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Proteinuria is common in the setting of HIV infection, and may reflect comorbid kidney

disease, treatment-related nephrotoxicity, and HIV-related glomerular diseases. The

mechanisms of podocyte and tubulointerstial injury in HIV-associated nephropathy

(HIVAN) have been the subject of intense investigation over the past four decades. The

pathologic contributions of viral gene expression, dysregulated innate immune signaling,

and ancestry-driven genetic risk modifiers have been explored in sophisticated cellular

and whole animal models of disease. These studies provide evidence that injury-induced

podocyte dedifferentiation, hyperplasia, cytoskeletal dysregulation, and apoptosis may

cause the loss of glomerular filtration barrier integrity and slit diaphragm performance that

facilitates proteinuria and tuft collapse in HIVAN. Although the incidence of HIVAN has

declined with the introduction of antiretroviral therapy, the collapsing FSGS lesion has

been observed in the context of other viral infections and chronic autoimmune disorders,

and with the use of interferon-based therapies in genetically susceptible populations.

This highlights the fact that the lesion is not specific to HIVAN and that the role of the

immune system in aggravating podocyte injury warrants further exploration. This review

will summarize our progress in characterizing the molecular mechanisms of podocyte

dysfunction in HIVAN and other forms of HIV-associated kidney disease.
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INTRODUCTION

In the four decades since the first cases of AIDS were reported in 1981, an estimated 77.5 million
people have been infected with HIV andmore than 34million people have died from complications
of HIV infection (1). Kidney disease emerged as an important complication of HIV in the early
years of the epidemic, with the first reports of a unique pattern of collapsing focal segmental
glomerulosclerosis (FSGS) with accompanying tubulointerstitial injury published in 1984 (2, 3).
HIIV-associated nephropathy (HIVAN) quickly became the leading cause of end-stage kidney
disease (ESKD) in people living with HIV (PLWH), demonstrating a marked predilection for
individuals of African descent. Although the incidence of ESKD attributed to HIVAN plateaued
in the United States following the widespread introduction of 3-drug antiretroviral therapy (ART)
in 1997, HIVAN remains an important cause of kidney disease in the setting of untreated HIV
infection (4). The original case series also reported a spectrum of immune complex glomerular
lesions, and contemporary biopsy series continue to identify immune complex kidney diseases as
one of the most common histologic diagnoses in PLWH. Other common causes of kidney disease
in PLWH include ART toxicity and comorbid kidney disease due to traditional risk factors such
as diabetes (4). As a result, kidney biopsy is often required for definitive diagnosis of proteinuric
kidney disease in PLWH.
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FIGURE 1 | Mechanisms of proteinuria in HIVAN.

The epidemiology of HIVAN suggested that both viral and
host factors play a central role in pathogenesis. The development
of HIVAN in HIV-transgenic mouse models has allowed for
extensive investigation into themechanisms of glomerular injury,
proteinuria, and kidney failure in HIVAN, which will be the
primary focus of this review.

HIV INFECTION OF THE KIDNEY

The emergence of HIVAN in the setting of AIDS and the decline
in incidence of ESKD with the introduction of ART is consistent
with a direct role for HIV in the pathogenesis of HIVAN. Early
reports demonstrated the presence of HIV nucleic acids in renal
epithelial cells (5–7); however, the absence of CD4, CXCR4,
and CCR5 receptor expression on these cells (8, 9) implied the
existence of a non-receptor mediated viral entry mechanism
(10, 11). The subsequent identification of HIV-1 entry into
human podocytes via lipid rafts (12) and by dynamin-mediated
endocytosis (13–15) provided compelling evidence for non-
canonical routes of viral particle entry. Although many questions
remain, substantial progress has been made in characterizing the
effects of HIV infection on podocyte physiology and function
(Figures 1, 2).

NORMAL PODOCYTE FUNCTION AT THE
GLOMERULAR FILTRATION BARRIER

Podocytes are an essential cellular component of the tripartite
glomerular filtration barrier (16). Podocytes are post-mitotic
epithelial cells characterized by their highly specialized, actin-
based membranous extentions known as foot processes (16).
Podocytes envelop glomerular capillaries, adhering to the
glomerular basement membrane (GBM) through a network of
intermolecular interactions connecting foot processes to the
GBM (16). Between interdigitating foot processes, a zipper-like
assembly of proteins known as the slit-diaphragm functions
as a molecular seive to provide charge and size selectivity

for ultrafiltration (17–19). Podocytes produce the molecular
constituents of the slit diaphragm and the expression of these
proteins coincides with podocyte differentiation and maturation
(20, 21). For example, the slit diaphragm protein nephrin, first
identified in a Finnish cohort study of congenital nephrotic
syndrome (17, 22), is produced by podocytes. The various roles
of nephrin at the slit diaphram and as a modulator of prosurvival
signaling in podocytes are well-documented (23–28) and will
not be detailed in this review, however, it is clear that disease
processes that impair podocyte nephrin expression, and other slit
diaphragm components, result in podocyte dysfunction and drive
the development of proteinuria and the FSGS lesion (29).

