
Fang et al. Experimental & Molecular Medicine (2021) 53:772–787
https://doi.org/10.1038/s12276-021-00617-8 Experimental & Molecular Medicine

REV I EW ART ICLE Open Ac ce s s

Slimy partners: the mucus barrier and gut
microbiome in ulcerative colitis
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Abstract
Ulcerative colitis (UC) is a chronic recurrent intestinal inflammatory disease characterized by high incidence and young
onset age. Recently, there have been some interesting findings in the pathogenesis of UC. The mucus barrier, which is
composed of a mucin complex rich in O-glycosylation, not only provides nutrients and habitat for intestinal microbes
but also orchestrates the taming of germs. In turn, the gut microbiota modulates the production and secretion of
mucins and stratification of the mucus layers. Active bidirectional communication between the microbiota and its
‘slimy’ partner, the mucus barrier, seems to be a continually performed concerto, maintaining homeostasis of the gut
ecological microenvironment. Any abnormalities may induce a disorder in the gut community, thereby causing
inflammatory damage. Our review mainly focuses on the complicated communication between the mucus barrier and
gut microbiome to explore a promising new avenue for UC therapy.

Introduction
In recent years, the incidence of ulcerative colitis (UC),

an inflammatory bowel disease (IBD) of unknown etiol-
ogy, has been increasing globally, especially in some newly
industrialized countries, including India and China1.
Microbial infections such as those by Clostridium difficile
have been described as a mono-associated cause of UC
flare-ups2; however, there is growing evidence that UC is
an overly robust mucosal immune response to dysbiosis of
particular gut flora that is characterized by abnormal
microbiota composition and bacterial products3,4. A
balanced microbiome community is vital for maintaining
mucus barrier homeostasis, which involves a dynamic
balance of production, secretion, expansion, and proteo-
lysis of mucus components. Commensal bacteria and
their fermentation products (short-chain fatty acids,
SCFAs) are implicated in the regulation of the production
and secretion of mucin 2 (Muc2), the major component of

mucus, in sentinel goblet cells (sGCs) at crypt opening5

(Fig. 1a). The gut microbiome also influences the mucosal
structure. Carbon dioxide (CO2) generated from
β-oxidation of SCFAs in colonocytes is converted by
carbonic anhydrase to bicarbonate (HCO3

−), which in
turn dictates the stratification of the mucus layers, such as
the unfolding of mucin and resultant inner-towards-outer
conversion of the mucus layer6 (Fig. 1b).
While the secreted, attached, hydrated, and stratified

mucus barrier is mostly considered a simple lubricant
layer overlying the epithelium, it also provides an envir-
onment for bacterial colonization and nourishes the
commensal microbiota, thereby stabilizing the microbial
community and promoting symbiotic interactions,
resulting in microbial commensalism7. Mucus barrier
abnormalities, including depleted upper crypt GCs, bac-
terial penetration of the inner mucus layer, and decreased
core mucus components, such as FCGBP (human IgGFc
binding protein), CLCA1 (calcium-activated chloride
channel regulator 1), and ZG16 (zymogen granule protein
16), in active UC support the notion that an impaired
mucus barrier may occur prior to the onset of inflam-
mation in the pathogenesis of UC8. Environmental factors
such as diet and lifestyle factors may shape the human gut
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microbiome composition, thereby influencing mucus
homeostasis and the development of intestinal inflam-
matory lesions9. Dietary fiber-deprived intestinal micro-
biota consume components of the mucus layer, leading to
intestinal barrier dysfunction and increased susceptibility
to pathogens and colitis occurrence10. It is obvious that
the interplay between the microbiota and its ‘slimy’
partner, the mucus barrier, in the gut is constitutive.
Therefore, any attempt to simply explore the underlying
mechanism of UC from any single part of the biosystem
(the mucus barrier and gut microbiota) is unwise. Cur-
rently, the development of microbiome-targeted ther-
apeutic strategies for mild to moderate UC is growing11,
and mucus barrier-associated colonization resistance
involves commensal bacteria out-competing foreign
microbes for space, trophic resources and bactericidal
factors in the mucus barrier and decreasing the efficacy of
fecal microbiome transplantation (FMT) therapy. This

review provides insight into mucus barrier-gut micro-
biome interactions.

