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Abstract

Background

Precision oncology seeks to integrate multiple layers of data from a patient’s cancer to effec-

tively tailor therapy. Conventional chemotherapies are sometimes effective but accompa-

nied by adverse events, warranting the identification of a biomarker of chemosensitivity.

Objective

Identify an mRNA biomarker that predicts chemosensitivity across solid tumor subtypes.

Methods

We performed a pan-solid tumor analysis integrating gene expression and drug sensitivity

profiles from 3 cancer cell line datasets to identify transcripts correlated with sensitivity to a

panel of chemotherapeutics. We then tested the ability of an mRNA biomarker to predictive

clinical outcomes in cohorts of patients with breast, lung, or ovarian cancer.

Results

Expression levels of several mRNA transcripts were significantly correlated with sensitivity

or resistance chemotherapeutics in cancer cell line datasets. The only mRNA transcript sig-

nificantly correlated with sensitization to multiple classes of DNA-damaging chemothera-

peutics in all 3 cell line datasets was encoded by Schlafen Family Member 11 (SLFN11).

Analyses of multiple breast, lung, and ovarian cancer patient cohorts treated with chemo-

therapy confirmed SLFN11 mRNA expression as a predictive biomarker of longer overall

survival and improved tumor response.

Conclusions

Tumor SLFN11 mRNA expression is a biomarker of sensitivity to an array of DNA-damaging

chemotherapeutics across solid tumor subtypes.
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Introduction

In the emerging era of precision oncology, the molecular features of a tumor are being used to

guide treatment decisions for each individual patient. “Targeted therapies” have been developed

over the past 20 years that are selective for overexpressed or mutant oncoproteins in cancer cells,

such as BRAF inhibitors (e.g., dabrafenib) for the treatment of patients with BRAFV600-mutant

melanoma [1]. While the development of such tumor-targeted therapies is conceptually straight-

forward (i.e., drug targets aberrant protein), approaches to leverage molecular features of tumors

to refine the use of “non-targeted therapies” (i.e., conventional chemotherapies) remain under-

developed. This is especially important in the current clinical environment where chemotherapy,

which we broadly define herein as a small molecule that is not targeted to an oncoprotein or pre-

scribed due to a specific genetic aberration or cancer cell lineage characteristic, remains the stan-

dard-of-care treatment for most cancer subtypes. However, there is a large heterogeneity of

response to chemotherapy, and retrospective analysis of clinical response data shows that a large

proportion of patients do not derive benefit from chemotherapy [2, 3]. It would thus be

extremely valuable for the clinical cancer community to have biomarkers predictive of response

to chemotherapeutics that could be used to risk-stratify patients and inform ideal drug choice.

Based upon the notion that cancer cell sensitivity to a chemotherapeutic may be associated

with cancer cell-intrinsic molecular features, we hypothesized that molecular features of cancer

cell line models could be used to identify a molecular predictor of response to chemotherapy

in human tumors. Furthermore, we sought to analyze these data both in aggregate, and by che-

motherapy class. We leveraged the wealth of publicly available cancer cell line gene expression

and drug sensitivity data to identify transcripts that predict chemosensitivity and chemoresis-

tance. We report the identification of Schlafen Family Member 11 (SLFN11) mRNA level as a

biomarker predictive of response to chemotherapeutics, including topoisomerase inhibitors,

alkylating agents, anti-metabolites, and anti-tumor anti-biotics in solid tumor lineages. We

further show that SLFN11 mRNA level is a tumor biomarker predictive of overall survival

(OS) and enhanced tumor response in breast, lung, and ovarian cancer patients treated with

these chemotherapeutics.

Materials and methods

Data acquisition

Robust Multi-array Average (RMA)-normalized transcriptomic data and drug sensitivity data

[area under the curve (AUC) and IC50] were downloaded for A) 860 cancer cell lines and 481

drugs from the Cancer Therapeutics Response Portal (CTRP) [4], B) 1,065 cancer cell lines

and 266 drugs from the Genomics of Drug Sensitivity in Cancer (GDSC) database [5], and C)

60 cancer cell lines and 783,538 compounds and drugs from the National Cancer Institute 60

(NCI60) database [6]. Analyses were limited to cell lines from solid tumor lineages (S1 Fig). In

addition to SLFN11 mRNA expression in cell lines, tumor SLFN11 expression RNA-sequenc-

ing data generated by the TCGA Research Network (http://cancergenome.nih.gov/) [7–9]

were downloaded from the National Cancer Institute Genomic Data Commons Data Portal

(https://portal.gdc.cancer.gov/; Data Type “Gene Expression Quantification”) and analyzed.

