumed that the reactions to convert each pair of
compounds were reversible and therefore the com-
pound-compound relation in the network was undir-
ected. The compound conversion network contained 644
nodes (the remaining 389 compounds did not convert to
other liver compounds according to rpair data) and 890
links (Figure 2a). Among the 644 compounds, there were
128 branch points (the remaining 4 branch points did
not convert to other liver compounds according to rpair
data) and 164 enzyme inhibitors (the other 58 inhibitors
did not convert to other liver compounds according to
rpair data). The degree of all nodes tended to follow a
power law distribution P(k)~k-r, where P(k) was the
probability that a node has k connections and r was an
exponent with an estimated value of 2.3298 for the
compound conversion network shown here (Figure 2a).
This indicates that most compounds in our network were
sparsely connected while only some had very high
degree. Therefore, our metabolite conversion network

Figure 1
Statistics for branch points and rate-limiting
enzymes. Black represents the ratio of branch points to all
metabolites for each pathway group, red represents the ratio
of rate-limiting enzymes to all metabolic enzymes for each
pathway group, and blue is the fraction of branch points
surrounded by rate-limiting enzymes to all branch points for
each pathway group. The pathway names on the x-axis are:
C_V (metabolism of cofactors and vitamins), AA (amino acid
metabolism), C (carbohydrate metabolism), N (nucleotide
metabolism), L (lipid metabolism) and Others (other
metabolism pathways).

Table 1: Before-after relations between branch points and rate-limiting enzymes

RL_after_BP RL_before_BP Substrate_of_RL Product_of_RL

Human 49 45 78 67
Liver
Central 3 4 6 7
Anabolic 18 19 40 35
Catabolic 14 12 26 24
Energetic 1 2 3 2

RL_after_BP column records the number of rate-limiting enzymes which occur directly after certain branch points. RL_before_BP column records
the number of rate-limiting enzymes which occur directly before certain branch points. Substrate_of_RL column records the number of branch
points, which are substrates of certain rate-limiting enzymes. Product_of_RL column records the number of branch points, which are products of
certain rate-limiting enzymes. The human liver row is the statistic for the entire human liver dataset, and the other four rows are the statistics for the
enzymes and branch points from central, anabolic, catabolic and energetic pathways.
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Figure 2
Characteristics of branch point metabolites in compound conversion network. (a) Compound conversion network
in human liver. BPs represent branch points. RLs represent rate-limiting enzymes. The inhibitor BPs represent that the branch
points are also enzyme inhibitors. The blue lines between pairs of nodes represent the conversion relation between them.
(b, c, d) Boxplots are for degree, betweenness centrality and closeness centrality of branch points and all the metabolites in the
compound conversion network. In each boxplot, the red bar represents the average degree, betweenness centrality and
closeness centrality for 59 inhibitor branch points surrounded by rate-limiting enzymes; the orange bar represents the average
degree, betweenness centrality and closeness centrality for all 128 branch points; the green bar represents the average degree,
betweenness centrality and closeness centrality for all 164 inhibitors, and the blue bar represents the average degree,
betweenness centrality and closeness centrality for all 644 compounds in the compound conversion network.

BMC Genomics 2009, 10(Suppl 3):S31 http://www.biomedcentral.com/1471-2164/10/S3/S31

Page 4 of 10
(page number not for citation purposes)



is a typical scale-free network and its degrees follow a
power-law distribution [27-30].

To test which important topological roles are executed
by branch points in the compound conversion network,
degree, betweenness centrality and closeness centrality of
each node were calculated using Pajek [31]. The degree,
the number of connections of each node, is a local
property. The higher the degree, the higher the prob-
ability of this node to convert to other compounds in
this network. By contrast, the betweenness centrality
measures how frequently a node appears on all shortest
pathways between two other nodes. And closeness
centrality measures how many steps it requires to
connect to other vertices from a given vertex. Closeness
is preferred in network analysis to mean shortest-path
length, as it gives higher values to more central vertices,
and so is usually positively associated with other
measures such as degree.

