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Abstract

We present, implement, and evaluate an approach to calculate the internode certainty (IC) and tree certainty (TC) on a
given reference tree from a collection of partial gene trees. Previously, the calculation of these values was only possible
from a collection of gene trees with exactly the same taxon set as the reference tree. An application to sets of partial gene
trees requires mathematical corrections in the IC and TC calculations. We implement our methods in RAxML and test
them on empirical datasets. These tests imply that the inclusion of partial trees does matter. However, in order to provide
meaningful measurements, any dataset should also include trees containing the full species set.
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Introduction

Motivation and Related Work
Recently, Salichos and Rokas (2013) proposed a set of novel
measures for quantifying the confidence for bipartitions in a
phylogenetic tree (i.e., a leaf-labeled tree depicting the rela-
tionships between taxa). These measures are the so-called
Internode Certainty (IC) and Tree Certainty (TC), which are
calculated for a specific reference tree given a collection of
other trees with the exact same taxon set.

The calculation of their scores was implemented (Salichos
et al. 2014) in the phylogenetic software RAxML (Stamatakis
2014).

The underlying idea of IC is to assess the degree of conflict
of each internal branch (i.e., a branch connecting two internal
nodes) of a phylogenetic reference tree by calculating
Shannon’s Measure of Entropy (Shannon 1948). This score
is evaluated for each bipartition in the reference tree inde-
pendently. The basis for the calculations is the frequency of
occurrence of this bipartition and the frequencies of occur-
rences of a set of conflicting bipartitions from the collection of
trees. In contrast to classical scoring schemes for the branches,
such as simple bipartition support or posterior probabilities,
the IC score also reflects to which degree the most favored
bipartition is contested.

The reference tree itself can, for example, be constructed
from this tree set or can be a maximum likelihood tree for a
phylogenomic alignment. The tree collection may, for exam-
ple, come from running multiple phylogenetic searches on

the same dataset, multiple bootstrap runs (Felsenstein 1985;
Efron et al. 1996), or from running the analyses separately on
different genes, or different subsets of the genes (as done, e.g.,
in Hejnol et al. 2009). While for the first two cases the as-
sumption of having the same taxon set is reasonable, this is
often not the case for different genes. For example, gene se-
quences may be available for different subsets of taxa simply
due to sequence availability or the absence of some genes in
certain species.

In this article, we show how to compute an appropriately
corrected IC on collections of partial gene trees. When using
partial bipartitions for the calculation of the IC and TC scores
we need to solve two problems. First, we need to calculate
their respective adjusted support (analogous to the frequency
of occurrence) (see section “Correcting the Support”). Unlike
in the standard case, with full taxon sets, this information
cannot be directly obtained. Then, we also need to identify
all conflicting bipartitions (see section “New Approaches:
Adjusting the IC”).

An alternative method for calculating these frequencies
has recently been independently developed by Smith et al.
(2015). The method developed by Smith et al. is similar to
what we denote as lossless support (see section “Correcting
the Support”).

Bipartitions, IC, and TC
We now briefly define the concepts and notations that we
will use throughout the article. In addition, we formally define
IC and TC.
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Bipartition: Given a taxon set S, a bipartition B of
S is defined as a tuple of taxon subsets (X, Y) with X, Y � S;
X 6¼1 6¼ Y and X [ Y ¼ S; X \ Y ¼1. We write,
B ¼ XjY ¼ YjX.

In phylogenetic trees, a bipartition is obtained by removing
a single edge from the tree. Let b be an edge connecting nodes
n1 and n2 in some unrooted phylogenetic tree T. The bipar-
tition that is obtained by removing b is denoted by B(b),
which we define as: BðbÞ ¼ Xðn1ÞjXðn2Þ, where Xðn1Þ and
Xðn2Þ are all taxa that are still connected to nodes n1 and n2,
respectively, if branch b is removed.

Trivial bipartition We call a bipartition B ¼ XjY trivial if
jXj ¼ 1 or jYj ¼ 1.

Trivial bipartitions are uninformative, since having only a
single taxon in either X or Y means that this taxon is con-
nected to the rest of the tree. This is trivially given for any tree
containing this taxon.

Bipartitions with jXj � 2 and jYj � 2 are called nontrivial.
In contrast to trivial bipartitions, nontrivial bipartitions con-
tain information about the structure of the underlying
topology.

Henceforth, the term bipartition will always refer to a
nontrivial bipartition.

Sub-bipartition, super-bipartition We denote B1 ¼ X1jY1

as a sub-bipartition of B2 ¼ X2jY2 if X1 � X2 and Y1 � Y2,
or X1 � Y2 and Y1 � X2.

The bipartition B2 is then said to be a super-bipartition of B1.
We also need a notion of compatibility and conflict be-

tween bipartitions.
Conflicting bipartitions Two bipartitions B1 ¼ X1jY1 and B2

¼ X2jY2 are conflicting/incompatible if there exists no single
tree topology that explains/contains both bipartitions.
Otherwise, if such a tree exists, they must be compatible.
More formally, the bipartitions B1 and B2 are incompatible
if and only if all of the following properties hold (see, e.g.,
Bryant 2003):

X1 \ X2 6¼1

^ X1 \ Y2 6¼1

^ Y1 \ X2 6¼1

^ Y1 \ Y2 6¼1:

This definition of conflict and compatibility is valid irrespec-
tive of whether the taxon sets of B1 and B2 are identical or not.

Relative frequency Let B(b) be the bipartition induced by
removing branch b, and let B� be the bipartition from the tree
collection that has the highest frequency of occurrence and is
incompatible with B(b). Let the term X be the relative fre-
quencies of the involved bipartitions. More formally, we de-
fine XBðbÞ as,

XBðbÞ :¼ fðBðbÞÞ
fðBðbÞÞ þ fðB�Þ ; XB� :¼ fðB�Þ

fðBðbÞÞ þ fðB�Þ ; (1)

where f simply denotes the frequency of occurrence of a
bipartition in the tree set.

For the standard case of IC calculations (without partial
gene trees), the frequency of occurrence f is simply the num-
ber of observed bipartitions in the tree set. In section
“Correcting the Support”, we will show how to calculate
the support (adjusted frequencies) for bipartitions from
partial gene trees. We compute this support using the
observed frequencies of occurrence. The support for partial
bipartitions can then be used analogously to the frequency of
occurrence in equation (1) for calculating the relative
frequencies.

