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Abstract: Functional organic dyes play a key role in many fields, namely in biotechnology and
medical diagnosis. Herein, we report two novel 2,3- and 3,4-dihydroxyphenyl substituted rosamines
(3 and 4, respectively) that were successfully synthesized through a microwave-assisted protocol.
The best reaction yields were obtained for rosamine 4, which also showed the most interesting
photophysical properties, specially toward biogenic amines (BAs). Several amines including n- and
t-butylamine, cadaverine, and putrescine cause spectral changes of 4, in UV–Vis and fluorescence
spectra, which are indicative of their potential application as an effective tool to detect amines
in acetonitrile solutions. In the gas phase, the probe response is more expressive for spermine
and putrescine. Additionally, we found that methanolic solutions of rosamine 4 and n-butylamine
undergo a pink to yellow color change over time, which has been attributed to the formation of
a new compound. The latter was isolated and identified as 5 (9−aminopyronin), whose solutions
exhibit a remarkable increase in fluorescence intensity together with a shift toward more energetic
wavelengths. Other 9-aminopyronins 6a, 6b, 7a, and 7b were obtained from methanolic solutions of
4 with putrescine and cadaverine, demonstrating the potential of this new xanthene entity to react
with primary amines.

Keywords: microwave-assisted synthesis; catecholated rosamines; 9-aminopyronins; photophysical
properties; biogenic amines detection

1. Introduction

Catechols are biologically reactive molecules that are widespread in nature and largely
used in biomedicine and nanotechnology [1–3]. Catechol-functionalized molecules and
materials are involved in many areas of chemistry and materials science [4], especially
for producing: (i) metallopolymer networks for water purification [5]; (ii) adhesive func-
tional hydrogels for biomedical applications [6]; and (iii) polymers with antimicrobial
properties [7]. Catechols can be easily oxidized via autoxidation in the presence of molec-
ular oxygen, photooxidation, or through the addition of chemical agents or enzymatic
oxidants [8–10]. o-Quinones are the most common oxidation products of catechols, being
reactive intermediates in several reactions. They can also be attacked by nucleophiles such
as amines, whose attack is dependent of the electron withdrawing or donating nature of
the substituents present in the quinone skeleton [11], solvent, and pH.
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Amines, on the other hand, are produced on the ton scale worldwide and are used in
pharmaceutical, agricultural, and several industry-based applications [12]. Biogenic amines
(BAs) are nitrogen-based compounds originating mainly from the decarboxylation of amino
acids present in animals, microorganisms, and plants [13]. Amines can also display signifi-
cant reactivities and their radical cations play a significant role in biological systems such
as in the enzymatic metabolism of endogenous amines to the corresponding imines [14].
The detection of amines is a relevant research area with impact on the diagnosis of sev-
eral diseases as well as industrial and environmental monitoring, besides food quality
control. In this context, fluorescent probes have emerged as a rapid, simple, and accurate
molecular tool to detect trace amounts of BAs. Optical detection of BAs is mainly based on:
(i) the use of functional organic dyes such as phenanthridines [15], naphthalenes [16], ben-
zothiazoles [17], porphyrinoids [18,19]; (ii) supramolecular hydrogels [20]; and (iii) boron
complexes [21,22]. Recently revised by A. Gupta, the aggregation-induced emission (AIE)
phenomenon by different materials presents itself as a method with high potential for the
detection of amines by an increase or a quench of the fluorescence process [23].

In recent years, our group has synthesized several fluorescein and rhodamine-catechol
conjugates and studied their interaction with transition metal ions from the coordination
point of view, also exploring their ability to act as metal ion sensors [24,25]. Inspired by the
protonation and redox behavior of catechols and by the excellent photophysical properties
of Rhodamine B (RhB) and other xanthene derivatives [26], we present herein a simple
design strategy to synthesize rosamines 1–4, with the purpose of detecting BAs by the direct
conjugation of 2,3- and 3,4-dihydroxyphenyl rings with the xanthene platform (Figure 1).
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Figure 1. Chemical structures of the biogenic amines used in the studies, RhB and rosamines 1–4.