Venn diagrams showing overlap between cancer cell lines and genes in the databases were cre-

ated using the Venn Diagram Plotter (https://omics.pnl.gov/software/venn-diagram-plotter).

Correlation analyses

Pearson’s correlations between expression of all individual mRNAs and drug sensitivity (AUC

or IC50) were performed for all solid tumor cell lines in response to treatment with each
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alkylating agent, anti-metabolite, anti-tumor anti-biotic, microtubule inhibitor, and topoisom-

erase inhibitor available in the CTRP, GDSC, and NCI60 databases (Table 1). To determine

mRNAs that were associated with sensitivity or resistance across drug classes and between

databases, we used the following criteria to select genes: Pearson correlation of R>0.2 in >50%

of drugs in the chemotherapeutic class in�2 of the 3 databases. Pearson’s correlations were

also used to compare SLFN11 mRNA expression between overlapping cell lines in each of the

databases. Statistical analyses were performed using Graphpad Prism.

Clinical data analyses

The NCBI Gene Expression Omnibus was queried for datasets that included A) treatment-

naïve primary solid tumor gene expression profiles, B) treatment of patients with cytotoxic

chemotherapies, and C) clinical follow-up data. The following datasets were obtained and ana-

lyzed: GSE37751 [10], GSE29013 [11], GSE37745 [12], GSE17260 [13], GSE32646 [14], and

GSE63885 [15]. Of note, many datasets identified used a limited gene expression microarray

platform that did not contain probes for SLFN11, and were thus excluded from our analyses (e.
g., GSE20194, GSE20271, GSE22093, GSE23988, GSE25066, GSE41998, E-GEOD-31245).

Patients were stratified by tumor SLFN11 mRNA levels above or below the median, and sur-

vival analyses were performed using log-rank (Mantel-Cox) test. For breast cancer patients

with pathologic response data, patients were stratified by pathologic Complete Response

(pCR) vs. non-pCR, and tumor SLFN11 mRNA levels were compared by t-test. For ovarian

cancer patients with clinical response data, patients were stratified by Complete Remission

(CR) vs non-CR, and analyzed as above.

Results

Cancer cell line database analyses reveal SLFN11 mRNA expression as a

predictive biomarker of chemosensitivity

We first sought to identify transcripts with expression levels that predict response to chemo-

therapeutics across solid tumor subtypes. Gene expression and drug sensitivity profiles were

utilized from 3 cancer cell line databases: Cancer Therapeutics Response Portal (CTRP), Geno-

mics of Drug Sensitivity in Cancer (GDSC), and National Cancer Institute 60 (NCI60). Pear-

son correlation coefficients across cell lines were determined for all 2020930 individual gene-

drug combinations using the 27, 17, and 47 chemotherapeutics tested in each dataset, and the

18988, 17737, and 25675 transcripts analyzed in each dataset (S1 Table). Overlap between tran-

scripts and cell lines between the 3 datasets is shown in S1A and S1B Fig. Genes largely over-

lapped between datasets, with 13458 genes shared between all 3 datasets. Solid tumor cell lines

had only partial overlap; among the 854, 801, and 58 solid tumor cell lines in these databases,

496 cell lines were present in�2 databases. Overlap between drugs in the datasets is shown in

Table 1.

Fig 1A shows results from transcriptome-wide correlation analyses of 3 representative

drugs (SN38, mitomycin C, and gemcitabine) that were present in all 3 datasets and from 3

classes of chemotherapeutics (topoisomerase inhibitors, anti-tumor antibiotics, and anti-

metabolites, respectively); each point represents one gene-drug combination. SLFN11 ranked

as the most strongly negatively correlated transcript with ln(IC50) or AUC values for gemcita-

bine and SN38 in all 3 datasets, and ranked highly for negative correlation with mitomycin C

response values (all Pearson p<0.001); these findings suggest that high SLFN11 mRNA levels

are predictive of increased chemosensitivity. When considering drugs by class of chemothera-

peutic, SLFN11 was the only transcript correlated (R�-0.2) with sensitivity to at least half of
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Table 1. Chemotherapeutics in the 3 cancer cell line datasets.