Internode certainty The IC score (as defined in Salichos and
Rokas 2013) is calculated using Shannon’s measure of entropy
(Shannon 1948). For a branch b we define IC(b) as follows:

ICðbÞ ¼ 1þ XBðbÞ � log2ðXBðbÞÞ þ XB� � log2ðXB� Þ: (2)

Similar to the IC score, Salichos et al. (2014) also introduced
the internode certainty all (ICA) value for each branch.
However, before we formally define the ICA value, we need
to provide some additional definitions and make some
observations.

Conflicting set Let the set C�ðbÞ, as defined in Salichos et al.
(2014), be B(b) union the set of bipartitions that conflict with
B(b) and with each other, while the sum of support for ele-
ments in C�ðbÞ is maximized.

In practice, the set C�ðbÞ is not easy to obtain. In fact, as we
show in the following observation, maximizing the sum of
supports for elements in C�ðbÞ renders the search for an
optimal choice of C�ðbÞ NP-hard.

Observation: Finding the optimal set C�ðbÞ is NP-hard.
This can easily be seen by considering the related, known

to be NP-hard, maximum weight independent set problem
(Garey and Johnson 1990). Alternatively, the similarity to the
problem of constructing the asymmetric median tree, which
is also known to be NP-hard (Phillips and Warnow 1996), can
be observed.

For the maximum weight independent set problem, we
are confronted with an undirected graph whose nodes have
weights. The task is then to find a set of nodes that maximize
the sum of weights, such that no two nodes in this set are
connected via an edge. A reduction from this problem to
finding C�ðbÞ is straight-forward. Let (W, E) be an undirected
graph with weighted nodes W and edges E. Let BðbÞ ¼ xyjvz.
First, we introduce one bipartition xzjvy for every node in W,
with support equal to the node weight. Then, for every pair of
bipartitions where the corresponding nodes in W do not
share an edge in E, we add four taxa that are unique to those
bipartitions in such a way that they can never be compatible
(consider . . . abjcd . . . and . . . acjbd . . .). If we find C�ðbÞ for
the newly introduced bipartitions, the corresponding nodes
yield a maximum weight independent set.

For this reason, the definition of the ICA, used and imple-
mented in Salichos et al. (2014), which we also use here, does
not actually use C�ðbÞ itself, but an approximation thereof.
The set C(b) is constructed via a greedy addition strategy to
approximate C�ðbÞ. Note that C(b) has a slightly different
definition in Salichos and Rokas (2013).

Computing the IC from Partial Gene Trees . doi:10.1093/molbev/msw040 MBE
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In addition, Salichos and Rokas (2013) advocate to use a
threshold of 5% support frequency for conflicting bipartitions
in C(b). Specifically, C(b) may only take elements B̂ that have
support

fðB̂Þ � 0:05: (3)

This is done to speed up the calculation. Under this re-
striction, the problem of maximizing the support for C(b) is
no longer NP-hard. However, the search space is still large
enough to warrant a greedy addition strategy instead of
searching for the best solution exhaustively.

Again, let X denote the relative support of the bipartitions
in C(b). That is,

XB̂ ¼ fðB̂ÞX
Bc2CðbÞ

fðBcÞ

for all involved bipartitions B̂ 2 CðbÞ.
ICA We can now define the ICA for some branch b as

ICAðbÞ ¼ 1þ
X

Bc2CðbÞ
XBc � logjCðbÞjðXBcÞ: (4)

Note that ICA(b) depends on C(b). Thus, the definition for
ICA presented here is also only an approximation. Different
heuristics for constructing C(b) will yield different values for
ICA(b).

Further note that iff B(b) does not have the largest fre-
quency among all bipartitions in C(b), the IC(B) and ICA(b)
scores are multiplied with�1 to indicate this. This distinction
is necessary since we may have jICAðb̂Þj ¼ jICAðbÞj for some
b̂ 2 CðbÞ. So an artificial negative value denotes that the
bipartition in the reference tree is not only strongly contested,
but not even the bipartition with the highest support. This
can, for example, occur when the reference tree is the max-
imum-likelihood tree and the tree set contains bootstrap
replicates.

From the IC scores and ICA scores, the respective Tree
Certainties TC and TCA can be computed. These are defined
as follows:

Tree certainty The TC and TCA scores are simply the sum
over all respective IC or ICA scores, as defined in the following:

TC ¼
X

b internal branch

in reference tree

ICðbÞ (5)

TCA ¼
X

b internal branch

in reference tree

ICAðbÞ: (6)

Furthermore, the relative TC and TCA scores are defined as
the respective values normalized by the number of branches
b for which B(b) is a nontrivial bipartition.

As we can see, all we need to calculate the IC, TC, ICA, and
TCA scores is to calculate fðB̂Þ (see section “Correcting
the Support”) and C(b) (see section “Finding Conicting
Bipartitions”).

New Approaches: Adjusting the IC
Now we must consider how to obtain the relevant informa-
tion, namely the sets C and corrected support f, from partial
bipartitions.

First, we formally define the input. We are given a so-called
reference tree T with taxon set S(T) node set VðTÞ � SðTÞ
and a set of branches EðTÞ � VðTÞ 	 VðTÞ connecting the
nodes of V(T). Let ÊðTÞ � EðTÞ be the set of internal
branches b for which the bipartition B(b) is nontrivial.

In addition, we are given a collection of trees T̂. From
this collection, we can easily extract the set of all nontriv-
ial bipartitions Bip. The bipartitions in Bip are used to
adjust the frequency of other bipartitions. The taxon
sets of the bipartitions in Bip are subsets of, or equal to,
S(T). We call a bipartition with fewer than jSðTÞj taxa a
partial bipartition. A bipartition that includes all taxa
from S(T) is called comprehensive or full bipartition.
Similarly, a tree containing only full bipartitions is called
comprehensive. From Bip and the bipartitions in the ref-
erence tree we can construct a set of maximal bipartitions
P for which we will adjust the score. Bipartitions in P are all
those bipartitions in Bip and the reference tree that are
not sub-bipartitions of any other bipartition. We do this
step, since any information contained in a sub-bipartition
is also contained in the super-bipartition. Specifically, the
implied gene tree (or species tree) for the super-biparti-
tion can also explain the gene tree for all taxa in the sub-
bipartition. How the frequency of occurrence of the sub-
bipartition affects the frequency of occurrence of the su-
per-bipartition is the focus of section “Correcting the
Support”.