2. Results and Discussion

The synthetic route for rosamines 1–4 is simple and effective (Scheme 1). It consists of
the condensation of the appropriate dibenzyloxybenzaldehyde and 3-(diethylamino)phenol
in the presence of a catalytic amount of p-toluenesulfonic acid (p-TsOH), with subsequent
oxidation with chloranil to give 1 and 2. The removal of the benzyl protecting groups was
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performed using boron trichloride in dichloromethane to afford 3 and 4. After screening
different experimental conditions for condensation including (i) the heating method (oil
bath or microwave irradiation, MW) and (ii) the reaction solvent (propionic acid or water),
we verified that the combination of MW and water provided higher yields for compounds
1 and 2 (47% and 68%, respectively) in a remarkable shorter period of time (10 min) (please
refer to the Materials and Methods section for more details).

Molecules 2021, 26, x FOR PEER REVIEW 3 of 15 
 

 

The synthetic route for rosamines 1–4 is simple and effective (Scheme 1). It consists 
of the condensation of the appropriate dibenzyloxybenzaldehyde and 3-
(diethylamino)phenol in the presence of a catalytic amount of p-toluenesulfonic acid (p-
TsOH), with subsequent oxidation with chloranil to give 1 and 2. The removal of the 
benzyl protecting groups was performed using boron trichloride in dichloromethane to 
afford 3 and 4. After screening different experimental conditions for condensation 
including (i) the heating method (oil bath or microwave irradiation, MW) and (ii) the 
reaction solvent (propionic acid or water), we verified that the combination of MW and 
water provided higher yields for compounds 1 and 2 (47% and 68%, respectively) in a 
remarkable shorter period of time (10 min) (please refer to the Materials and Methods 
section for more details). 

 
Scheme 1. Synthetic route to obtain rosamines 1–4. 

Rosamines (1–4) were characterized by 1H NMR, 13C NMR, HRMS, UV–Vis, and 
fluorescence spectroscopy. These were obtained as a dark pink powder soluble in organic 
solvents, but were only sparingly soluble in an aqueous solution. Their photophysical 
properties including absorption extinction coefficients (ε) and fluorescence quantum yield 
(ΦF) were studied in aprotic and protic solvents including chloroform, acetonitrile, and 
methanol and compared with RhB. The results are listed in Table 1. 

Table 1. Photophysical properties (λmax abs, λmax em, ε, Stokes shift, and ΦF) of rosamines 1–4 and RhB in chloroform, 
acetonitrile, and methanol at 25 °C. 

Dye R Solvent λmax (abs) 
(nm) 

ε × 104 
(M−1.cm−1) 

λmax (em) 
(nm) 

Stokes Shift 
(nm) (cm−1) 

ΦF 

1 2,3-OBn 
CHCl3 560 7.01 576 16 (496) 0.60 

CH3CN 560 8.66 582 22 (675) 0.23 
CH3OH 558 5.68 580 22 (680) 0.30 

2 3,4-OBn 
CHCl3 556 7.44 569 13 (411) 0.58 

CH3CN 555 6.18 576 21 (657) 0.20 
CH3OH 554 6.36 573 19 (689) 0.25 

3 2,3-OH CHCl3 546 10.5 566 20 (647) 0.04 
CH3CN 557 4.50 580 23 (712) 0.12 

Scheme 1. Synthetic route to obtain rosamines 1–4.

Rosamines (1–4) were characterized by 1H NMR, 13C NMR, HRMS, UV–Vis, and
fluorescence spectroscopy. These were obtained as a dark pink powder soluble in organic
solvents, but were only sparingly soluble in an aqueous solution. Their photophysical
properties including absorption extinction coefficients (ε) and fluorescence quantum yield
(ΦF) were studied in aprotic and protic solvents including chloroform, acetonitrile, and
methanol and compared with RhB. The results are listed in Table 1.