Alkylating agents CTRP GDSC NCI60

Bendamustine + +

Carboplatin + +

Carmustine +

Chlorambucil + +

Cisplatin + +

Cyclophosphamide + +

Dacarbazine + +

Estramustine +

Ifosfamide +

Lomustine +

Melphalan +

Nitrogen mustard +

Oxaliplatin + +

Pipobroman +

Procarbazine + +

Streptozocin +

Temozolomide + +

Thiotepa +

Triethylenemelamine +

Uramustine +

Cytoskeleton inhibitor

Cytochalasin +

Docetaxel + + +

Epothilone B +

Itraconazole +

Ixabepilone +

Paclitaxel + +

Parbendazole +

Vinblastine + +

Vincristine + +

Vinorelbine + +

Anti-metabolites

5FU +

6-Mercaptopurine +

Cladribine +

Clofarabine + +

Cytarabine + + +

Decitabine +

Floxuridine +

Fludarabine +

Fluorouracil +

Gemcitabine + + +

Methotrexate + +

Anti-tumor antibiotics

Actinomycin D +

Bleomycin + +

Daunorubicin +

(Continued)
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tested chemotherapeutics in 4/5 classes tested (i.e., alkylating agents, anti-metabolites, anti-

tumor anti-biotics, and topoisomerase inhibitors) in�2 databases (Fig 2 and Table 2). Zoppoli

et al. previously found that 23 transcripts including SLFN11 are associated with sensitivity to

topoisomerase inhibitors [16]; comparison with genes in Table 2 indicates that 2, 3, 2, 0, and 4

of those 23 genes are associated with sensitization to alkylating agents, anti-metabolites, anti-

tumor anti-biotics, microtubule inhibitors, and topoisomerase inhibitors in our analyses,

respectively. Correlation values for SLFN11 transcript levels with each drug are shown by class

of drug in Fig 1B; GDSC reported drug sensitivity data as both ln(IC50) and AUC (S2A Fig),

which both showed that SLFN11 transcript level is highly correlated with chemosensitization.

Correlation values for individual chemotherapeutics are shown in S2B–S2E Fig. When evaluat-

ing transcripts associated with chemosensitivity or chemoresistance as gene sets, we did not

observe hallmark gene sets consistently associated with sensitivity/resistance across drug clas-

ses (S3 Fig).

Gene expression profiles in these 3 cell line databases were generated using different plat-

forms. To determine whether the use of different platforms affected detection of SLFN11
mRNA, Pearson correlation coefficients were determined for SLFN11 mRNA values among all

solid tumor cell lines common between databases. SLFN11 expression was significantly corre-

lated (all p<0.001) between all pairs of datasets (S4 Fig). Gene expression was compared

between cancer cell lineages across cell line databases, and for human tumors in The Cancer

Genome Atlas (TCGA). SLFN11 expression was consistently higher and lower in certain can-

cer types (e.g. kidney and large intestine/colon, respectively) (S5A–S5D Fig). Tang et al. also

reported that SLFN11 levels are highest in acute myeloid leukemia compared to various solid

tumors subtypes evaluated in TCGA [17].

SLFN11 mRNA expression is prognostic of improved patient outcome

following adjuvant chemotherapy

Survival analyses were performed using 4 breast, lung, and ovarian cancer clinical datasets.

When available, survival analyses were performed as a total aggregate (Fig 3A–3C), and

repeated after excluding patients who did not receive cytotoxic chemotherapies (Fig 3D–3G).

Patients were dichotomized based on median tumor SLFN11 mRNA expression.

Table 1. (Continued)

Alkylating agents CTRP GDSC NCI60

Doxorubicin + +

Epirubicin +

Idarubicin +

Mitomycin + + +

Mitoxantrone +

Valrubicin +

Topoisomerase inhibitor

Camptothecin +

Etoposide + + +

Irinotecan +

SN-38 + + +

Teniposide + +

Topotecan + +

https://doi.org/10.1371/journal.pone.0224267.t001
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Fig 1. SLFN11 mRNA levels are strongly correlated with sensitivity to chemotherapeutics in cancer cells. A)

mRNA levels for each gene were compared with drug sensitivity to a panel of chemotherapeutics across the CTRP