We implicitly assume that each bipartition in P should
actually contain all taxa from S(T). To achieve this, we
keep the placement of the missing taxa ambiguous. For
this, we assume that each missing taxon has a uniform
probability to fall into either side of the bipartition.
Figure 1 gives an overview of the steps explained in the
following sections.

Correcting the Support
We aim to measure the support the given set of partial trees T̂
(or bipartition set Bip) induces for any of the bipartitions in P.
We call this the adjusted frequency or adjusted support. If Bip
and P only contain comprehensive bipartitions, the support
for any given bipartition is simply equal to its frequency of
occurrence.

In case of partial bipartitions, some thought must be given
to the process. Imagine a comprehensive bipartition B ¼ XjY
in P and a sub-bipartition D of B in Bip. Even though D does
not exactly match B, it also does not contradict it. More so, it
supports the super-bipartition by agreeing on a common sub-
topology.

Kobert et al. . doi:10.1093/molbev/msw040 MBE

1608

Deleted Text: ally
Deleted Text:  &ndash; 
Deleted Text: <bold>Internode certainty all</bold>
Deleted Text: &ndash;
Deleted Text: (<bold>tree certainty</bold>)
Deleted Text: (<bold>tree certainty all</bold>) 
Deleted Text: -
Deleted Text: Section 2.1
Deleted Text: 2.2
Deleted Text: Internode Certainty
Deleted Text: -
Deleted Text: ally
Deleted Text: -
Deleted Text: Section 2.1
Deleted Text: 2.1 


We distinguish whether the observed sub-bipartition
D from Bip is allowed to support any possible bipartition,
even those not observed in Bip and P, or just those we observe
in P. There seems to be no clear answer as to which of these
assumptions is more realistic. The choice is thus merely a
matter of definition.

Support of All Possible Bipartitions: Probabilistic Support
If we assume that an observed sub-bipartition from Bip sup-
ports all possible super-bipartitions, not just those in P, with
equal probability, the impact on the adjusted support of each
such super-bipartition from P (C(b)) quickly becomes negli-
gible. Consider the following example:

Let B ¼ XjY 2 P be a super-bipartition of D ¼ xjy 2 Bip
with jXnxj þ jYnyj ¼ k. This means that B contains k taxa
that D does not contain. There are 2k distinct bipartitions
with taxon set X [ Y that also contain the constraints set by
D. For k¼ 10 we already obtain 210 ¼ 1024 such bipartitions.
Thus, the support of D will only increase (adjust) the support
of B by <1 &. More formally, let RB be the set of sub-parti-
tions in Bip of the comprehensive bipartition B in P and fD the
support for a partial bipartition D in Bip. Then the adjusted
support for B, fB is

fB ¼
X
D2RB

fD

2ðjSðTÞj�nDÞ
;

where nD is the number of taxa in D, and jSðTÞj the number
of taxa in the reference tree. We use jSðTÞj in this formula,
since any bipartition in P is implicitly a comprehensive bipar-
tition. By this we mean that even though we do not explicitly
assign the remaining taxa from a partial bipartition B ¼ XjY
in P to X or Y, they must belong to one of these sets. Thus, the
missing taxa in D have 1=2 probability to belong to the same
set (X or Y) each.

The effect of such an adjustment scheme is that partial
bipartitions in Bip with fewer taxa affect the TC and IC scores
substantially less than bipartitions with more taxa. This can
also be observed in our computational results in section
“Results and Discussion”. Since fB is the sum over the observed
frequency times the probability of constructing the actual
bipartition implied by B, we call this the probabilistic adjust-
ment scheme.

The motivation behind the probabilistic adjustment scheme
is that a partial bipartition can stem from any full bipartition
that complies with the constraints induced by this partial bi-
partition. Furthermore, a frequency f> 1 for a partial biparti-
tion can emerge due to the existence of several different,
implied full bipartitions. Consider the following example: let B1

¼ ABYjXCD and B2 ¼ ABXjYCD be two bipartitions from two
distinct gene trees. Now, assume that taxa X and Y are not
present in these gene trees (e.g., due to incomplete species
sampling). In this case, the respective trees of these two gene
trees only contain the same partial bipartition Bp ¼ ABjCD.

By re-distributing the frequency of Bp via the probabilistic
adjustment scheme to all possible bipartitions, we distribute
the corresponding support among B1 and B2, as well as B3

¼ ABXYjCD and B4 ¼ ABjXYCD.

Support of Observed Bipartitions: Observed Support
Now suppose that B1 and B2 are in P since they are present in
some comprehensive or partial gene trees. Further, suppose
that the bipartitions B3 and B4 (as defined above) are not in P
since they were never observed in the tree set. Due to missing
data, other partial gene trees may produce bipartition Bp. In
the above example for the probabilistic support, the support
of Bp is not only distributed solely among B1 and B2, but also
among B3 and B4, even though B3 and B4 were not observed in
the tree set.

Thus, if we do not want to discard some of the fre-
quency of occurrence when calculating the adjusted sup-
port from partial bipartitions, we can distribute their
frequency of occurrence uniformly among comprehen-
sive bipartitions in P. When we assume that the prior
distribution of bipartitions in P is uniform, this process
is simple. For a given partial bipartition D in Bip, with
support fD, let SD be the set of bipartitions in P that are
super-bipartitions of D. Then, D contributes fD

jSDj support to
any B 2 SD. In other words, the adjusted support for each
full bipartition B is

fB ¼
X

D s:t: B2SD

fD
jSDj

: (7)

Since this distribution scheme distributes the support for
each sub-bipartition among bipartitions that we observed in
the tree set only, we call this the observed support distribution
scheme.