The data showed that the molecular rigidity and the electron density of the substituent
groups have remarkable effects on the photophysical properties of the compounds, namely:
(i) in chloroform, the absorption bands of the catecholated compounds were in the shorter
wavelength region than those of the benzylated ones; (ii) a marginally higher ΦF value
(0.60) was obtained for 1 in chloroform, where the orthogonal OBn substituent constrains
the rotation of the 9-phenyl ring and thus enhances its fluorescence properties [27]; and
(iii) the presence of the catechol substituent (3 and 4) remarkably decreased the ΦF value of
the molecules due to the intramolecular photoinduced electron transfer (PET), which occurs
from the hydroxyl electron donating groups (D) to the xanthene electron acceptor fragment
(A), producing the donor–acceptor (D–A) pair [28]. Although the catecholate derivatives
are always less emissive than the respective benzylated derivatives, the emission of 3 and 4
(especially in terms of ΦF values) was significantly higher in acetonitrile than in chloroform
and methanol. Lower Stokes shifts were observed for rosamines 1 and 2 in chloroform, the
same being true for RhB. On the other hand, for rosamines 3 and 4, the solvent did not
influence the Stokes shift values as significantly.
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Table 1. Photophysical properties (λmax abs, λmax em, ε, Stokes shift, and ΦF) of rosamines 1–4 and RhB in chloroform,
acetonitrile, and methanol at 25 ◦C.

Dye R Solvent λmax (abs)
(nm)

ε × 104

(M−1·cm−1)
λmax (em)

(nm)
Stokes Shift (nm)

(cm−1) ΦF

1 2,3-OBn
CHCl3 560 7.01 576 16 (496) 0.60

CH3CN 560 8.66 582 22 (675) 0.23
CH3OH 558 5.68 580 22 (680) 0.30

2 3,4-OBn
CHCl3 556 7.44 569 13 (411) 0.58

CH3CN 555 6.18 576 21 (657) 0.20
CH3OH 554 6.36 573 19 (689) 0.25

3 2,3-OH
CHCl3 546 10.5 566 20 (647) 0.04

CH3CN 557 4.50 580 23 (712) 0.12
CH3OH 550 9.38 570 20 (638) 0.02

4 3,4-OH
CHCl3 548 5.06 570 22 (704) 0.04

CH3CN 552 5.10 573 21 (664) 0.12
CH3OH 553 4.94 573 20 (631) 0.03

RhB 2-COOH
CHCl3 554 11.2 571 17 (537) 0.54

CH3CN 555 8.20 578 23 (717) 0.22
CH3OH 547 11.5 569 22 (707) 0.33

Taking into account the yields obtained in the synthesis and the peculiar spectral
properties of the catechol derived compounds, we considered rosamine 4 as the most inter-
esting dye in this series. Accordingly, we started by studying the influence of pH variation
(2 < pH < 12) in the fluorescence intensity of rosamine 4. The graphical representation of
the fluorescence intensity as a function of the pH value showed a decrease in intensity from
2 to approximately 10 (please refer to Figure S27 in the Supplementary Materials). In this
range, two deprotonations can be observed both related to the deprotonation of the two
hydroxyl groups, the first occurs for pH values from pH 2 to 6.5 (zwitterionic form) and
the second deprotonation occurs for pH values above 6.5 until pH 9.90 (anionic form).

Subsequently, we investigated the color and fluorescence qualitative changes of ace-
tonitrile solutions of 4 in the presence of the most common BAs diluted in water at room
temperature using 2, 4, and 8 equiv. of amine. As shown in Figure S28 of the Supplemen-
tary Materials, by adding increasing amounts of amines, there was a change (quench of
fluorescence) observed under ultraviolet radiation, indicating that rosamine 4 is sensitive
to 2 equiv. of cadaverine, putrescine, spermidine, and spermine. Furthermore, upon
addition of 4 and 8 equiv., a quench in fluorescence was also observed for n-butylamine
and histamine, respectively.