Statistical significance analyses of the average degree,
betweenness centrality and closeness centrality of branch
points against all the metabolites in human liver were
performed. The averages of the three types of centrality
from branch points were higher than those of all
metabolites in human liver (unequal 2-tailed t-test,
P-value < 0.001; Figure 2bcd). Intuitively, the 128 branch
points must have high average degrees compared with the
entire population of 644 metabolic compounds, since we
defined the branch points as having a higher local
connection number than common compounds. The higher
average betweenness centrality and closeness centrality
confirm the central role of branch points in metabolite
conversion. Higher average betweenness centrality indi-
cates that branch points are more likely to be located in the
shortest pathways between two other compounds as a
whole. Higher average closeness centrality indicates that
branch points easily reach other compounds in shorter
steps. Similar statistical significance analyses for all 164
inhibitors were also performed. The averages of the three
types of centrality from inhibitors were also higher than
those of all metabolites.

Nearly half of the inhibitors are the products of rate-
limiting enzymes, and they inhibit most targets in vivo
According to our in vivo inhibitor annotation, nearly half
of the inhibitors are products of rate-limiting enzymes in
human liver (96 versus 204), and they can potentially
inhibit most of their in vivo targets. First, enzyme-enzyme
relationships can be established for two enzymes if the
product of one is the inhibitor of the other. The inhibitor
initiator is the enzyme that provides the inhibitor in each
enzyme pair; the inhibitor target is the other inhibited
enzyme.

Figure 3 illustrates the characteristics of rate-limiting
enzymes in inhibitory network. In Figure 3a, where RL
enzymes (Initiator) represent the number of rate-
limiting enzymes whose products are inhibitors, All
enzymes (Initiator) represent the number of all meta-
bolic enzymes whose products are inhibitors, Targets by
RL enzymes (Initiator) represent the number of target
enzymes inhibited by rate-limiting enzymes, Targets
by all enzymes (Initiator) represent the number of
target enzymes inhibited by all the metabolic enzymes,
RL enzymes (Target) represent the number of rate-
limiting enzymes as inhibitor targets, All enzymes
(Target) represent the number of all the inhibitor targets
of metabolic enzymes, All RL enzymes represent the
number of all rate-limiting enzymes, RL enzymes
(Target) by RL enzymes (Initiator) represent the number
of target rate-limiting enzymes which are inhibited by
the products of other rate-limiting enzymes, RL enzymes
(Target) by All enzymes (Initiator) represent the number
of target rate-limiting enzymes which are inhibited by
the products of all the metabolic enzymes, it is evident
that from the first row, in total, only 18.7% of inhibitor
initiators were rate-limiting enzymes. Based on the
criterion of how many enzyme targets can be inhibited,
the effectiveness of rate-limiting enzymes was tested in
inhibitory networks. In total, the products of rate-
limiting enzymes inhibited 75.34% of all inhibited
targets from all the pathway groups in human liver.
Further hypergeometric tests confirmed that the in vivo
inhibitors were statistically enriched in the products of
rate-limiting enzymes, relative to all the metabolites in
human liver (all P-values < 0.001). On the other hand,
although only a small proportion of targets were rate-
limiting enzymes (Figure 3a), these targets of rate-
limiting enzymes were more likely to be inhibited by
the products of other rate-limiting enzymes.

From the aspect of cross-inhibition between pathways, we
also found potential high efficiencies of rate-limiting
enzymes as inhibitor initiators in inhibitory networks.
Only one effectiveness ratio was lower than 60%, and all
the remaining 35 ratios were greater than sixty percent
(Figure 3b). The average ratio was 74.3%, which revealed
that the rate-limiting enzymes, as inhibition providers,
coveredmore than 74.3%of the cross-inhibition targets. For
efficient metabolism, it is crucial for a cell to maintain a
precise balance between different pathways. The high
effectiveness of rate-limiting enzymes for cross-inhibition
between pathways highlights the role of cross-pathway
feedback regulation in maintaining the balance between
different pathways.

Discussion
In summary, we provide a basic pathway distribution for
rate-limiting enzymes and branch points in human liver,
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Figure 3
Characteristics of rate-limiting enzymes in inhibitory network. (a) Color-grid for the role of rate-limiting enzymes in
the inhibitory network as inhibiting initiators and targets. (b) Inhibitory efficiencies of rate-limiting enzymes as inhibitor
initiators in inhibitory networks pairwise among six pathway groups. For each cell, the ratio represents the inhibited enzymes
in the column pathway group by the products of rate-limiting enzymes from the row pathway group to the inhibited enzymes in
the column pathway by the products of all metabolic enzymes from the row pathway group. The pathway names on left are:
C_V (metabolism of cofactors and vitamins), AA (amino acid metabolism), C (carbohydrate metabolism), N (nucleotide
metabolism), L (lipid metabolism) and O (other metabolism pathways).
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and demonstrate the extensive topological links between
rate-limiting enzymes and branch points. Over 76% of
branch points are surrounded by rate-limiting enzymes.
Several rate-limiting enzymes, such as isocitrate dehy-
drogenase, inosine 5’-monophosphate dehydrogenase
and CDP-DAG synthase, are reported both to occur in
branch points and to be regulated in these pathways
[14-16,32,33]. As rate-limiting enzymes are often exten-
sively regulated [34], such as by transcription factors and
post-translational modifications, their influence on
branch points may also be regulated in response to
metabolic signals.