The gut microbiome: orchestrator of the mucus
barrier
The gut microbiome adheres to mucus
Compared with the small intestine, the colonic epithe-

lium is covered by mucus layers composed of a firm inner
layer and loose outer layer that function to separate
microbes from epithelial cells and provide a diffusion
barrier to maintain a balanced community. The outer
mucus layer is colonized with an abundance of com-
mensal microbes, while the inner layer is relatively sterile
(Fig. 1a). The combination of the mucus barrier and gut
microbiome, composed of approximately 100 trillion
symbiotic microbial cells and more than 9000
carbohydrate-degrading enzymes, is described as “the last
human body organ”12. Commensal bacteria and

Fig. 1 The gut microbiome acts as orchestrator of the mucus barrier. a During homeostasis, the gut microbiome at the outer mucus layer
modulates mucin production and secretion and mucus stratification mediated by HCO3

− to maintain mucus barrier integrity. Dysbiosis induces
impairment of the mucus barrier, accompanied by increased epithelium damage, bacterial translocation, goblet cell depletion, and host
inflammation. b Gut microbiome-generated short-chain fatty acids enter colonocytes and are oxidized to generate CO2 that can be converted by
carbonic anhydrase into HCO3

−, which is the ideal physiological solution for precipitating calcium and raising the pH at the epithelial surface. This in
turn promotes the stratification of the mucus layer. c Intestinal bacteria have evolved several strategies to adhere to the mucus barrier, including the
use of adhesins, flagella, and fimbriae; achieve cross-feeding by mucin degradation; and maintain colonization resistance by means of a commensal
type VI secretion system.
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pathogens have evolved several strategies to occupy a
narrowly defined niche within the mucus barrier.
The first strategy is to adhere to the mucus by surface

display of adhesins and extracellular appendages (fimbria)
that bind to specific mucin glycans (Fig. 1c). Mucus-
binding proteins (MUBs) are one class of effectors
involved in the adherence of lactobacilli, abundant com-
mensal bacteria in the human gut and the best studied
example of mucus adhesins that confine commensal/
probiotic bacteria to the outer mucus layer13. Phylogen-
etically, adhesins are proteins characterized by the MUB
domain, which shares homology with the Pfam-MucBP
(mucin-binding protein) domains14. MUB and MucBP
domain-containing proteins contain a C-terminal recog-
nition motif (LPxTG) that is recognized by a family of
enzymes called sortases for covalent attachment to pep-
tidoglycan of the bacterial cell wall and an N-terminal
region for protein secretion, in addition to a signal peptide
(Table 1). A number of proteins containing MUB
homologs and MucBP domains have been found; for
instance, the mucin/mucin-binding protein of Lactoba-
cillus fermentum BCS87 (32-Mmubp), S-layer protein in
L. acidophilus (SlpA), MucBP-containing mannose-spe-
cific adhesin (Msa), and elongation factor Tu (EF-Tu) are
highly prevalent in lactobacilli naturally existing in
intestinal niches. Competitive adhesion studies have
shown that MUB interacts with specific muco-
oligosaccharides and that MUB binding has little to no
host specificity regarding mucus components15. The sec-
ond strategy of mucus adhesion is mediated by fimbrial
adhesion of commensal bacteria. For example, Escherichia
coli, a commensal bacterium residing in the human gut,
has the potential to act as an opportunistic pathogen. E.
coli strains use extracellular fimbriae, which have a two-
domain organization: lectin at the most external N-
terminal domain and pilin at the C-terminus connecting
to the rest of the fimbria. The affinity and specificity of the
adhesion by fimbrial proteins are governed by recognition
of mucus glycan epitopes, which are age-, organ-, and
species-specific16. However, for many bacterial pathogens,
binding to mucus is a crucial step in their colonization.
Flagella, composed of flagellin arranged in helical chains,
are an important evolved strategy for mucus adhesion
during infection by some pathogens, and they play a cri-
tical role in biofilm formation17. Enterotoxigenic E. coli
(ETEC) strains are major causes of morbidity and mor-
tality due to diarrheal illness in developing countries.
ETEC-secreted pathovar-specific proteins (such as EtpA,
a two-partner adhesin conserved within the ETEC
pathovar) can interact with both the tips of ETEC flagella
and mucus glycans to form molecular bridges promoting
bacterial adhesion and intestinal colonization of patho-
gens18. Flagella are used as virulence factors by many
enteropathogenic bacteria (e.g., Listeria monocytogenes,

Vibrio cholerae, E. coli, and Salmonella typhimurium) to
traverse the mucus barrier, resulting in infection. Flagella-
driven motility propels pathogens towards the epithelium
and accelerates disease progression19. Many human
pathogens, including C. difficile, pathogenic E. coli, Neis-
seria meningitidis, and Streptococcus pneumoniae, also
employ phase-variable flagella and fimbriae to evade the
host immune system and promote host colonization,
persistence, motility, and virulence20.