We also tested the influence of selected amines, namely n- and t-butylamine, cadav-
erine, and putrescine on the spectroscopic behavior of rosamine 4 in acetonitrile, using
UV–Vis and fluorescence (Figure 2). With the addition of 2 equiv. of amine, there was an ab-
sorbance decrease at 552 nm, more expressive for cadaverine. On the emission spectra, there
was an intensity quench at 573 nm with the addition of 2 equiv. of amine, with the exception
of t-butylamine, where a small increase was observed. In terms of percentage values, for
the maximum absorbance, the decrease was in the order of 8%, 12%, 21%, and 29% for n-
butylamine, t-butylamine, putrescine, and cadaverine, respectively, while for the emission
intensity, the percentage values were 8%, 4% (increase), 27%, and 18%, respectively.
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The absorbance and emission spectra of 4 after the addition of up to 8 equiv. of pu-
trescine is presented in Figure 3 (further amine results are available in the Supplementary
Materials). The absorbance spectra revealed three regions of interest, two with an intensity
increase (512 and 649 nm) and the third (at 551 nm) where a quench was observed as
the molar equivalents of putrescine increased. The intensity enhancement regions can be
used to monitor the presence of putrescine in the concentration range (0 to 122 µM). The
region between 649 and 657 nm is particularly interesting due to the enhancement of the
absorbance; the same behavior was observed for cadaverine (please refer to the Supplemen-
tary Materials, Figure S29, and for different concentrations of cadaverine (0.1–40 equiv.)
please refer to Figures S30 and S31). The excitation of 4 in the presence of 8 equiv. of
putrescine at 649 nm did not lead to a new emission band, the same being true for the
other BAs. Analyzing the emission spectra, a quench percentage of 55% was obtained
for an addition of 8 equiv. of putrescine, much higher values than those observed for
n-butylamine and cadaverine (12% and 32%, respectively), whereas for t-butylamine, a
slight increase was obtained (6%).

To demonstrate that rosamine 4 can be used in the detection of volatile amine vapors,
which are highly toxic, irritant, and corrosive, being important indicators of food quality,
for example, in the assessment for fish freshness [29], we investigated its reactivity toward
BAs in the gas phase. The study was carried out by injecting vapors of different commercial
BAs in solutions of 4 dissolved in acetonitrile (see the Materials and Methods section for
more details and the apparatus in Figure S32 in the Supplementary Materials). The spec-
trophotometrical measurements were carried at 533 nm. As shown in Figure 4, nitrogen,
air, and water vapor did not affect rosamine 4, since the value of fluorescence intensity
did not change when they were injected. However, when the commercial BA vapor was
introduced, a decrease in the fluorescence intensity was observed, which was more expres-
sive upon spermine addition, resulting in decreases greater than 90%, 87% for putrescine,
52% for spermidine, 47% for cadaverine, 32% for tryptamine, 21% for histamine, and 8%
for tyramine. The results for putrescine and cadaverine confirmed rosamine 4 sensitivity
toward these BAs with higher quenching percentages in the gas phase comparatively to
those reported in solution for 8 equiv.
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Figure 4. Comparison of the fluorescence intensity change of 4 toward BA in the gas phase at λexc 533
nm. Probe 4 in red, Probe 4 + BA in blue, and Probe 4 + Controls (air, N2 and water vapor) in grey.

During the experimental assays, when compound 4 was brought to the presence of
amines, we observed that—particularly for methanolic solutions of 4 with n-butylamine—a
color change from pink to yellow was observed over time, at room temperature and at 4 ◦C
(refrigerator), which appeared to be due to the formation of a new compound. To verify
the aforementioned hypothesis, a solution of rosamine 4 and n-butylamine (15 equiv.) in
methanol was prepared, which was kept at 4 ◦C for 120 h. The TLC analysis of the resulting
solution revealed the presence of a new compound with a bright yellow color, which was
subsequently isolated by preparative thin layer chromatography and characterized by
NMR and ESI-MS. The corresponding 1H NMR spectrum (please refer to Figure 5B and
Figure S33 of the Supplementary Materials) exhibited: (i) three set of signals from 6.73 to
8.12 ppm due to the resonance of the xanthene ring (no signals due to the catechol unit were
detected indicating the absence of the catechol substituent in the molecule) and (ii) a new set
of signals appeared at 1.05, 1.55, 1.93, and 4.02 ppm due to the entry of a butylamine moiety,
suggesting the formation of 9-aminopyronin 5 (Figure 5A). A comparison of the 1H NMR
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spectra of compounds 4 and 5 is provided in the Supplementary Materials (please refer to
Figure S35). Further evidences of 5 were obtained by ESI-MS, through the molecular ion
peak [M + H]+ at m/z 394.2851 (Figure 5C and Figure S39 in the Supplementary Materials).
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Figure 5. Reactivity of rosamine 4 with n-butylamine. (A) Scheme of the reaction of rosamine 4 with n-butylamine leading
to the formation of 9-aminopyronin 5. Rosamine 4 itself is weakly fluorescent due to the intramolecular PET quenching (left
hand-side cuvette). However, after reaction with n-butylamine and chromatographic purification, 9-aminopyronin 5 can be
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solvent peaks (chloroform and methanol); (C) ESI-MS spectrum of 5.