FIG. 1. Overview of the proposed methods.
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Support of Conflicting Bipartitions: Lossless Support
One problem with the adjustment strategy explained above is
that trees with more taxa typically have more bipartitions in P
than trees with fewer taxa. For an intuitive understanding of
why this can be problematic, consider the following example
(also illustrated in fig. 2). Let reference bipartitions be B̂1 ¼ A
BjXCD and B̂2 ¼ ABXjCD. Further, let Bip ¼ fB̂3; B̂4g with
B̂3 ¼ ABjCD and B̂4 ¼ ACjDB. We see that B̂3 is the only, and
exclusive, sub-bipartition of B̂1 and B̂2 in Bip. Further, bipar-
tition B̂4 conflicts with both reference bipartitions, and no
other bipartition is a super-bipartition of it. Let the biparti-
tions B̂3 and B̂4 both have a frequency of occurrence of f. If we
apply the above distribution scheme, bipartitions B̂1 and B̂2

have an adjusted frequency of f=2, while B̂4 has an adjusted
frequency of f. However, penalizing bipartitions from trees
with larger taxon sets seems unwarranted. Thus, we propose
a correction method that takes this into account. In order to
circumvent this behavior, we choose to distribute the fre-
quency of any sub-bipartition only to a set of conflicting
super-bipartitions (namely bipartitions in C(b)). We get the
following formula for the adjusted frequencies:

f b
B ¼

X
D s:t: B2SD

fD
jSD \ CðbÞj: (8)

where SD is defined as before. Note that the adjusted support
now depends on the set of conflicting bipartitions C(b), which
is defined by a branch b. This means that the adjusted sup-
port for a given (conflicting) bipartition must be calculated
separately for each reference bipartition B(b).

This distribution scheme allocates the entire frequency of
sub-bipartitions exclusively to these conflicting bipartitions.
Thus, the sum of adjusted frequencies for all conflicting bi-
partitions is exactly equal to the sum of frequencies of occur-
rence of the found sub-bipartitions. For this reason, we call
this the lossless adjustment scheme.

Note that C(b) is obtained via a greedy addition strat-
egy depending on the adjusted support of bipartitions.
Since the adjusted support according to the lossless ad-
justment scheme depends on C(b), we obtain a recursive
definition. To alleviate this, we simply precompute the

above explained probabilistic adjustment scheme to ob-
tain an adjusted support for each bipartition. The set of
conflicting bipartitions C(b) is then found with respect to
the probabilistically adjusted support values. Then, using
C(b), the actual lossless support adjustment is calculated
and replaces the probabilistic support in the calculation
of IC and ICA values.

For the above example, we get the following. Let fB̂1; B̂4g
be the set of conflicting bipartitions. Then, the support for B̂1

and B̂4 after applying the lossless distribution scheme is f for
both bipartitions, which is the desired behavior for this dis-
tribution scheme.

Finding Conflicting Bipartitions
To construct C(b) greedily, as proposed above, the support of
the bipartitions must be known. However, the lossless sup-
port adjustment scheme explained above is only reasonable
on a set of conflicting bipartitions (e.g., C(b) itself). To avoid
this recursive dependency, we first compute an adjusted sup-
port that does not depend on C(b) for this case. (Here, we use
the probabilistic adjusted support, as explained in section
“Correcting the Support”, to obtain an initial adjusted sup-
port.) Then, a greedy algorithm is used to approximate the set
C(b) with the highest sum of adjusted support with respect to
the initial adjustment. Once C(b) is obtained, the support for
all bipartitions in C(b) is adjusted using the new method,
which depends on a set of conflicting bipartitions. These
new values then replace the initial estimate via the first ad-
justment scheme.

Keeping the above in mind, we can easily construct C(b)
from P for every branch b in ÊðTÞ. Note that we also defined
the reference bipartition B(b) to be in C(b). Thus, we simply
start with B(b) and iterate through the elements of P in de-
creasing order of adjusted support (if we are to apply the
probabilistic or lossless distribution scheme, the probabilistic
adjusted support is used in this step. Similarly, the observed
adjusted support is used, if this distribution is desired) and
add every bipartition that conflicts with all other bipartitions
added to C(b) so far. During this process, the threshold given
in equation (3) is applied.

FIG. 2. Distribution of adjusted support for observed and lossless adjustment scheme.
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Given B(b), C(b), and Bip we can calculate the IC and ICA
values as defined in equations (2) and (4) under the proba-
bilistic or observed adjustment schemes. For the lossless ad-
justment scheme, the actual adjusted frequencies have to be
calculated separately for each bipartition in C(b) for all refer-
ence bipartitions b in this step.

Example
We now present a simple example for calculating the IC score
under the different adjustment schemes. To this end, we an-
alyze the tree set shown in figure 3. From these trees, we
initially extract the following bipartition lists:

Bip ¼ fABjCDEF; ABEjCDF; ABEDjCF;

ABjCD; ACjBEF; ACBjEF; ACjBEF;

ACFjBEg
P ¼ fABjCDEF; ABCDjEF; ABEFjCD;

ABEjCDF; ABEDjCF; ACjBEF;

ACFjBEg

¼: fR1; R2; R3; B2; B3; B5; B8g:

We can now immediately calculate the probabilistic and
observed support for bipartitions in P. As mentioned before,
the lossless adjustment can only be calculated on sets of
conflicting bipartitions. Let f p

B and f o
B be the probabilistic

and observed support of a bipartition B. Further, let
fB :¼ ðf p

B ; f
o
B Þ.

Then, as B1 in the figure is exactly identical to R1, and B4 is a
sub-bipartition of R1 with two missing taxa, f p

R1
¼ f1 þ 1

4 f2. At
the same time, R1 is the only super-bipartition of B1. However,
two other bipartitions, namely R3 and B2, are super-
bipartitions of B4. Thus, we obtain f o

R1
¼ f1 þ 1

3 f2. All other
bipartitions in P can be scored analogously to obtain the
following probabilistic and observed support value pairs:

fR1
¼ f1 þ

1

4
f2; f1 þ

1

3
f2

� �

fR2
¼ 1

2
f3; f3

� �

fR3
¼ 1

4
f2;

1

3
f

� �
2

fB2
¼ f1 þ

1

4
f2; f1 þ

1

3
f2

� �

fB3
¼ ðf1; f1Þ

fB5
¼ 1

2
f3 þ

1

2
f4; f3 þ f4

� �

fB8
¼ 1

2
f4; f4

� �
:

Given the above, we can now calculate the IC scores for
bipartitions R1, R2, and R3. Assume that we have the following
frequencies, f1 ¼ 3; f2 ¼ 4; f3 ¼ 6, and f4 ¼ 6. Bipartition
R1 ¼ ABjCDEF conflicts with both, B5 ¼ ACjBEF, and
B8 ¼ ACFjBE. However, since B5 and B8 do not conflict
with each other, only one of them is included in the list
of conflicting bipartitions. Since B5 has a higher adjusted sup-
port than B8, we include B5. If b is the branch that gives rise
to bipartition R1 in the reference tree, then CðbÞ ¼ fR1; B5g.
Under the probabilistic adjustment scheme we obtain:

�ICðbÞ ¼ 1þ
f1 þ 1

4 f2

f1 þ 1
4 f2

� �
þ 1

2 f3 þ 1
2 f4

� � log2

f1 þ 1
4 f2

f1 þ 1
4 f2

� �
þ 1

2 f3 þ 1
2 f4

� �
 !