EFFECTS OF VIRAL GENE EXPRESSION
ON PODOCYTE PHYISOLOGY AND
FUNCTION

The collapsing FSGS lesion of HIVAN is characterized by
podocyte dedifferentiation and hyperplasia, loss of podocyte
maturity markers, foot process effacement and podocyte
detachment, podocyte apoptosis, and heavy proteinuria (30–33).
The cytotoxic effects of HIV gene expression in podocytes are
well-established, and experimental models of HIVAN suggest
that podocyte-restricted expression of viral proteins is sufficient
to induce a dysegulated podocyte phenotype and the collapsing
FSGS lesion (30, 31, 34–38). In particular, subtantial evidence
exists for the roles of the HIV proteins Nef and Vpr in driving
podocyte injury and dysfunction in HIVAN (Figures 1, 2).

Nef
Nef is one of four accesory proteins (i.e., Nef, Vpr, Vif, and
Vpu) expressed by HIV (39). Despite early descriptions of
Nef as a negative regulatory factor of viral replication (40–42),
subsequent studies demonstrated that Nef exerts a neutral or
positive effect on viral replication in various cell types (39, 42).
Although HIV does not appear to produce productive infection
in podocytes (13, 43), Nef exerts a variety of deleterious effects
on podocyte physiology and function that are unrelated to
the enhancement of viral replication. In 2002, Husain et al.
demonstrated that Nef expression induced the loss of maturity
markers, proliferation and anchorage-independent growth in
cultured human podocytes (36). These data were later validated
in a murine model of podocyte-restricted Nef expression. Husain
et al. showed that podocyte-specific expression of Nef caused
the loss of maturity marker expression (i.e., synaptopodin
and WT1), induction of STAT3 activtion, and expression of
the proliferation marker Ki-67 (36). Notably, this model did
not manifest the proteinuria or glomerular injury chracteristic
of HIVAN, leading the authors to conclude that Nef may
be responsible for the early molecular changes that drive
podocyte injury in HIVAN. Sunamoto et al. demonstrated
that Nef expression was necessary and sufficient to induce
proliferation and dedifferentiation in murine podocytes (44).
He et al. later provided mechanistic insights into the role of
Nef in podocyte hyperplasia when they demonstrated that Nef
stimulates pro-proliferative signaling through the Src tyrosine

Frontiers in Medicine | www.frontiersin.org 2 October 2021 | Volume 8 | Article 749061

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Hall and Wyatt Proteinuria in HIV

FIGURE 2 | Podocyte dysfunction in response to HIV infection is multifaceted. Because podocytes lack the receptors for canonical viral entry, viral particle entry via

lipid rafts, and by clathrin-mediated endocytosis have been proposed (1). Upon entry, expression of viral genes and other mediators of innate immunity drive podocyte

cytotoxicity and may enhance the expression of the high-risk APOL1 alleles in individuals of African descent to increase their risk of developing HIVAN (2). Podocyte

injury manifests in the loss of maturity markers (e.g., nephrin, synaptopodin, WT1, CALLA, etc.), loss of cell fate commitment, and hyperplasia and the loss of

cytoarchitecture and adhesion (3). The dysregulated podocyte phenotype appears to be irreversible and largely unresponsive to standard-of-care FSGS therapies

highlighting the urgent need for a nuanced understanding of disease evolution, novel therapeutics, and early intervention (4).

kinase-dependent activation of Ras-c-Raf-MAPK1/2 and STAT3
signaling in conditionally immortalized human poocytes (45).
The importance of STAT3 activation in podocyte hyperplasia
was highlighted by the work of Feng et al. who demonstrated
that reduction of STAT3 expression and activity ameliorated
proteinuria, glomerulosclerosis, and tubulointersitial injury in
a murine model of HIVAN (46). Similar findings were also
reported by Gu et al. with STAT3 gene deletion in the same
animal model (47). STAT3 is an established transcriptional
regulator of molecules that drive cell-cycle re-entry and
proliferation such as C-Myc, Cyclin D-1, CDC25A, and anillin
(48, 49), supporting the hypothesis that STAT3 is a key regulator
of podocyte proliferation in HIVAN. Several studies have also
implicated Nef in the disruption of the podocyte cytoskeleton
through various intermolecular interactions with actin and other
key regulators of cytoskeletal dynamics (50–55). Other functions
of Nef, such as its ability to interact with clathrin at the plasma
membrane to disrupt endocytic trafficking, may also contribute
to podocyte injury; however, this aspect of Nef signaling has not
been documented in podocytes.