In fact, 9-aminopyronin dyes are described in the literature as chemically stable dyes
having high molar absorption coefficients and high fluorescence quantum yields. Being
initially introduced by K. Burgess et al. [30], their synthesis typically involves the reaction of
xanthenone derivatives with amines in the presence of trifluoromethanesulfonic anhydride
or oxalyl chloride [31–34]. Alternatively, 9-aminopyronins can be prepared by reacting
9H-xanthene-9-thione with electron-withdrawing groups such as 4-aminopyridine and 2-
aminoquinoline [35]. However, to the best of our knowledge, there are no preceding reports
describing the synthesis of 9-aminopyronine dyes from catecholate xanthenes with amines.

Several attempts have been conducted in order to improve the yield of aminopyronin 5,
which included reactions at 4 ◦C using chloroform or methanol and the use of MW heating
(N-methylpyrrolidine as solvent, 200 ◦C, 10 min; detailed procedures in the Materials and
Methods section). The best result was obtained when methanol was used as a solvent (4 ◦C,
for ca. 144 h) with a 53% yield.

Considering the results obtained with n-butylamine, we decided to study the peculiar
reactivity of 4 using two other nucleophilic amines—putrescine and cadaverine. Using
methanol as the solvent at 4 ◦C, the reactions took place in different extensions, leading to
aminopyronins 6a,b and 7a,b (Scheme 2, see 1H NMR spectra in Figures S36–S38 in the
Supplementary Materials).
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The reaction of 4 with putrescine mainly afforded the monomer 6a, as supported by
the NMR spectral analysis and MALDI-TOF mass spectrometry, showing [M + H]+ at
m/z 409.409 (theoretical [M + H]+ = 409.296), while only a trace amount of dimer 6b was
obtained. Higher reaction extension was achieved when cadaverine was used, affording
monomer 7a together with the dimer 7b. The 1H NMR profile of 7a follows the same profile
as compound 5 while the MALDI-TOF spectrum showed the molecular ion [M + H]+ at
m/z 423.450 (theoretical [M + H]+ = 423.312) supporting the structure 7a. In the 1H NMR
spectrum of dimer 7b, the presence of two equivalent xanthene rings per one cadaverine
frame was confirmed by the 12 aromatic protons and the 10 aliphatic protons, which is
consistent with the MALDI-TOF spectrum that showed [M + H]+ at m/z 743.969 (theoretical
[M + H]+ = 743.501).

For comparison purposes, the photophysical properties of all isolated aminopyronins
(5, 6a, 7a, 7b) were accessed in chloroform, methanol, and acetonitrile (Table 2). All com-
pounds presented an intense yellow color (naked eye), exhibiting absorption in the range
of 430–440 nm with high extinction coefficients (10.6 × 104–4.35 × 104). Their emissions
were in the range of 507–526 nm with large Stokes shifts (72–88 nm; 3265–3820 cm−1),
values around 5.4–6.6 times higher than those found for rosamines 1–4. High fluorescence
quantum yields were obtained, especially in chloroform (ΦF = 0.57, 0.36, 0.58, and 0.53,
respectively, for 5, 6a, 7a, and 7b), a fact in clear contrast with the starting rosamines 3 and
4 for which low ΦF values were obtained in chloroform (Table 1).