(IC50), GDSC (AUC), and NCI60 (IC50) datasets. Pearson correlation values were plotted for each gene for SN38,
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In a dataset of 61 unselected breast cancer patients [10], aggregate survival analysis showed

no significant difference in overall survival (OS) between patients with high vs. low tumor

SLFN11 expression (HR = 1.24, p = 0.608) (Fig 3A). In two datasets of 55 and 196 non-small-

cell lung cancer patients [11, 12], there was no significant differences in OS between patients

with high vs. low SLFN11 expression (HR = 1.60 and 1.16, p = 0.348 and 0.368, respectively)

(Fig 3B and 3C). Similarly, SLFN11 expression was not prognostic of OS in 18/21 cancer sub-

types included in TCGA (S6 Fig). When analyzing only breast cancer patients who received

chemotherapy (drugs not specified), there was a significant OS benefit in patients with high

SLFN11 expression (HR = 4.32, p = 0.017) (Fig 3D). Similarly, when analyzing only lung can-

cer patients who received adjuvant chemotherapy (drugs not specified), there was a significant

OS benefit in patients with high SLFN11 expression in one dataset (HR = 3.72, p = 0.031, Fig

3E) and a trend towards benefit in a second dataset (HR = 2.29, p = 0.057, Fig 3F). Finally, in

an ovarian cancer dataset of 110 patients, all of whom received cisplatin-based chemotherapy,

high SLFN11 expression was associated with longer OS (HR = 1.79, p = 0.05) (Fig 3G).

Patients with tumors highly responsive to chemotherapy have high SLFN11

transcript levels

A cohort of 115 patients with breast cancer (tumor size T1-4b; node-positive or -negative;

stage IIA-IIIB) were treated with neoadjuvant therapy consisting of paclitaxel followed by a

mitomycin, and gemcitabine as representative chemotherapeutics. B) SLFN11 mRNA levels were compared with drug

sensitivity as in (A) by Pearson correlation. Each point represents the IC50 of a given drug. Horizontal lines indicate

mean ± SEM for each drug class. Black filled, white-filled, and color-filled symbols indicate p�0.001, p�0.05, and

p>0.05, respectively.

https://doi.org/10.1371/journal.pone.0224267.g001

Fig 2. SLFN11 mRNA expression is commonly associated with chemosensitivity in cancer cell lines. Numbers of

genes with expression correlated with sensitivity (R�-0.2) or resistance (R�0.2) to>50% of drugs within a class in�2

databases (CTRP, GDSC, or NCI60) are indicated. Genes are listed in Table 2.

https://doi.org/10.1371/journal.pone.0224267.g002
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combination of 5-FU, epirubicin, and cyclophosphamide. Following surgical removal of the

primary breast tumor and lymph nodes, pathologic response to neoadjuvant chemotherapy

was evaluated by histological examination of the surgical specimens. Pathologic Complete

Response (pCR) was defined as no evidence of residual invasive cancer in both the breast and

axilla [14]. Comparison of SLFN11 transcript levels in baseline (pre-treatment) tumor biopsy

specimens showed that patients with CR had significantly higher SLFN11 expression than

those that did not (p = 0.045) (Fig 4A). We then analyzed data from a cohort of 75 patients

with ovarian cancer treated with a platinum-containing regimen (carboplatin or cisplatin with

cyclophosphamide or taxane) and monitored for response to chemotherapy [15]. For our anal-

ysis, these patients were divided into patients who were highly sensitive (HS) or non-HS. Com-

parison of SLFN11 transcript levels in these tumors, while statistically limited by sample size,

also demonstrated a trend towards higher levels of SLFN11 expression in patients with CR vs.

non-CR (p = 0.057) (Fig 4B).

Discussion

Traditional chemotherapeutic agents were first used in the 1940s with nitrogen mustards and

folic acid antagonists. Since their inception, treatment with these agents and their derivatives

alone and in combination has become the standard of care for the majority of cancer subtypes.

While new targeted agents exhibiting more favorable adverse event profiles have emerged as a

result of precision oncology research, these agents have not replaced traditional chemotherapy.

Evidence has also begun to emerge suggesting that resistance to therapy is more prevalent with

tumor-targeted agents (particularly when used as single-agents) compared to DNA-damaging

chemotherapeutics, which may be due in part to the ability of cancers to alter/mutate the drug

target (as in the case of BCR-ABL) or bypass targeted inhibition by rewiring pathways or shift-

ing dependence to compensatory signaling [18–21]. It is likely that the future of cancer man-

agement will include combination therapy regimens including both tumor-targeted and

chemotherapeutic agents.