The gut microbiome feeds on mucin glycans
After adhesion to mucins, colonization by colonic bac-

teria is initiated, while the degradation of diverse and
structurally complex mucin glycans depends on the
cooperative action of sialidases, sulfatases, proteases, and
glycoside hydrolases (GHs) encoded by the genomes of
mucin-degrading bacteria (Fig. 1c). Mucin-degrading
carbohydrate-active enzyme (CAZyme) families include
sialidases (GH33), fucosidases (GH29, GH95), blood-
group endo-β-1,4-galactosidases (GH98), mucin core
GHs (GH101, GH129, GH84, GH85, and GH89), and
sulfatases (GH20, GH2, GH42, unclassified)21 (Table 2).
Carbohydrate-binding modules (CBMs) in CAZymes
mediate their adherence to carbohydrate substrates in
mucin polymers22.
The adult gut microbiome consists of hundreds to

thousands of different species of bacteria, with two pre-
dominant bacterial phyla: gram-positive Firmicutes and
gram-negative Bacteroidetes23. Bacteroides spp. are pro-
minent members of this microbial ecosystem and widely
studied commensal bacteria24. They degrade a vast range
of dietary and endogenous glycans by utilizing a complex
transenvelope machinery known as starch utilization
system (Sus)-like systems, which are encoded by cor-
egulated clusters of genes known as polysaccharide utili-
zation loci (PULs)25. Bacteroides spp., in particular B.
thetaiotaomicron containing PULs, encode highly specific
CAZymes and degrade a wide range of glycan substrates,
thereby stratifying the niche space with different orders of
substrate preferences, which is why they are sometimes
referred to as “generalists”26. Akkermansia muciniphila
can hydrolyze up to 85% of mucin structures using dif-
ferent enzyme combinations27, strengthen intestinal epi-
thelial integrity, and fortify damaged gut barriers28.
Interestingly, the abundances of A. muciniphila in both
fecal samples and mucosal biopsies of UC patients are
markedly reduced29. Butyrate, an SCFA produced by
commensal bacteria, is the main energy source of colo-
nocytes and exerts various beneficial effects, such as
enhancement of intestinal barrier function. The produc-
tion of butyrate using complex mucin glycans as a sub-
strate is generally restricted to some Clostridium clusters
(IV and XIVa) from the Firmicutes phylum. In addition,
the butyrogenic effect of A. muciniphila30 is related to its
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cross-feeding with mucus-degrading Clostridium clusters
(IV and XIVa).
Notably, continual glycan degradation mediated by

bacterial glycosidases may cause the disappearance of
host-specific glycan epitopes and degradation of the
protein backbone (Table 1). Dietary fiber-deprived
intestinal microbiota have been shown to actively forage
on the mucus layer, leading to dysfunction of the intest-
inal barrier and increased host susceptibility to pathogens
and inflammation10 (Fig. 1c). It was reported that patho-
genic Proteobacteria and Firmicutes species, including
Salmonella enterica serovar Typhimurium, E. coli, and C.
difficile, can benefit from cross-feeding through con-
sumption of sialic acids from mucin molecules released by
B. thetaiotaomicron. The expansion of pathogens during
colitis is directly dependent on sialic acid released from
host glycans catalyzed by sialidases31. Oral administration
of a sialidase inhibitor and low levels of intestinal α2,3-
linked sialic acid decreased E. coli outgrowth and colitis
severity in mice32. The cleavage site of the zinc metallo-
protease zmpB from C. perfringens was established to be
next to the mucus glycoprotein backbone (Ser and/or Thr
residues), with optimal splicing of GlcNAcβ1–3
(Neu5Acα2–6), GalNAcα1, or GalNAcα1 (α2,6-sialylated
core 1 or core-3 O-glycan)33.

The gut microbiome modulates mucus layer dynamics
Mucin production was reported to be induced by the

gut microbiome. SCFAs such as acetate, propionate, and
butyrate, the fermentation products of commensal bac-
teria, enhance the synthesis of mucin and stimulated
mucin secretion in mice34. Moreover, the stimulating
effect of butyrate on Muc2 expression is mediated via AP-
1 at the Muc2 promoter35. Lactic acid-based probiotics,
containing Lactobacilli and Bifidobacteria, increase
mucin production in human intestinal epithelial cells and
block enteropathogenic E. coli invasion and adherence
in vitro36. Bifidobacterium species colonizing the intest-
inal mucus barrier modulate mucus production and
expulsion by increasing the expression of GC markers
such as Krüppel-like factor 4 (KLF4), trefoil factor 3
(TFF3), resistin-like molecule-beta (Relm-β), and Muc
237. A randomized, placebo-controlled trial tested the
efficacy and safety of a highly concentrated mixture of
probiotic bacterial strains (VSL#3) in active UC and its
role in the maintenance of UC remission38 and demon-
strated that the protective effect of VSL#3 was related to
enhanced colonic mucin expression and secretion in vivo
and in vitro39. Several bacterial Toll-like receptor (TLR)
ligands or effectors (e.g., lipopolysaccharide (LPS), fla-
gellin, probiotic agents, commensal bacteria, and bacterial
fermentation products) have been shown to trigger Muc2
expression in colonic sGCs5,40. In addition, Muc2 pro-
duction can also be enhanced by several stimuli, including