þ
1
2 f3 þ 1

2 f4

f1 þ 1
4 f2

� �
þ 1

2 f3 þ 1
2 f4

� � log2

1
2 f3 þ 1

2 f4

f1 þ 1
4 f2

� �
þ 1

2 f3 þ 1
2 f4

� �
 !

¼ 1þ
3þ 1

4 4

3þ 1
4 4

� �
þ 3þ 3

log2

3þ 1
4 4

3þ 1
4 4

� �
þ 3þ 3

 !

FIG. 3. Example tree set for IC calculations.
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þ 6

3þ 1
4 4

� �
þ 6
þ log2

6

3þ 1
4 4

� �
þ 6

 !


0:0290

The negative value of IC(b) is due to the fact that, under
the observed adjustment scheme, B5 has a higher adjusted
support than R1. Similarly, under the observed adjustment
scheme we obtain:

�ICðbÞ ¼ 1þ
f1 þ 1

3 f2

f1 þ 1
3 f2

� �
þ ðf3 þ f4Þ

log2

f1 þ 1
3 f2

f1 þ 1
3 f2

� �
þ ðf3 þ f4Þ

 !

þ ðf3 þ f4Þ
f1 þ 1

3 f2
� �

þ ðf3 þ f4Þ
log2

ðf3 þ f4Þ
f1 þ 1

3 f2
� �

þ ðf3 þ f4Þ

 !

¼ 1þ
3þ 1

3 4

3þ 1
3 4

� �
þ 6þ 6

log2

3þ 1
3 4

3þ 1
3 4

� �
þ 6þ 6

 !

þ 6þ 6

3þ 1
3 4

� �
þ 6þ 6

þ log2

6þ 6

3þ 1
3 4

� �
þ 6þ 6

 !


0:1653:

Given C(b), we can now also compute the lossless adjusted
support. We obtain a support of f1 þ f2 ¼ 7 for R1, and a
support of f3 þ f4 ¼ 6þ 6 for B5. With these numbers at
hand, we can calculate the IC score under lossless adjustment
as:

�ICðbÞ ¼ 1þ 7

7þ 12
log2

7

7þ 12

� �
þ 12

7þ 12
log2

12

7þ 12

� �


0:0505:

This can be done analogously for bipartitions R2 and R3.
For R2 ¼ ABCDjEF we observe three conflicting biparti-
tions: B2 ¼ ABEjDCF; B3 ¼ ABEDjCF, and B8 ¼ ACFjBE.
The corresponding frequencies for the above bipartitions
are:

fR2
¼ 1

2
f3; f3

� �
¼ ð3; 6Þ

fB2
¼ f1 þ

1

4
f2; f1 þ

1

3
f2

� �
¼ 4; 4þ 1

3

� �

fB3
¼ ðf1; f1Þ ¼ ð3; 3Þ

fB8
¼ 1

4
f4; f4

� �
¼ 1þ 1

2
; 6

� �
:

Under the probabilistic support, we thus obtain
CðbÞ ¼ fR2; B2g, where b is the branch that corresponds
to the reference bipartition with R2 ¼ BðbÞ. However, the
set of conflicting bipartitions is different for the observed

adjustment scheme. Here, CðbÞ ¼ fR2; B8g. As a conse-
quence, we obtain the following IC scores:

�ICðbÞ ¼ 1þ 3

3þ 4
log2

3

3þ 4

� �
þ 4

3þ 4
log2

4

3þ 4

� �


0:0148

under the probabilistic scheme, and

ICðbÞ ¼ 1þ 6

6þ 6
log2

6

6þ 6

� �
þ 6

6þ 6
log2

6

6þ 6

� �

¼ 0

under the observed adjustment scheme. The adjusted fre-
quencies for bipartitions R2 and B2, under the lossless adjust-
ment scheme, are f3 ¼ 6 and f1 þ f2 ¼ 7, respectively. Thus,
the IC score is

�ICðbÞ ¼ 1þ 6

6þ 7
log2

6

6þ 7

� �
þ 7

6þ 7
log2

7

6þ 7

� �


0:0043:

For reference bipartition R3 ¼ ABEFjCD, there is only one
conflicting bipartition in P, namely B3 ¼ ABEDjCF. Thus, the
calculation of IC(b) is straight-forward (as before b is the
branch inducing the reference bipartition: R3). Under the
probabilistic scheme we obtain:

�ICðbÞ ¼ 1þ 1

1þ 3
log2

1

1þ 3

� �
þ 3

1þ 3
log2

3

1þ 3

� �


0:1887:

Under the observed adjustment we get:

�ICðbÞ ¼ 1þ
4
3

4
3þ 3

log2

4
3

4
3þ 3

 !
þ 3

4
3þ 3

log2

3
4
3þ 3

 !


0:1095:

Finally, under the lossless adjustment scheme we obtain:

ICðbÞ ¼ 1þ 4

4þ 3
log2

4

4þ 3

� �
þ 3

4þ 3
log2

3

4þ 3

� �


0:0148:

Results and Discussion
For implementing the methods described in section “New
Approaches: Adjusting the IC”, we used the framework of
the RAxML (Stamatakis 2014) software (version 8.1.20).

The resulting proof of concept implementations and all
data sets used for our experiments in sections “Accuracy of
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the Methods” and “Empirical Data Analyses” (as well as the
above example of section “Example”) are available at https://
github.com/Kobert/ICTC (last accessed March 14, 2016).
Usage of the software is explained there as well. The proba-
bilistic and lossless distribution schemes are also included in
the latest production level version of RAxML (https://github.
com/stamatak/standard-RAxML, version 8.2.4, last accessed
March 14, 2016).