Table 2. SLFN11 mRNA expression is commonly associated with chemosensitivity in cancer cell lines. All genes listed here were correlated with sensitivity (R�-0.2)

or resistance (R�0.2) in>50% of drugs in class in�2 databases (CTRP, GDSC, or NCI60). Bold indicates overlap in all 3 databases. Underline indicates overlap with topo-

isomerase-sensitizing genes reported in ref. [16].

Drug class Genes associated with sensitivity Genes associated with resistance

Alkylating agents PFAS, SLFN11 LSR, MST1R, OSBPL2, PLEKHA7

Anti-metabolites CSNK2A2, EP400, EXOSC2, LIMD2, METAP2, MRPS27, NOB1,

NPM3, PFAS, PPP1CC, SLFN11, TRAP1, ZNF280C

PTTG1IP

Anti-tumor

Antibiotics

ATF1, BLMH, METAP2, MEX3B, MIR600HG, NSL1, RGS16, RTN1,

SLFN11, TATDN3, ZFP1

C3orf52, EIF6, TPD52L2, TPRG1L

Microtubule

Inhibitors

AGPAT5, ALMS1, ANP32B, ATXN7L2, C15orf61, C2orf44, CECR5,

CEP85, CNTRL, COQ3, CRLF3, DKC1, EXOSC2, FBXO45, GMEB1,

GNL2, HMGXB4, HNRNPR, IKBKAP, ITGB3BP, KBTBD6, KDM1A,

KIF2A, MAK16, NASP, NCBP1, NUP160, NUP188, NUP88, ODF2,

OIP5, ORC1, OTUD3, POLA1, POLR1E, PWP2, RCC2, RMI1, RPA2,

RUVBL1, SKP2, SNRPA, SPAST, SPATA5L1, TAF5, TBPL1, TTF1,

TTI2, TUBGCP4, TXLNG, UPF3B, WDR18, WRAP73, ZNF142,

ZNF184, ZNF227, ZNF280C

ABCB1, ALDH3B1, BCL2L1, BICC1, CFLAR, COMMD7, DRAM1,

DYSF, EHD1, GALNT10, GLS, GRAMD3, ITGA3, LASP1, LEPROT,

MGLL, MVP, NPC2, PHLDA3, PLK2, SLC35F5, SUMF1, TGM2,

THBS1, TNFRSF12A, TRAM1, UGCG, UXS1, ZFP36L1

Topoisomerase

Inhibitors

ANGEL2, ANP32B, ANTXR1, ATG4C, BCAT1, BLMH, BPTF,

CAPRIN1, CASC3, CSNK1E, DLG4, DNAJC7, DSE, EP400, FAM129A,

HAND2, HMX2, KHDRBS1, KIF5C, MEX3B, MRC2, MRPL42,

NAP1L1, NSL1, NUCKS1, NUDT10, PHF21A, PPM1E, PSIP1,

RAB39B, RTN1, SENP1, SLFN11, SNHG1, SNRPF, TCF4, TGFB1,

TLK2, VBP1, WASF1, ZFHX4, ZFP1, ZNF280C, ZNF483

CLDN4, LIPH, SLC35A2, CEACAM5, CHKA, ELF3, EPCAM, LSR,

MANSC1, MISP, OVOL2, PPFIBP2, PRR15, RAB11FIP4, RAB17,

RASEF, RDH13, SHROOM3, ARHGEF5, B4GALT4, FUCA1, GIPC1,

OSBPL2, TMEM184B, TNFRSF21, TPRG1L

https://doi.org/10.1371/journal.pone.0224267.t002
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While chemotherapeutics are extremely effective, there remains significant heterogeneity in

response between patients. We sought to identify transcripts that predict tumor response and

survival outcome in patients receiving chemotherapies. Using an extensive correlation analyses

involving 1190 cell lines and 56 drugs belonging to 5 different chemotherapeutic classes, we

identified SLFN11 as the transcript most strongly predictive of response to alkylating agents,

anti-metabolites, anti-tumor antibiotics, and topoisomerase inhibitors, all of which induce

DNA damage, but not to microtubule inhibitors. We further validated these findings in eight

clinical datasets, and showed that higher levels of SLFN11 mRNA expression in treatment-

naïve primary tumors predict improved OS and tumor response to chemotherapies. These

data collectively suggest that SLFN11 mRNA has the potential to be a biomarker predictive of

benefit from DNA-damaging chemotherapies, and to have a role in identifying subsets of

patients who may require more or less aggressive therapeutic strategies. These findings con-

firm prior reports showing that high SLFN11 mRNA or protein levels, as well as low levels of

SLFN11 promoter methylation, are predictive of improved response to DNA-damaging che-

motherapies (Table 3).