T-helper type 1 (Th1)- and Th2 cell-mediated cytokines,
acute phase responses (colonic ischemia), and viral
infection41,42.
The gut microbiome is also involved in the modulation

of mucus secretion by GCs. Non-O-glycosylated mucins
with molecular weights of approximately 500 kDa are
synthesized in the endoplasmic reticulum of GCs and
dimerized via disulfide bonds between the cystine knot
(CK) domains. Mucin dimers transported to the Golgi
apparatus are subjected to O-glycosylation and then
multimerization by disulfide bonds at N-terminal von
Willebrand factor type D3 (vWF D3) domains. The
resulting polymers reach molecular weights of up to 2.5
million Da43. Mucin multimers of 10–50 MDa [extended
rods 1–10 μm in length] are then packaged in an ordered
state within secretory vesicles (<1 μm) in the presence of
low pH and high calcium44 (Fig. 1a). Upon secretion, the
densely packed mucins can expand >1,000-fold, resulting
in the formation of enormous net-like polymeric sheets45.
Secretion of mucin can occur in at least two ways: regu-
lated vesicle secretion and compound exocytosis. During
regulated vesicle secretion (also called regulated exocy-
tosis), the membrane of a secretory vesicle fuses with the
plasma membrane by mediating the actions of typical
vesicle exocytosis components such as syntaxins, mam-
malian uncoordinated-18 (Munc-18), vesicle-associated
membrane proteins (VAMP), and synaptosome-
associated proteins (SNAP), and this is a tightly con-
trolled process most often triggered by calcium46. In
compound exocytosis, storage vesicles rapidly fuse with
the GC membrane after fusion with each other and empty
all thecal contents47. The inner mucus layer is con-
tinuously renewed by mucin secretion of the surface GCs,
and renewal of the inner mucus layer is estimated to
occur every 1–2 h in live murine distal colonic tissue48. In
general, spontaneous mucus production occurs at a rate
of 240 μm/h in humans and 100 μm/h in the mouse colon;
thus, the colonic mucus is continuously renewed at an
average of 5–10 L per day49. Recently, sGCs have been
shown to endocytose bacteria-derived TLR agonists such
as LPS, lipid A, and flagellin but not lipotechoic acid,
bacterial DNA, muramyl dipeptide, or γ-D-glutamylmeso-
diaminopimelic acid and activate TLR- and MyD88-
dependent NOD-like receptor family pyrin domain con-
taining 6 (NLRP6) signaling to facilitate the exocytosis of
mucin and flush bacteria away from crypt openings
ex vivo5.
Stratification of the mucus layer has been shown to be

indirectly influenced by the gut microbiome (Fig. 1a). An
increase in pH and removal of N-terminally bound single
calcium ions are necessary for the conversion of the inner
firm mucus layer to the outer loose mucus layer, the so-
called mucus layer stratification50. In general, colonocytes
are mainly dependent on adenosine triphosphate
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produced by the β-oxidation of butyrate, a metabolite of
the gut microbiome, which is accompanied by the gen-
eration of CO2 that can be converted by carbonic anhy-
drase into HCO3

−51; this is the ideal physiological
solution for precipitating calcium and raising the pH at
the epithelial surface52. The absence of HCO3

− at the
intestinal epithelial surface or inhibition of HCO3

−

transepithelial transport decreases the amounts and
rates of stimulated mucus release in vitro and in vivo53.
For instance, facultative anaerobic bacteria such as
pathogenic E. coli and Salmonella expand and invade the
surface epithelium, thereby subverting colonocyte meta-
bolism from β-oxidation of SCFAs to anaerobic glycolysis
to promote their own luminal growth in competition
against the gut microbiota by increasing the luminal
bioavailability of oxygen (O2), lactate, and additional
electron acceptors, including tetrathionate (S4O6

2−) and
nitrate (NO3

−)51,54. The resultant decrease in HCO3
− in

the lumen creates a high-H+ environment, enhancing the
Ca2+-binding of mucin polymers and making them more
adhesive to each other in condensed mucin granules55. As
a result, the structure of mucus layers is impaired, and
host susceptibility to pathogens and even UC incidence
increases; therefore, UC was postulated to be an energy-
deficient disease resulting from a failure to utilize
butyrate56.