We chose to omit the implementation for the observed
support adjustment from the official RAxML release, as it
does not seem to offer any advantages over the other two
methods.

Accuracy of the Methods
In this section, we assess the accuracy of the proposed ad-
justment schemes. For this reason, we re-analyze the yeast
dataset originally presented in Salichos and Rokas (2013).
The comprehensive trees in the dataset contain 23 taxa.
After applying some filtering techniques to the genes, we
obtained a set of 1,275 gene trees. In the filtering step, genes
are discarded if (i) the average sequence length is <150
characters, or (ii) more than half the sites contain indels
after alignment. In Salichos and Rokas (2013), a slightly
smaller subset of 1,070 trees is used.

To understand which adjustment scheme better recovers
the underlying truth, we randomly prune taxa from this
comprehensive tree set and compare the results between
adjustment schemes. Evidently, a “good” adjustment
scheme will yield IC and ICA values that are as similar as
possible to the IC/ICA values of the comprehensive tree set.
Thus, we consider the IC/ICA on the comprehensive tree set
as the correct values.

For each of the 1,275 trees, we select and prune a random
number of taxa. We draw the numbers of taxa to prune per
tree from a geometric distribution with parameter p. We use
a geometric distribution because the expectation is that
thereby we will retain p � 1275 comprehensive trees, for which
0 taxa have been pruned. An additional restriction is that
each pruned tree must comprise at least four taxa to com-
prise at least one nontrivial bipartition. Given the number of
taxa we wish to prune, we select taxa to prune uniformly at
random using the newick-tools toolkit (https://github.com/
xflouris/newick-tools, last accessed March 14, 2016).

Using different values for p we generate four partial tree
sets. For each of these tree sets, we conduct analyses including
all 1,275 trees (comprehensive and partial). We compare the
results to the IC/ICA scores for 1,275 comprehensive trees.

Similarly, in a second round of experiments we compare
the results obtained by removing all comprehensive trees
from the tree sets to the reference IC and ICA scores for
the comprehensive tree set.

To quantify which correction method yields more accurate
results, we define the following distance/accuracy measure. Let
IC(b) be the inter node certainty for branch b if no taxa are
pruned. Similarly, let ICAðbÞ be the IC for the same branch b
under an adjustment scheme for a dataset with partial gene trees.
The accuracy D of an adjustment scheme is then defined as:

D ¼ 1

N

X
b internal branch

in reference tree

jjICðbÞj � jICAðbÞjj
maxfjICðbÞj; jICAðbÞjg; (9)

where N is the number of internal branches in the reference
tree (N¼ 20 for our test dataset). The measure D is the av-
erage, weighted, component-wise difference between the two
results. A low value of D indicates high similarity between the
results. Furthermore, by definition, D ranges between 0 and 1.

Table 1 depicts this distance D for the different tree sets
and adjustment schemes we tested. As we can see, the prob-
abilistic and observed adjustment methods are more accurate
than the lossless method.

In table 2, we observe that the probabilistic and observed
adjustment schemes are not more accurate than the lossless
method for tree sets that only contain partial gene trees.
From table 3, it also becomes evident that the lossless adjust-
ment scheme tends to overestimate the IC and ICA values less
frequently than the two alternative methods.

Another important observation is that, in most cases, ac-
curacy decreases for any adjustment scheme when analyzing
tree sets that exclusively contain partial gene trees. Intuitively,
this can be explained by the fact that (i) we have less trees to
base our analysis on, and (ii) only the reference bipartitions
now contain all 23 taxa. Since a partial bipartition distributes
its frequency among all its super-bipartitions in P, it is intu-
itively clear that bipartitions with more taxa are more likely to
accumulate distributed frequencies from more sub-biparti-
tions than bipartitions with fewer taxa. Conflicting biparti-
tions (with<23 taxa) are thus not assigned sufficient support
to compete with the reference bipartitions. This behavior can
be observed in table 3. There, we display the numbers of times
the certainty in a branch under the different adjustment
schemes was higher than the certainty obtained from the
comprehensive trees.

Empirical Data Analyses
In this section, we present an additional, yet different, analysis
of the above yeast dataset. We do not only use the 1,275
comprehensive trees, but now also include additional partial
gene trees. After applying the aforementioned filters again
(see section “Accuracy of the Methods”), the tree set com-
prises 2,494 trees. The comprehensive trees are the same
1,275 trees as in section “Accuracy of the Methods”. The
remaining 1,219 trees are partial trees. The number of taxa
in these partial trees ranges from 4 to 22 (see fig. 4 for the
exact distribution of taxon numbers over partial gene trees).
Unlike in section “Accuracy of the Methods”, these partial
trees are not simulated, but the result of phylogenetic anal-
yses on the corresponding gene alignments.

In addition, we also analyze a gene tree set from avian
genomes. The data were previously published in Jarvis et al.
(2015). Here, we analyze a subset of 2,000 gene trees with up
to 48 taxa. Of these trees, 500 contain the full 48 taxa while
the remaining trees contain either 47 taxa (500 trees) or 41–
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43 taxa (1,000 trees). The taxon number distribution over
trees is provided in figure 5.

First, we report the results for the yeast dataset. We pre-
sent the IC and ICA scores for all internal branches under the
three adjustment schemes and compare them to the scores
obtained for the subset of comprehensive trees. Figure 6
shows the topology of the reference tree. Tables 4 and 5
show the respective IC and ICA values.

The values for the individual IC and ICA scores can be
higher for the lossless adjustment scheme than for the prob-
abilistic adjustment scheme and the observed adjustment
scheme. However, the relative TC and TCA values suggest

that the lossless adjustment attributes a lower certainty to
individual bipartitions as well as the entire tree. The actual
values are 0.298 for the relative TC score and 0.322 for the
relative TCA score for the lossless adjustment; 0.389 and 0.399
for the probabilistic adjustment; and 0.339 and 0.364 for the
observed adjustment scheme.