SLFN11 is a member of the Schlafen (Slfn) family of genes that were originally identified as

growth-regulatory genes differentially expressed during lymphocyte development [22]. To

date, 6 human Slfn genes have been identified (SLFN5, SLFN11, SLFN12, SLFN12L, SLFN13,

and SLFN14) [23]. Additionally, there are 13 splice variants of SLFN11, encoding different

Fig 3. SLFN11 expression is associated with improved survival outcomes in breast, lung, and ovarian cancer patients treated with

chemotherapy. RNA expression and survival data were obtained for primary breast, lung, and ovarian tumors from 4 datasets containing

information from 61 breast cancer patients (A/D), 55 and196 lung cancer patients (B/E and C/F, respectively), and 110 ovarian cancer patients

(G). Patients were dichotomized into High vs. Low tumor SLFN11 mRNA based on expression above or below the median. Survival analyses

were performed for all patients in aggregate in (A-C), and only for patients who received chemotherapy (D-G). Groups were compared by log-

rank test.

https://doi.org/10.1371/journal.pone.0224267.g003

Fig 4. Patients with tumors highly responsive to chemotherapy have high SLFN11 transcript levels. Z-score

normalized RNA expression and tumor response data were obtained for primary breast and ovarian tumors from 2

datasets containing information from 115 breast cancer patients (A) and 75 ovarian cancer patients (B) treated with

neoadjuvant chemotherapy. Breast cancer patients were divided into patients who had a pathologic Complete

Response after chemotherapy (pCR), to those that did not (non-pCR), and SLFN11 expression was compared by

Student t-test with Welch’s correction. Ovarian cancer patients were divided into patients who were highly sensitive

(HS; defined as DFS>732 days according to [15]) or not (non-HS), and analyzed as above.

https://doi.org/10.1371/journal.pone.0224267.g004
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isoforms; although the gene expression platforms used herein did not distinguish between iso-

forms, results of our cross-platform analysis suggest that a pan-isoform measure of SLFN11 is

sufficient. Evidence suggests that SLFN11 protein has DNA/RNA helicase activity, and this

protein has been implicated in inhibition of HIV-1 retroviral replication [24]. SLFN11 protein

has been reported to sensitize cells to DNA-damaging agents by inhibition of homologous

recombination, but these analyses had previously been restricted to analyses of single datasets

or cell types [25, 26]. Thus, we speculate that SLFN11 mRNA levels were not predictive of sen-

sitivity to microtubule inhibitors in our study because induction of DNA damage is not the

primary mechanism of anti-cancer action of these drugs [27]. To functionally implicate

SLFN11 in response to DNA-damaging chemotherapeutics (topoisomerase inhibitors, an anti-

metabolite, and an alkylating agent), Li et al. demonstrated that genetic inhibition of SLFN11
expression caused chemoresistance [28]. Others also found that SLFN11 knockdown conferred

resistance to an alkylating agent and PARP inhibitors; these drugs induced downregulation of

SLFN11 levels in cancer cells, potentially explaining the link between low SLFN11 levels and

chemoresistance [29, 30]. Barretina et al. observed an association between SLFN11 mRNA lev-

els and sensitivity to topoisomerase inhibitors, but SLFN11 knockdown did not alter chemo-

sensitivity [31]. These disparate findings on the role of SLFN11 in chemosensitivity may be

attributable in part to the use of different drugs by different research teams; furthermore, the

use of continuous drug exposure paradigms in cell culture may elicit different effects than

those observed in patients due to pharmacokinetic properties. Recent evidence suggests that

SLFN11 protein expression has clinical utility in predicting response to PARP inhibitors: a

randomized Phase II study by Pietanza et al. showed that patients with small cell lung cancers

expressing SLFN11 had improved progression-free survival (PFS) and (OS) upon treatment

with the combination of a PARP inhibitor and the alkylating agent temozolomide [32]. This

was the first clinical trial demonstrating clinical utility of SLFN11 as a predictive biomarker,

and warrants additional prospective, randomized clinical trials to determine utility in other

clinical settings. Tang et al. recently demonstrated that treatment with histone deacetylase

(HDAC) inhibitors increase SLFN11 expression, which may be developed as a strategy to sen-

sitize cancer cells to chemotherapies [17].