The mucus barrier regulates bacterial colonization
The mucus layer creates a habitat for commensal bacterial
colonization
Hosts have evolved multiple strategies to maintain

homeostasis of the intestinal microbiota (Fig. 2a). The
best strategy is a highly adaptable protective mucus bar-
rier exhibiting a heterogeneous spatial structure that
establishes a habitat for commensal bacteria (Fig. 2b). The
mucus barrier is a natural defense at the interface between
host tissue and the luminal microbial community. Muc2 is
the basic component of mucus that is continuously
secreted and replenished by GCs in the large intestine. In
the endoplasmic reticulum, the amino-terminal vWF and
carboxy-terminal cystine knot (CK) domains of Muc2
mediate disulfide crosslinking of mucins to build a much
larger mucin fishnet comprising thousands of mono-
mers57,58. Muc2 consists of multiple domains, including
the PTS [proline (Pro), threonine (Thr), and serine (Ser)]
domain, a hallmark of the mucin family that is composed
of a variable number of tandem repeats (VNTRs) that
allow for heavy O-glycosylation with great heterogeneity in
the Golgi apparatus and a stretched, brush-like arrange-
ment of mucin. Neutral or negatively charged sugars,
including N-acetylgalactosamine (GalNAc), sulfated
acetyl-D-glucosamine (GlcNAc), D-galactose (Gal), sul-
fated Gal, sialic acid (Neu5Ac), and fucose, are attached to
the PTS domains under catalysis by glycosyltransferases in

the Golgi apparatus. Ultimately, these glycans account for
up to 80% of the total mucin mass21. Importantly, the vast
repertoire of O-glycosylated epitopes derived from the
peripheral terminus of mucins (such as sialic acid and
fucose) creates a habitat for unique bacterial ecosystems
that thrive in proximity to host tissue59,60. Species of
Bacteroides, the most abundant genus of the human gut
microbiome, have a unique class of polysaccharide-
utilizing loci that are referred to as commensal coloniza-
tion factors (CCFs). Bacteroides fragilis can penetrate the
colonic mucus and reside deep within crypt channels,
whereas strains with CCF mutations are defective in crypt
invasion61. It is known that reestablishment and resilience
are fundamental characteristics of the gut microbial
community61,62. The recolonization of gut B. fragilis fol-
lowing microbiome disruption caused by Citrobacter
rodentium infection or antibiotic treatment is also
dependent on CCFs61,63. Sulfatase (BF3086) and glycosyl
hydrolase (BF3134) were annotated as mucosal coloniza-
tion factors in B. fragilis. BF3086 is also important for B.
fragilis to metabolize host mucus O-glycans64. During
colonic mucus colonization, B. fragilis upregulates the
expression of a set of candidate colonization factors,
including BF3086 and BF3134, while in-frame deletions of
these factors reduce its colonization abilities, which are
fully or partially recovered by transcomplementation of
BF3134 or BF308664.
The inhibition of symbiotic bacterial colonization by

pathogens is mediated by degradation of mucosal glyco-
sylation and includes decreasing fucosylation and
increasing the release of sialic acid, which promotes the
outgrowth and colonization of pathogenic E. coli32. LPS
induces an increase in the expression of microbial viru-
lence genes, such as RtxA (K10953) and hemolysin III
(K11068), which enhance intestinal colonization of
pathogenic microbes in fucosyltransferase 2 (Fut2)-defi-
cient mice65. Enterohemorrhagic E. coli (EHEC) encodes a
two-component sensing system (FusKR) consisting of a
histidine sensor kinase (FusK) and response regulator
(FusR). During colonization, EHEC cleaves fucose from
mucin, thereby activating the FusKR signaling cascade
and increasing the expression of virulence genes66. It was
observed that S. typhimurium had significantly increased
expression of genes (nan, fuc, and pdu) that utilize host
mucin monosaccharides such as sialic acid, fucose, and
propanediol, the catabolite of fucose, in gnotobiotic mice
colonized with sialidase-expressing B. thetaiotaomicron67.
Furthermore, antibiotic-treated conventional mice
exhibited a transient surge in free sialic acid liberated by
the resident microbiota from host mucus, promoting the
expansion of Salmonella and C. difficile expressing sialic
acid catabolic signaling67. As a result, it was concluded
that antibiotic-associated pathogens such as S. typhi-
murium and C. difficile catabolize fucose and sialic acid
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liberated by the resident microbiota from mucin glycans
in a resident microbiota-dependent manner67. Pathogens
have also evolved a range of mucin-hydrolyzing enzymes
called mucinases (glycosidases, proteases, and sulfatases)
to degrade mucin complexes due to the mucus net-like
nature. Notably, some commensal bacteria also produce
mucinases, but their expression levels are much lower
(Fig. 1c). Compared to pathogenic E. coli, commensal E.
coli strains generate a lower amount of YghJ68, a lipo-
protein with a zinc metalloprotease domain that is
involved in mucin degradation as well as proinflammatory
responses.
The colonization of commensals at the mucus layer also

renders host resistance to pathogen colonization. CCFs
mediate the production of a polysaccharide capsule
around B. fragilis, thereby initiating an IL-36γ response in
mucosal macrophages of the gut to prevent colonization
and infection by Klebsiella pneumoniae, which is a
multidrug-resistant pathogen with high lethality69.
Pathogens can be directly killed or inhibited by com-
mensals that produce several antibacterial compounds.