Vpr
The HIV accessory protein Viral Protein R (Vpr) has also been
identified as a significant contributor to kidney injury in HIVAN.
Like Nef, podocyte-restricted expression of Vpr in murine
models established on the susceptible FVB/N background was
sufficient to produce glomerular collapse and tubulointerstitial
disease (38, 56, 57). Double transgenic expression of Vpr and
Nef synergistically induced the full spectrum of podocyte injury,
glomerular collapse, and tubulointerstitial diseased observed in
human HIVAN (38, 57). In renal tubular epithelial cells (RTECs),
Vpr has been shown to induce G2/M phase cell cycle arrest
and dysregulation of cytokinesis (57–60). Vpr also induces
apotosis in RTECs via the persistant activation of ERK MAP

kinase and the upregulation of the ubiquitin-like protein FAT10
(61, 62). Less is known about the mechanisms of Vpr-induced
podocyte injury. In 2014, Gbadegesin et al. demonstrated
that the cytokinesis regulatory protein and pro-proliferative
signaling molecule anillin, was upregulated in a murine model
of podocyte-restricted Vpr expression (63). Anillin is an essential
component of the cytokinetic ring and a driver of abnormal
cellular proliferation in various malignacies (64–66). In the Vpr
transgenic mouse, the upregulation of anillin in glomerular
podocytes likely represents an accumulation of anillin in arrested
cells or a cell-type specific derangement of cytokinetic drive and
cell-cycle re-entry signaling.

Other Viral Proteins
The HIV regulatory protein Tat may also contribute to
podocyte dysfunction in HIVAN. Tat is essential for HIV gene
transactivation (67). In primary and conditionally immortalized
podocytes, Conaldi et al. showed that Tat expression induced
basic fibroblast growth factor (FGF-2)-driven hyperplasia, loss
of maturity markers, cytoskeletal dysregulation, and impairment
of permselectivity in a dose-dependent manner (43). Similar
findings were later reported by Doublier et al. who showed that
Tat exposure impaired the permeability of isolated glomeruli
and reduced nephrin expression in conditionally immortalized
human podocytes (68). Insights into the mechanisms of Tat-
induced podocyte injury were provided by Xie et al., who
reported that Tat targets to cholesterol-enriched lipid rafts,
where it drives RhoA, matrix metalloproteinase-9 expression
and FGF-2-mediated proproliferative signaling (69). Notably,
murine models of podocyte-restricted Tat expression have failed
to recapitulate the HIVAN phenotype (70). Overexpression of
other HIV proteins such as Rev, Vif, and Vpu have not been
associated with podocyte cytotoxicity and have not induced
glomerular injury in murine models (70).
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Contributions of the High-Risk
Apolipoprotein L1 (APOL1) Alleles
The epidemiology of HIVAN is also consistent with a role for host
genetic susceptibility, with a marked predilection for individuals
of African descent. The discovery of high-risk variants in the
APOL1 gene provided evidence of a genetic contribution to the
racial disparity (71). The G1 (rs4821481 and rs3752462) and G2
(rs71785313) APOL1 variants were identified in an association
analysis comparing 205 African-American individuals with non-
familial, biopsy-proven FSGS and 180 healthy African-American
controls. APOL1 encodes apolipoprotein L1, a trypanolytic
serum factor that confers resistance against the parasitic infection
that causes African sleeping sickness (71). The G1 and G2APOL1
variants are found exclusively in individuals of recent African
descent and confer resistance against a deadly subspecies of
Trypanosoma that is normally resistant to lysis by wild-type
APOL1. Carrying two APOL1 variants significantly enhances
the risk of developing HIVAN in untreated HIV-infected
individuals and explains up to 35% of the disease (72, 73).
Our understanding of the mechanisms of APOL1-mediated
kidney injury is rapidly increasing. In 2016, Olabisi et al.
identified direct cytotoxic effects of the APOL1 proteins via
the formation of cation permeable pores that disrupt potassium
flux and lead to cellular swelling and death (74). Subsequently,
Jha et al showed that the APOL1-mediated enhancement of
potassium efflux induces proinflammatory cytokine expression,
activation of the NLRP3 inflammasome and cellular pyroptosis
(75). Other mechanisms of APOL1-mediated cellular injury
have been uncovered. For example, Ma et al demonstrated that
the APOL1 renal risk variants induce mitochondrial fission,
reduce mitochondrial repiratory capacity, respiration rate and
membrane potential (76, 77). Expression of the G1 and G2
variants also induced dysregulation of endosomal trafficking
and lysosomal acidification in Drosophila and Saccharomyces
(78). Additionally, the G1 and G2 renal risk variants have
been shown to enhance the expression of miR193a, a negative
regulator of autophagy (79). Consistent with an impairment
in autophagy, Wen et al showed that overexpression of the
APOL1 risk alleles induce endoplasmic reticulum stress in
culture human podocytes (80). Upregulation of miR193a has
also been shown to impair adherens complex stability, disrupt
actomyosin cytoskeletal organization, reduce nephrin expression
and promote dedifferentiation in podocytes (79, 81).