By comparing the 23-taxa yeast species tree values without
adjustment against the three approaches that contain both
complete and missing data (probabilistic, observed, and loss-
less), we can conclude that, overall, the values appear very
similar and they tend to provide additional support for the
reference topology. Among the adjustment strategies, the

Table 1. Differences D in IC/ICA Scores, between the Scores Calculated by the Adjustment Schemes and the Reference Scores for the
Comprehensive Tree Set.

IC ICA
P 5 0.1 P 5 0.3 P 5 0.5 P 5 0.7 P 5 0.1 P 5 0.3 P 5 0.5 P 5 0.7

Probabilistic 0.31 0.20 0.18 0.08 0.26 0.18 0.18 0.12
Observed 0.42 0.27 0.15 0.07 0.39 0.25 0.19 0.08
Lossless 0.65 0.44 0.24 0.17 0.60 0.44 0.28 0.15

Table 2. Differences D in IC/ICA Scores, between the Pruned Tree Sets Only Containing Partial Gene Trees and the Reference Values.

IC ICA
P 5 0.1 P 5 0.3 P 5 0.5 P 5 0.7 P 5 0.1 P 5 0.3 P 5 0.5 P 5 0.7

Probabilistic 0.50 0.52 0.53 0.53 0.47 0.48 0.50 0.50
Observed 0.50 0.51 0.53 0.53 0.45 0.48 0.50 0.49
Lossless 0.61 0.48 0.50 0.52 0.46 0.43 0.47 0.49

Table 3. Fraction of Branches for which the Adjusted IC/ICA Scores Are Higher than the IC/ICA Reference Scores.

IC ICA
p 5 0.1 p 5 0.3 p 5 0.5 p 5 0.7 p 5 0.1 p 5 0.3 p 5 0.5 p 5 0.7

All trees
Probabilistic 0.4 0.35 0.35 0.15 0.25 0.25 0.2 0.15
Observed 0.15 0.3 0.4 0.2 0.2 0.2 0.2 0.1
Lossless 0.1 0.25 0.15 0.25 0.2 0.2 0.25 0.1

Partial trees
Probabilistic 0.8 0.8 0.85 0.85 0.8 0.8 0.85 0.85
Observed 0.65 0.75 0.8 0.85 0.65 0.75 0.8 0.85
Lossless 0.3 0.65 0.75 0.8 0.25 0.65 0.75 0.8

NOTE.—The top table contains values for all three adjustment schemes if all trees (comprehensive and simulated partial) are included in the analysis. The bottom table shows
the values for all three methods if only partial trees are analyzed.

FIG. 4. Distribution of taxon number over trees in the yeast data. FIG. 5. Distribution of taxon number over trees in the avian data.
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probabilistic adjustment yields values that are closest to those
obtained by the analysis of only comprehensive trees. This is
expected, since for the probabilistic adjustment, smaller bi-
partitions contribute less to the overall scores than larger
bipartitions. Full bipartitions/trees are thus affecting the out-
come most under this adjustment scheme.

Previous ambiguous bipartitions, concerning for example
the placement of species like Saccharomyces castellii (conf.
bipartitions 9 and 8), Candida lusitaniae (conf. bipartitions 20
and 19), Debaryomyces hansenii (bipartition 18), and
Kluyveromyces lactis (bipartition 3), remain equally uncertain,
showing very similar (close to 0) IC and ICA values.

The split between the Candida and Saccharomyces clade
(bipartition 20) is well documented in the literature
(Fitzpatrick et al. 2006; Dujon 2010; Salichos and Rokas
2013). The same holds for bipartition 8, the Saccharomyces
‘sensu stricto’ clade (Rokas et al. 2003; Kurtzman and Robnett
2006; Salichos and Rokas 2013). Thus, a high certainty for
these bipartitions is expected. As we can see in table 4, the
analysis of only comprehensive trees supports these two bi-
partitions with IC values of 0.99 for bipartition 20, and 0.95 for
bipartition 8. However, the generally conservative lossless dis-
tribution approach, as well as the observed support adjust-
ment scheme, provide reduced certainty for these two

FIG. 6. Bipartition numbers corresponding to the presented tables, for the yeast data set. Taxon key: Kwal: Kluyveromyces waltii, Kthe:
Kluyveromyces thermotolerans, Sklu: Saccharomyces kluyveri, Klac: Kluyveromyces lactis, Egos: Eremothecium gossypii, Zrou: Zygosacharomyces
rouxii, Kpol: Kluyveromyces polysporus, Cgla: Candida glabrata, Scas: Saccharomyces castellii, Sbay: Saccharomyces bayanus, Skud: Saccharomyces
kudriavzevii, Smik: Saccharomyces mikatae, Spar: Saccharomyces paradoxus, Scer: Saccharomyces cerevisiae, Clus: Candida lusitaniae, Cdub:
Candida dubliniensis, Calb: Candida albicans, Ctro: Candida tropicalis, Cpar: Candida parapsilosis, Lelo: Lodderomyces elongisporus, Psti: Pichia
stipitis, Cgui: Candida guilliermondii, Dhan: Debaryomyces hansenii

Table 4. IC Scores for All Nontrivial Bipartitions Multiplied by 100 and Rounded Down.

Taxa Adjustment Bip. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

23 Taxa None 95 29 9 3 48 27 5 95 2 14 1 56 94 75 71 71 7 1 <1 99
4–23 Taxa Probabilistic 89 28 8 3 46 28 6 91 2 15 1 52 92 72 65 70 7 2 <1 92
4–23 Taxa Observed 89 12 12 3 52 24 4 58 1 14 2 36 91 69 64 69 7 2 1 57
4–23 Taxa Lossless 82 2 15 2 39 26 5 41 <1 10 3 15 89 61 56 65 7 1 <1 68

NOTE—The bipartition labels are shown in figure 6. The dataset can either consist of only full trees (23 taxa), or partial and full trees (4–23 taxa).

Table 5. ICA Scores for All Nontrivial Bipartitions Multiplied by 100 and Rounded Down.