For example, bacteriocins produced by commensal E. coli
inhibit EHEC70, microbicides secreted by Enterobacter-
iaceae mediate interspecies competition in the inflamed
gut71, the bacteriocin thuricin produced by Bacillus
thuringiensis inhibits the proliferation of C. difficile and L.
monocytogenes72, and lantibiotics produced by lactic acid
bacteria are used to target pathogens73. In addition, mucin
was found to affect microbial behavior. For instance,
gram-negative pathogens V. cholerae74 and S. Typhimur-
ium75 as well as commensals from the Bacteroides genus76

were reported to exert bactericidal effects mediated by the
Type VI secretory system (T6SS) (Fig. 1c). It was recently
revealed that mucin-associated glycans activate RetS, the
sensor kinase of Pseudomonas aeruginosa, thereby inhi-
biting T6SS-dependent bacterial killing action77,78.

Epithelial surface pH modulates the gut microbiota
composition
There are two key transport systems for HCO3

−

extrusion into the colonic lumen: Cl−/HCO3
− and SCFA/

HCO3
− exchangers79 (Fig. 1b). Several lines of evidence

Fig. 2 The mucus barrier functions to modulate bacterial colonization. a The mucus barrier forms a fundamental niche for gut microbiome
colonization, where the major O-glycan epitopes are sialic acid, fucose, N-acetylneuraminic acid (Neu5Ac), type A antigen [GalNAcα1,3(Fucα1,2)Galβ],
and type 1 H antigens [Fucα1,2Galβ1,3(GlcNAc)]. b The mucus barrier dictates the spatial organization of microbes, forming a steric and orderly
microorganism network to inhibit pathogen colonization. c The mucus barrier is also a scaffold containing antimicrobial agents [including RELM-β
(purple solid circle), ZG16 (blue solid circle), Ang4 (red solid circle), Lypd8 (green solid circle), sIgA (orange solid circle), and bacteriophages]
protecting epithelial cells against microbes.
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indicate that SCFA/HCO3
− exchangers mediate ionized

SCFA entry into colonocytes concomitant with an
increase in luminal pH and a decrease in oxygen tension
in both human and rodent colons80, which are vital for the
stratification of the secreted mucin complex and coloni-
zation of obligate anaerobes, respectively. Treatment with
live Bifidobacterium and its culture supernatants stimu-
lated the expression of Slc26a3, a Cl−/HCO3

− exchan-
ger81. Inflammation in the mid-distal82 or distal colon83 in
Slc26a3-deficient mice was related to the loss of mucus
secretion resulting from a remarkably low surface pH
microclimate83, a more aggressive microbiota82 and/or
reduced microbiome diversity83. A luminal micro-
environment with higher oxygen and lower pH could
change the gut microbiota composition and drive an
uncontrolled luminal expansion of E. coli and
Salmonella84.

Mucus viscosity determines the spatial organization of the
gut microbiota
The intestinal microflora is not evenly mixed but is

spatially organized (Fig. 2c). Some mechanisms for the
spatial organization of gut bacteria have been elucidated.
Mucus is mainly composed of water (95% w/w), mucins
(0.2–5.0% w/v), globular proteins (0.5% w/v), salts
(0.5–1.0% w/w), lipids (1–2% w/w), DNA, cells, and cel-
lular debris that form a dense, viscoelastic layer over
epithelial cells85. There is a longitudinal (proximal to
distal colon) viscosity gradient that increases progressively
towards the distal colon in murine models, which restricts
bacterial motility and confers spatial organization of
bacterial populations. As a result, bacteria are selectively
separated from the mucosa in the proximal colon and
completely separated in the mid-distal colon86. Of note,
uncovered cecum epithelium tips are a hotspot for S.
typhimurium infection in mice due to the lack of a con-
tinuous mucus layer19. In the proximal murine colon,
select bacterial populations intimately contact the mucosa
and enter the crypts, thereby concentrating and forming a
20–240-μm thick film flanking the mucosa. The existence
of vertical (surface to lumen) viscosity gradients within
the colonic mucus layer was further demonstrated by low
mucus viscosity at the crypt base and high viscosity at
sites adjacent to the columnar epithelium or close to the
intestinal lumen. A viscosity-dependent spatial distribu-
tion of bacteria in the murine colon revealed that short
rods and cocci moved best in low viscosity, while long
curly bacteria preferred a moderately viscous environ-
ment, and all bacteria were immobilized by high viscos-
ity87. The lower viscosity of mucus at the crypt base
makes intestinal cells more vulnerable to invasion by
potential pathogens. In general, mucins contain several
crosslinking domains to form dimers and larger-order
structures via disulfide bonds that may be broken by