In addition, branch points show higher average degree,
betweenness centrality and closeness centrality than those
of all the metabolites in human liver. All these properties
give branch points more power to influence the conver-
sions among other compounds. Higher betweenness
centrality means that the compounds have a higher
probability of passing information between compound
pairs in a metabolic network. Therefore, a compound in
the shortest pathway between two given compounds is
more likely to be recruited than compounds in longer
pathways. Branch points as a whole are more likely to
occur in such short conversion pathways. Since closeness
measures the average number of steps needed to travel to
other vertices, branch points are likely to receive informa-
tion more quickly than other compounds in a diffusion
process. The main reason why the averages of the three
types of centrality from inhibitors are very high is because
some inhibitors are located at branch points. Combining
the influence of rate-limiting enzymes on branch points
and the influence of branch points on other compounds, it
seems that metabolic rate-limiting signals could impact the
metabolic network in a hierarchal way.

Since rate-limiting enzymes often react at a relatively low
velocity, it was assumed that the enzymes after branch
points are often potentially regulatory [35]. However,
our results showed no notable differences between the
numbers of rate-limiting enzymes located before and
after branch points in human liver. If we regard rate-
limiting enzymes as potential regulatory targets, there
would be no bias between the numbers of rate-limiting
points directly before and after branch points, as we
showed (Table 1). All the enzymes surrounding certain
branch points influence the branch flux. It is logical that
enzymes directly before branch points can control the
production of branch points and thus influence the
branch point concentration in a cell; conversely, it is also
reasonable for enzymes after branch points to consume
them and reduce their concentration in a cell.

Despite the capacity to influence metabolite flux via branch
points, we also found that rate-limiting enzymes play

important roles in enzyme inhibiting networks. The
regulatory properties can be considered from two major
aspects, regulability and regulatory capacity. The first
describes how effectively the activity of the enzyme
considered can be changed via other regulatory signals;
the latter describes how effectively changes in the activity of
the enzyme are transmitted to the rest of the system [18].
Since nearly half of the in vivo inhibitors are products of
rate-limiting enzymes in human liver, these enzymes as a
whole are easily able to initiate inhibitory regulation and
transmit metabolic signals to other enzymes. Although
only a small proportion of rate-limiting enzymes take part
in inhibitory networks as inhibitor initiators, they cover
over 75% of the in vivo inhibited targets. Further analysis of
cross-inhibition between pathways confirmed the regul-
ability and regulatory capacity of rate-limiting enzymes to
balance the different metabolite fluxes from different
pathways, which provide a metabolic basis to form a
self-regulatory system. Since enzyme inhibition is a short-
term form of regulation, which seldom involves any
transcription or translation level events, it provides a
mechanism to rapidly transmit metabolic signals and to
balance the metabolites from different groups of pathway.

Further, it is interesting that rate-limiting enzymes as a
whole are likely to be inhibited by their own products. This
provides clues that the rate-limiting enzymes show some
modularity in metabolic inhibitory networks. Since the
products of these enzymes are always produced in a rate-
limiting way, depending on the metabolic environment,
their inhibitory effects may also be initiated by metabolic
signals in a rate-limiting way.

From the view of inhibiting their targets, rate-limiting
enzymes show high regulability and are easily reached by
the inhibitors produced by other rate-limiting enzymes.
Combining their regulability and regulatory capacity in
compound conversion and inhibitory networks, rate-
limiting enzymes are ideal regulatory molecules in the
metabolic network. As we showed in the RLEdb, all 96
human rate-limiting enzymes were related to diseases;
this may be a consequence of their central role in the
control of metabolic flux and regulation.