Taxa Adjustment Bip. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

23 Taxa None 95 23 7 8 48 25 14 95 3 12 2 45 94 75 71 71 7 8 9 98
4–23 Taxa Probabilistic 89 21 6 13 46 26 14 91 3 11 1 38 92 72 60 70 25 7 11 92
4–23 Taxa Observed 89 15 9 12 52 24 12 58 2 11 11 34 91 69 59 69 24 7 11 57
4–23 Taxa Lossless 82 13 10 7 39 27 13 46 3 9 8 29 89 61 49 65 7 5 5 68

NOTE—The bipartition labels are shown in figure 6. The datasets again either consist of only full trees (23 taxa), or partial and full trees (4-23 taxa).
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bipartitions; the divergence of Candida from the
Saccharomyces clade (bipartition 20) is, for the lossless distri-
bution scheme, depicted with an IC value of 0.68, and the
Saccharomyces ‘sensu stricto’ clade (bipartition 8) obtains an
IC score of 0.41; the observed adjusted support for these bi-
partitions is reduced to 0.57 for bipartition 20, and 0.58 for
bipartition 8. The probabilistic adjusted IC values for the
branches inducing these splits are 0.92 for bipartition 20,
and 0.91 for bipartition 8. A similar behavior can be seen
for the ICA values.

In addition, under the lossless adjustment, the previously
resolved placement of Zygosacharomyces rouxii (a clade with
relatively low gene support frequency of 62% in Salichos and
Rokas 2013) remains unresolved with IC and ICA values of
0.15 and 0.29 respectively.

Next, we analyze the behavior of the adjustment schemes
if only partial trees are provided. See tables 6 and 7.

The relative TC (and TCA) that result from these calcula-
tions are 0.668 (0.651) for the probabilistic distribution, 0.499
(0.532) for the observed distribution, and 0.394 (0.407) for the
lossless distribution scheme. The relative TC and TCA without
correction (obtained from the values shown in tables 4 and
5), for trees with full taxon sets, are 0.406 and 0.409. The
higher TC and TCA values obtained for the former two ad-
justment methods suggest that these approaches are not
providing the conflicting bipartitions with a sufficiently ad-
justed support to compare with the reference bipartition. The
reference bipartitions always contain 23 taxa for this dataset.
Now however, no conflicting bipartition can have that many
taxa, as comprehensive trees are not included in the above
analysis of only partial trees.

Analyzing the second dataset with a total of 2,000 trees
yields similar results. See table 8 for the TC and TCA values for
this dataset. Again, the values of the analysis restricted to a
comprehensive tree set are compared with the results ob-
tained when including partial gene trees, and restricting the
analysis to partial gene trees. Specifically, we see that the
probabilistic support for analyzing the full dataset, of 2,000
trees, again gives TC values more closely in accordance with
the values obtained for the analysis restricted to the 500 full
trees than the lossless adjustment scheme.

Here, the tree set does not support the reference tree well
(as evident by the negative TC). At the same time, the TCA
under the probabilistic adjustment scheme is actually
positive.

For this dataset, the discrepancy can be explained by the
fact that the most frequent conflicting bipartitions are not
supported by much more than the second most supported
conflicting bipartition. If the support for the reference bipar-
tition is much smaller than that of the most frequent con-
flicting bipartition, the internode-certainty will approach�1.
Let the support for the most frequent conflicting bipartition
be f. As the support of the second most frequent conflicting
bipartition approaches f, the ICA value tends toward 0.0. If the
reference bipartition is the bipartition with the highest ad-
justed support in C(b), this effect is less pronounced.

For the analysis of partial bipartitions only, we again see
that the conflicting bipartitions are not as well supported
under any tested adjustment scheme. Again, the lossless ad-
justment scheme yields decreased certainty. Thus, we advo-
cate that this adjustment scheme is used if one wants to
reduce the risk of overestimating certainties.

Conclusion
We have seen that the inclusion of partial trees into any
certainty estimation is beneficial, as the partial trees do con-
tain information that is not necessarily contained in the full/
comprehensive trees. This is evident by the different TC and
TCA scores we obtained for the empirical datasets.

Further, the selection of the most appropriate adjustment
scheme depends on the data at hand. The lossless adjustment

Table 6. IC Scores for All Nontrivial Bipartitions Multiplied by 100 and Rounded Down.

Taxa Adjustment Bip. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

23 Taxa None 95 29 9 3 48 27 5 95 2 14 1 56 94 75 71 71 7 1 <1 99
4–22 Taxa Probabilistic 93 64 61 58 72 66 59 85 39 46 43 64 95 77 83 78 56 49 47 93
4–22 Taxa Observed 89 23 58 36 80 75 70 80 1 1 <1 20 93 79 82 78 54 13 16 43
4–22 Taxa Lossless 80 24 58 12 66 57 32 68 24 12 12 2 88 54 42 49 43 12 38 7

NOTE—The bipartition labels are shown in figure 6. Here, the dataset only contains trees with partial taxon sets.

Table 7. ICA Scores for All Nontrivial Bipartitions Multiplied by 100 and Rounded Down.

Taxa Adjustment Bip. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

23 Taxa None 95 23 7 8 48 25 14 95 3 12 2 45 94 75 71 71 7 8 9 98
4–22 Taxa Probabilistic 93 64 54 51 72 66 59 85 40 46 34 58 95 77 83 78 56 43 45 93
4–22 Taxa Observed 89 23 48 33 80 75 70 80 17 20 18 20 93 79 82 78 54 29 24 43
4–22 Taxa Lossless 80 27 58 24 66 57 29 68 24 11 12 2 88 54 42 49 43 12 38 22

NOTE—The bipartition labels are shown in figure 6. Again, the dataset only contains trees with partial taxon sets.

Table 8. IC and ICA Scores for Different Subsets of the Data Set for the
Probabilistic and Lossless Distribution Schemes.

Taxa Adjustment TC TCA

48 taxa None �3.14 �3.17
41–48 Taxa Probabilistic �2.44 7.72
41–48 Taxa Lossless �5.05 �1.35
41–47 Taxa Probabilistic 9.34 15.75
41–47 Taxa Lossless 6.01 6.01
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scheme is most appropriate for tree sets that do not contain
any comprehensive trees, since it yields more conservative
certainty estimates. For gene tree sets that contain compre-
hensive as well as partial trees, the probabilistic and observed
adjustment schemes yield results that are more accurate with
respect to the reference IC and ICA values.

In general, we advocate the inclusion of (some) compre-
hensive trees in any analysis that also includes partial trees.
This is motivated by the fact that the pruned datasets that
contained comprehensive trees generally yielded more accu-
rate results than tree sets not containing comprehensive
trees.
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