sulfate-reducing bacteria (SRB), particularly Desulfovibrio
desulfuricans88. Many studies have described a high
abundance of SRB detected in the mucosa of UC
patients89,90. The resultant mucus barrier becomes less
viscous and more permeable, allowing the gut microbiota
in the gut lumen to interact with epithelial cells, thereby
causing an aberrant immune response91. Recent studies
have revealed the importance of site-specific gene
expression for robust host-microbial symbiosis. B. fragilis
near the epithelium upregulates the expression of genes
involved in protein synthesis; moreover, compared to
bacteria in the lumen, B. fragilis in mucus and tissue has
high levels of sulfatase (BF3086) and glycosyl hydrolase
(BF3134)64. Intestinal mechanics are a host spatial control
measure capable of regulating the abundance and per-
sistence of gut bacteria. A V. cholerae symbiont native to
zebrafish that governs its spatial organization using
swimming motility and chemotaxis displayed strong
localization to the foregut region, an anatomical region
comparable to the mammalian small intestine with close
contact with the intestinal epithelium to counter intestinal
flow. In contrast, motility-deficient mutants that are sus-
ceptible to host spatial control largely aggregated within
the intestinal mucus and were confined to the lumen,
whereas chemotaxis-deficient mutants were restricted to
the lumen of the midgut, and two mutants were suscep-
tible to intestinal expulsion. Wild-type V. cholerae actively
escapes mucus through regular changes in swimming
direction mediated by chemotactic signaling92.
There are some factors influencing the viscosity of the

mucus layer, TFF3 and HCO3
−. TFF3, as a component of

mucus, is essential for protection of the gastrointestinal
mucosa93. It is a small cysteine-rich acidic secreted pro-
tein that is covalently bound to the C-terminal domain of
Muc294. Mucus viscosity has been shown to increase after
the introduction of TFF3 dimers (0.3% w/v) compared
with no treatment95. Tff3-knockout mice are more sus-
ceptible to dextran sulfate sodium (DSS)-induced coli-
tis96,97, while oral treatment with TFF3 protected against
DSS-induced colitis in mice93.
There are two separate signaling pathways vital for

normal mucus formation: Ca2+-mediated exocytosis of
mucin granules of GCs and independent cAMP-mediated,
cystic fibrosis transmembrane conductance regulator
(CFTR)-dependent HCO3

− secretion, which helps dis-
charge sulfated and sialylated glycosylated domains85 and
stratifies exocytosed mucus98. Additionally, HCO3

− also
participates in mucin expansion and hydration mechan-
isms by reducing Ca2+ cross-linking in mucins, thereby
decreasing the viscosity55. CFTR is the secretory chloride/
HCO3

− channel; its dysfunction causes acidification of the
mucus layer (pH < 6.5) due to defective HCO3

− release,
resulting in increased mucus viscoelasticity and the for-
mation of a stationary mucus layer in cystic fibrosis99.
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The mucus barrier generates a protective shield
Colonic mucus is a key component of the colonic bar-

rier, as it is located at the interface between luminal
microflora and the colonic mucosa. The mucus barrier
effectively partitions the enteric epithelium from the
microbiota as the first line of defense and supports the
growth of intestinal commensals as an energy source. The
development of colitis in animals lacking a functional
mucus layer closely reflects clinical and cellular features in
patients with active UC. Penetration of the inner mucus
layer in the distal colon by pathogens and/or commensals
often found in mice with colitis is related to impaired
mucus barrier structure and function caused by genetic
deficiency in Muc2100, inactivation of glycosyltransferase-
mediated O-glycosylation of Muc2101,102, deficiency of the
NLRP6 inflammasome, or exposure to colitis-inducing
chemicals103. Some pathogens such as enterohemorrhagic
or enteropathogenic E. coli (EHEC or EPEC), C. roden-
tium, and S. typhimurium disrupt the protective mucus
barrier, causing dysbiosis characterized by decreased
abundances of Firmicutes and Verrucomicrobia and
increased abundances of Bacteroidetes and facultative
anaerobes104, which adhere to or invade host epithelial
cells beneath the mucus layer. The vicious cycle of dys-
biosis and colonic inflammation is characterized by
destruction of the mucus barrier and persistent over-
stimulation of the immune system by the microflora19.
Chronic or intermittent dietary fiber deficiency pushes the
resident microbiota to rely more heavily on endogenous
nutrients (host-secreted mucin glycoproteins), leading to
erosion of the colonic mucus barrier and exacerbation of
colitis triggered by the mucosal pathogen C. rodentium10.