Several studies have identified individual molecular biomarkers associated with chemother-

apy response, but these studies are typically done in specific cancer subtypes in response to

one drug or combination. For example, high levels of phosphoglycerate kinase-1 (PGK1)

expression have been associated with shorter survival in breast cancer patients treated with

Table 3. Prior studies that evaluated SLFN11 as a prognostic or predictive biomarker in cancer patients.

Cancer type n of

patients

Drugs Conclusions Ref.

Ewing sarcoma 44 Not specified Tumors with high SLFN11 mRNA levels were associated with longer RFS (p = 0.0046). [43]

Ovarian cancer 110 Cisplatin-based

chemotherapy

High SLFN11 mRNA levels were associated with better OS (p = 0.016). [16]

Recurrent small cell

lung cancer

104 Temozolomide +

veliparib or placebo

Temozolomide + veliparib elicited longer PFS (5.7 v 3.6 months; p = 0.009) and OS (12.2 v 7.5

months; p = 0.014) in patients with SLFN11+ tumors vs. SLFN11- tumors.

[32]

Colorectal cancer 128 Not specified SLFN11 promoter methylation was prognostic of poor 5-year OS and 5-year RFS (p<0.05). [16]

Colorectal cancer 237 Oxaliplatin-based

chemotherapy

Among 153 patients with KRAS-wild-type tumors, SLFN-high tumors were associated with

longer OS compared to SLFN11-low tumors (p = 0.048).

[44]

Non-small cell lung

cancer

22 Platinum-based

chemotherapy

SLFN11 promoter hypermethylation was associated with shorter PFS (p = 0.031). [45]

Ovarian cancer 41 Cisplatin or carboplatin SLFN11 promoter hypermethylation was associated with shorter (OS) (p = 0.006) and PFS

(p = 0.003).

[45]

https://doi.org/10.1371/journal.pone.0224267.t003
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paclitaxel chemotherapy [33]. Similarly, high protein tyrosine kinase 7 (PTK7) expression has

been associated with improved disease-free survival in breast cancer patients receiving taxane-

based chemotherapy, but with worse disease-free survival in breast cancer or acute myeloid

leukemia patients receiving anthracycline chemotherapy [34, 35]. Another study has linked

high levels of DNA-dependent kinase catalytic subunit D (PRKDC) to chemoresistance in

breast cancer patients treated with adjuvant chemotherapy [36]. Additional approaches have

used multi-gene expression profile-based approaches to identify patients likely to respond to

chemotherapy, including the Oncotype Dx 21-gene transcriptional signature in breast cancer

[37–39]. While these single- and multi-gene biomarker panels may have utility in selective

populations (e.g., breast cancer patients), they will likely not have the same level of external

validity for the analysis of other cancer subtypes. To our knowledge, our study is the first to

identify a single-gene mRNA biomarker with applicability across multiple cancer subtypes and

classes of chemotherapeutics.

Importantly, this study was performed based on the notion that drug sensitivity is cancer

cell-intrinsic. However, we acknowledge that there is a significant contribution to drug

response mediated by the tumor microenvironment (TME). Components of the TME includ-

ing stromal cells and secreted factors have been implicated in drug resistance to both chemo-

therapeutics and targeted agents in a multitude of cancer types [20, 21]. Similarly, TME

components such as secreted factors, hypoxia and acidity have been shown to contribute to

enhancing drug sensitivity in cancer [40–42]. Determining potential interplay between

SLFN11 expression, the tumor microenvironment, and sensitization to chemotherapy repre-

sents a logical and clinically important next step.

In summary, we have analyzed a wealth of cell line and patient data, and uncovered

SLFN11 as a biomarker predictive of improved response and survival to multiple classes of

chemotherapeutics that applies broadly to multiple solid tumor subtypes. Future investigation

will involve prospective clinical trials in multiple cancer subtypes to determine whether

SLFN11 expression predicts tumor response, recurrence, progression, and survival in patients

treated with topoisomerase inhibitors, alkylating agents, anti-metabolites, or anti-tumor anti-

biotics. Findings from this work may provide rationale for pre-screening patients prior to sys-

temic treatment to best tailor therapy on a patient-by-patient basis.