In the context of HIVAN, elaboration of interferon-γ (INF-
γ) and other circulating mediators of innate immunity signaling
appear to drive APOL1 gene transcription (82, 83). In vitro, the
cytotoxicity of the high-risk APOL1 variants is dose-dependent,
suggesting that any process that enhances the expression of the
APOL1 renal risk alleles may provoke glomerular injury (84).
This finding may, at least partially, explain why HIV is among
the strongest promoters of glomerular disease in the setting of the
high-risk APOL1 genotype, which has been associated with up
to 89-fold increase in odds of HIVAN (85). Notably, collapsing
glomerulopathy has been observed in individuals of African
descent treated with interferon therapies and following viral
infection with Parvovirus B19, CMV, EBV, HTLV1, Coxsackie
B, Dengue, Zika, and most recently, SARS-CoV-2 (86–88). Small

studies have demonstrated an association between the high-risk
APOL1 genotype and the development of collapsing FSGS in the
setting of COVID-19 (89) (Figures 1, 2).

MECHANISMS OF PROTEINURIA IN
OTHER KIDNEY DISEASES IN PLWH

HIV infection, by a variety of intracellular and systemic

influences on podocyte physiology, perturbs cellular fate

commitment, gene expression, and viability to promote

development of the collapsing FSGS lesion of HIVAN. A
nuanced understanding of the processes that drive podocyte

injury in HIVAN may uncover novel therapeutic targets

for treatment of other glomerular diseases. Prompted by

epidemiologic studies demonstrating accelerated progression
of kidney disease in the setting of HIV and diabetes (90),

Mallipattu et al. demonstrated that the induction of diabetes with
streptozotocin resulted in more prominent histologic changes

in HIV-transgenic mice compared to wild-type littermates (91).

These findings were confirmed in a subsequent study using
podocyte-specific transgenic mice with low HIV transgene
expression to more closely reflect the current clinical status
of ART-treated individuals (92). In this model, HIV and
diabetes had a synergistic effect on the expression of Sirtuin-1
deacetylase, suggesting a potential therapeutic role for Sirtuin-1
agonists.

A lack of animal models has slowed progress toward
elucidating the pathogenesis of immune complex glomerular
disease in PLWH. This has been compounded by the diverse
spectrum of glomerular lesions that occur in this setting and
that have been considered together in most clinical studies.
Small but rigorous human studies have suggested a role
for immune complexes directed against HIV antigens in the
pathogenesis of immune complex kidney disease (93). Because
podocytes have been shown to play a role in the clearance
of immune deposits (94), it is possible that HIV-induced
podoycte damage also promotes immune complex kidney disease
in PLWH.

Kidney injury due to the antiretroviral agent tenofovir
disoproxil fumarate (TDF) may also present with proteinuria,
although this is typically low molecular weight proteinuria
rather than albuminuria. Tenofovir is a nucleotide analog that
is chemically related to the older antiviral agents cidofovir and
adefovir, both of which are known to exhibit dose-limiting
proximal tubular toxicity. The first approved tenofovir prodrug,
TDF, has been associated with proximal tubulopathy and non-
albumin proteinuria. Although the mechanism of proximal
tubular cell injury has not been fully elucidated, it is thought
to involve mitochondrial dysfunction as a result of the weak
inhibition of mitochondrial DNA polymerase gamma (95, 96).
Tenofovir is eliminated by glomerular filtration and active
proximal tubular cell secretion, and an increase in intracellular
concentration due to increased plasma concentration, decreased
glomerular filtration, or impaired apical transport of tenofovir is
thought to increase the risk of proximal tubular cell dysfunction
or injury. Although it is possible that HIV-induced cell damage
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promotes tenofovir toxicity, non-albumin proteinuria has also
been observed with the use of TDF for HIV pre-exposure
prophylaxis in HIV-negative individuals (97). A newer prodrug,
tenofovir alafenamide, is effective at lower plasma concentrations
and may reduce the risk of tenofovir toxicity, although longer
followup is needed.

Despite some risk of nephrotoxicity with tenofovir and
other antiretroviral agents, the use of ART for treatment and
prevention of HIV infection is currently the most effective way
to mitigate the myriad pathogenic effects of HIV on the kidneys.
While the incidence of advanced kidney disease due to HIVAN
has decreased with the use of ART, HIVAN remains a valuable
model for the study of podocyte injury and APOL1-induced
glomerular disease.
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