Conclusion
In conclusion, our systematic findings show that rate-
limiting enzymes as a whole surround over three-quarters
of the branch points in the metabolic network of human
liver, therefore they can influence the flux through the
branch points. Since nearly half of the in vivo enzyme
inhibitors are produced by rate-limiting enzymes in human
liver, thus these enzymes can initiate inhibitory
regulation and then influence metabolic flux through
these inhibitors.
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Methods
Human liver expressing enzymes and compounds dataset
To get a reliable enzyme dataset, the entire list of genes
expressed in liver was extracted from the HPRD database
(23rd Feb 2007) [24]. Then 687 liver enzymes were
collected after mapping all the genes to enzymes via
KEGG ligand database 44.0 [26]. The 1033 natural
products of these enzymes were extracted from KEGG
ligand database 44.0.

Manually curated branch points dataset
A branch point is defined to be any compound
connected with three or more enzymes, at least one of
which should be able to produce that compound and
one that can consume it. However, many compounds
such as ATP, reach the criteria easily; so, the 39 most
common compounds were excluded: i) the 28 com-
pounds which take part in more than 100 reactions;
ii) the 4 too general compounds including RNA, DNA,
Protein and Peptide; iii) the remaining 7 energy
metabolism related nucleoside monophosphates,
Nucleoside diphosphates and Nucleoside triphosphates
(Additional file 1). Therefore, using this definition of
branch points, 261 potential branch points were curated
from the reference maps of the KEGG pathway. To get a
branch point dataset for human liver based on 261
potential branch points, the tissue expression profiles of
all the surrounding enzymes for each branch point were
checked. If three or more metabolic enzymes in human
liver occurred around a certain potential branch point,
and these enzymes produced and consumed the com-
pound, it was considered to be a branch point for human
liver (Additional file 2).

Collection of rate-limiting enzymes
The 147 rate-limiting enzymes from human were
collected from rate-limiting enzymes database (RLEdb),
which is the first literature-based rate-limiting enzyme
database [19]. The 96 rate-limiting enzymes expressed in
liver were isolated using the liver enzyme expression
dataset (Additional file 3).

Collection of in vivo enzyme inhibitors from the
BRENDA database
The enzyme inhibitor information was extracted from
BRENDA database 7.1 [20]. Organism-specific inhibitors
were recorded in a given EC code in the BRENDA database.
A similar semi-automatic method was used to convert free
text inhibitor information to KEGG compound identifiers
as described in previous studies [25,26]. For each enzyme,
if the inhibitor description from BRNEDA exactly matc-
hed a KEGG compound name, we assigned the KEGG
compound to that description. Then we grouped all
assigned KEGG compounds together by their KEGG

compound ID and checked all the mapping results
manually. The same method was applied to the organism
description from BRENDA.

However, many man-made inhibitors such as EDTA
cannot be produced in vivo. We therefore selected the
dataset of all human liver inhibitors by in vivo enzyme
products in human liver. Although some inhibitors were
enzyme products, they just inhibited other proteins, not
metabolic enzymes. We also excluded such inhibitors from
the final dataset as they did not have inhibiting effects in
the human liver metabolic network. After collecting all the
enzyme inhibitors, we isolated enzyme inhibiting pairs
among which one was the inhibitor provider enzyme and
the other was the inhibited target enzyme.

Construction of the compound conversion
network for human liver
We constructed a compound conversion network for
human liver using compound pairs taken from the
KEGG ligand database on 6th Nov 2007 [26]. This
database is currently the only one available that records
compound pair conversion directly. From the ligand
database, we first got the rpair relations between
compounds. The same procedure was executed by
filtering out the 39 most common compounds and
other compounds that are not the products of human
liver according to the compound dataset of human liver.

Network analysis with Pajek
We used the network analysis tool Pajek to calculate the
normalized degree, betweenness centrality and closeness
centrality of the compound conversion network in
human liver [31,36].

Statistical significance test
Throughout the paper, the hypergeometric test was used
to calculate whether a given set of object pairs had a
different frequency of annotation pairs than would be
expected by chance, given the sample sizes involved and
the expected frequency of such pairs. All p-values
reported were calculated using the hypergeometric test
for enrichment carried out using R package 2.6.2 [37].
A low p-value indicates that the association between
annotation pairs is statistically significant.

The unequal t-tests were used to determine whether the
difference in average mean values of two unequal
variables x and y is statistically significant. The null
hypothesis is that x and y are not different, and the
p-value is the probability of getting a value of the test
statistic as extreme as or more extreme than that observed
by chance alone, if the null hypothesis is true. The
statistical tests were performed using R package 2.6.2.
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