Antimicrobial agents fortify the mucus barrier
Importantly, the dense gel-forming structure of the

mucus layer acts as a trap to stabilize numerous molecules,
such as RELM-β and zymogen granule protein 16 (ZG16),
angiogenin 4 (Ang4), Ly6/PLAUR domain containing 8
(Lypd8), and secretory immunoglobulin A (sIgA) (Fig. 2b).
RELM-β exerts a microbicidal effect predominantly on
gram-positive pathogens penetrating the mucus layer104.
ZG16 prevents the adherence of bacteria to the epithelium
by binding to the peptidoglycan of the bacterial cell wall105.
Ang 4, another antimicrobial agent derived from GCs, is
associated with Trichuris muris expulsion from the colonic
epithelium of mice during inflammation106. B. thetaiotao-
micron promotes Ang 4 expression, which inhibits the
growth of some bacterial species, such as L. monocytogenes
and Enterococcus faecalis107. Lypd 8, a highly glycosylated
glycosylphosphatidylinositol-anchored protein selectively
expressed in enterocytes, can bind to flagellated bacteria to
inhibit bacterial invasion into the colonic epithelia when
secreted into the lumen. Lypd8 strongly causes early-phase
defense against C. rodentium, which can induce colitis by

triggering attachment and effacement (A/E) lesions on
colonic epithelia. Mechanistically, Lypd8 inhibits C.
rodentium attachment to intestinal epithelial cells by
binding to intimin, thereby protecting against enteric
bacterial pathogens108. sIgA secreted as a dimer by colo-
nocytes and integrated into the mucus layer exerts a critical
function in trapping luminal bacteria to prevent unrest-
ricted access of the microbiota to the epithelial surface109.
The decreasing gradient of antimicrobial agents from the
epithelial surface to the lumen is positively correlated with
mucin concentration in the bilayered mucus matrix, which
is why the intestinal mucus layers harbor significant anti-
bacterial activity, whereas only low activity is detected in
the luminal content. Because of the anti-inflammatory and
antimicrobial nature of mucosal contents, the mucus layer
generates a protective shield to prevent bacterial translo-
cation and inappropriate immune stimulation of the epi-
thelium110. However, when a functional mucus layer is
absent, the gradient of antimicrobial agents is diminished,
and the related defense system is eliminated from the
intestine with fecal flow23.

Bacteriophage attachment to mucus strengthens mucus
defense
Under homeostatic conditions, mucus provides pro-

tection against dysbiosis by bacteriophage deployment
(Fig. 2b). Bacteriophage, a resident member of the gut
microbiome, interacts with mucin glycoproteins in the
mucus barrier though immunoglobulin-like domains that
are exposed on the capsid, triggering nonhost-derived
immunity, which is considered part of the innate immune
system111. Adherent invasive E. coli (AIEC) strain LF82
has type 1 pili mediating its binding to the host adhesion
receptor carcinoembryonic antigen-related cell adhesion
molecule 6 (CEACAM6), which is more strongly expres-
sed in the ileal tissues of patients with Crohn’s disease
(CD)112. A single day of oral treatment with a cocktail of
bacteriophages was found to induce significantly
decreased intestinal colonization by AIEC strain LF82 in
CEABAC10 transgenic mice113. Moreover, this single
dose of bacteriophage inhibited DSS-induced colitis
symptoms over a two-week period in conventional mice
colonized with LF82114. Bacteriophage intervention is
planned to be evaluated in patients with IBD in the United
States113. Data from UC mouse models have revealed that
some bacteriophages that infect bacteria with pathogenic
potential (pathobionts) are elevated during colitis115.
Specifically, an increased abundance of bacteriophages
predicted to infect Streptococcus sp. and Alistipes and
Clostridiales phages predicted to infect C. difficile were
observed during colitis116. This elevated abundance of
specific phages could be postulated as a proxy for strain-
level resolution of disease-causing bacteria during IBD116.
It has been reported that intestinal microbiota-associated
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phages attach to mucins and protect underlying epithelial
cells from invading bacteria117. Spatial organization of the
mucus generates a gradient of phage replication with
lysogeny at the top mucosal layer and lytic predation in
the bacteria-sparse intermediary layers117. However, ani-
mals with bacteriophage expansion, such as Caudovirales
phages, exhibit a significant exacerbation of intestinal
colitis118. This inconsistency indicates a complex role of
phages in IBD.

Conclusion
Massive advances in the etiology of UC over the past

few decades have improved our understanding of the
importance of active communication between the gut
microbiota and the mucus barrier. It is evident that dis-
turbance of this interplay is a vital pathological factor for
UC development. From the perspective of intricate
interactions between the mucus barrier and the gut
microbiome in the gut microenvironment, it is important
to explore interventional approaches to control inflam-
mation or promote FMT. Hence, exploring promising
therapeutic agents from the viewpoint of ‘slimy’ partners
is necessary to effectively treat UC.
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