Supporting information

S1 Fig. Genes and solid tumor cell line overlap between cell line databases. RMA-normal-

ized basal expression profiles for cell lines was downloaded from CTRP v2 (https://ocg.cancer.

gov/programs/ctd2/dataportal) and GDSC (https://www.cancerrxgene.org/downloads). Z-

score-normalized gene expression profiles for cell lines was downloaded from NCI60 (https://

discover.nci.nih.gov/cellminer/loadDownload.do) databases. Gene and cell line overlap was

performed using the “vlookup” tool in Microsoft Excel. Venn diagrams showing overlap

between cancer cell lines and genes in the databases were created using the Venn Diagram

Plotter (https://omics.pnl.gov/software/venn-diagram-plotter).

(PDF)

S2 Fig. SLFN11 mRNA levels are strongly correlated with sensitivity to chemotherapeutics

in cancer cells. A) SLFN11 mRNA levels were compared with drug sensitivity (AUC) in the

GDSC dataset by Pearson correlation. Each point represents one drug. Mean ± SEM for each

drug class is shown. B-E) Waterfall plots show Pearson’s R for the correlations between

SLFN11 mRNA expression and AUC or IC50 for each chemotherapeutic in GDSC, CTRP,

and NCI60 datasets. Bars are color-coded according to drug class: green = topoisomerase

inhibitor; blue = anti-tumor antibiotic; purple = antimetabolite; red = cytoskeleton inhibitor;
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orange = alkylating agent. Summarized data are shown in Fig 1B and panel (A) in this supple-

mental figure.

(PDF)

S3 Fig. Pathways analysis of sets of genes predictivity of drug sensitivity and resistance.

Genes listed in Table 2, which were correlated with sensitivity (R�-0.2) or resistance (R�0.2)

to>50% of drugs within a class in�2 databases (CTRP, GDSC, or NCI60), were evaluated by

unsupervised sample-wise enrichment analysis using the hallmark gene set collection in Gene

Set Variation Analysis (GSVA). Adjusted p-values are shown. Hallmark gene sets associated

with drug sensitivity (solid shapes) and drug resistance (hollow shapes) are indicated.

(PDF)

S4 Fig. SLFN11 mRNA expression in cancer cell lines is significantly correlated between

datasets. Gene expression was downloaded from CTRP v2, GDSC, and NCI60 databases as

previously described. Each point represents a cell line overlapping between two databases:

GDSC vs CTRP (A), CTRP vs NCI60 (B), and GDSC vs NCI60 (C). Pearson’s correlations

were performed. Solid line represents the best-fit linear regression line, and dotted lines repre-

sent the 95% confidence interval.

(PDF)

S5 Fig. SLFN11 is variably expressed across tumor types in cell lines and tumors. A-C)

SLFN11 mRNA expression in cell lines separated by cancer cell lineage (solid tumors only) for

CTRP (A), GDSC (B), and NCI60 (C). Horizontal lines indicate mean +/- SD. Number of cell

lines analyzed for each tissue type are listed in parenthesis. D) SLFN11 mRNA expression in

different solid tumor types in TCGA, copied from the Human Protein Atlas (https://www.

proteinatlas.org/). Box plots are shown as median and 25th and 75th percentiles. Points are

displayed as outliers if they are above or below 1.5 times the interquartile range. Number of

tumors analyzed for each tissue type are listed in parenthesis.

(PDF)

S6 Fig. SLFN11 mRNA expression is not predictive of overall survival in most cancer sub-

types. The OncoLnc tool (http://www.oncolnc.org/) was used to determine whether SLFN11

expression in primary tumors is associated with overall survival in TCGA datasets. Analyses of

21 cancer subtypes was available. p-values were corrected for all genes in the transcriptome.

SLFN11 levels were prognostic of shorter OS (FDR-corrected p�0.05) in 3/21 cancer subtypes.

(PDF)

S1 Table. Pearson correlation values for each gene with each drug. Genes with expression

that was correlated (R�0.33) with sensitivity to 4 topoisomerase inhibitor (Camptothecin,

Topotecan, Irinotecan, and NSC724998) in Zoppoli et al (2012) are highlighted in red.

(XLSX)
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