Considering the possible similar reactivity of 2,3-dihydroxylphenyl substituted rosamine
3, a similar study was performed from a solution of 3 and n-butylamine (15 equiv.) in
methanol at 4 ◦C for 120 h. In this case, TLC analysis of the resulting solution showed a
complex mixture of products very difficult to purify by chromatographic methods. It is very
probable that, according to the generally accepted crosslinking chemistry of catechols and
amines [11], the catechol unit would suffer different nucleophilic attacks of n-butylamine
by either Michael-type addition or via the formation of a Schiff base, thus supporting the
formation of many different products. However, in the case of the reaction of rosamine 4
with n-butylamine, 9-aminopyronin 5 was obtained as the major product of the reaction.
The data suggest that the nucleophilic attack of the amine to the electrophilic 9-position of
the xanthene takes place with the formation of the addition adduct, and that the loss of the
catechol moiety occurs, potentially, during the isolation process.
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Table 2. Photophysical properties (λmax abs, λmax em, ε, Stokes shift, and ΦF) of aminopyronin 5, 6a, 7a, 7b in chloroform,
acetonitrile, and methanol at 25 ◦C.

Dye. Solvent λmax abs
(nm)

ε × 104

(M−1·cm−1)
λmax em

(nm)
Stokes Shift (nm)

(cm−1) ΦF

5
CHCl3 435 5.31 507 72 (3265) 0.57

CH3CN 436 4.35 523 87 (3815) 0.10
CH3OH 438 5.43 525 87 (3783) 0.19

6a
CHCl3 430 7.44 507 77 (3532) 0.36

CH3CN 440 6.46 525 85 (3680) 0.17
CH3OH 439 6.75 522 83 (3622) 0.24

7a
CHCl3 434 9.57 512 78 (3510) 0.58

CH3CN 438 8.01 524 86 (3747) 0.11
CH3OH 438 8.91 522 84 (3674) 0.20

7b
CHCl3 435 10.8 508 73 (3303) 0.53

CH3CN 438 9.21 526 88 (3820) 0.16
CH3OH 440 10.6 524 84 (3643) 0.21

3. Materials and Methods

Reagents and solvents were purchased as reagent-grade and used without further
purification unless otherwise stated. NMR spectra were recorded on a Bruker Avance
III 400 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany; 400.15 MHz for 1H
and 100.63 MHz for 13C) or on a Bruker Avance III HD 600 spectrometer (Bruker BioSpin
GmbH, Rheinstetten, Germany; 600.13 MHz for 1H and 150.92 MHz for 13C). Chemi-
cal shifts (δ) were reported in ppm and coupling constants (J) in Hz; internal standard
was TMS. Two-dimensional 1H/1H correlation spectra (COSY), gradient selected 1H/13C
heteronuclear single quantum coherence (HSQC), and 1H/13C heteronuclear multiple
bond coherence (HMBC) spectra were acquired using the standard Bruker software. Flash
chromatography was carried out using silica gel (230–400 mesh,Merck, Kenilworth, NJ,
USA). Microwave-assisted reactions were carried out in a CEM Discovery Labmate circular
single-mode cavity instrument (300 W max magnetron power output) from CEM Corpo-
ration (CEM Microwave Technology Ltd., Buckingham, UK). Reactions were performed
under closed-vessel conditions. MS analysis of compounds 1, 2, and 5 were carried out by
electrospray ionization (ESI) in a LTQ-Orbitrap-XL instrument (Thermo Fischer Scientific,
Winsford, UK) with the following ESI source parameters: electrospray needle voltage 3.1
kV, sheath gas nitrogen 6, capillary temperature 275 ◦C, capillary voltage 21 V, and tube
lens voltage 55 V. Ionization polarity was adjusted according to sample. Mass spectra of
rosamines 3 and 4 were acquired by Unidade De Espectrometria De Masas of Santiago
de Compostela and microanalyses were acquired by Unidad De Análisis Elemental of
Santiago de Compostela. Mass spectra of compounds 6a and 7a,b were acquired on a
Bruker UltrafleXtreme MALDI-TOF/TOF equipped with a 200 Hz smartbeam laser (Bruker
Daltonik GmbH, Bremen, Germany). Electronic absorption spectra were recorded with
a Varian Cary bio50 spectrophotometer (Agilent Technologies, Santa Clara, CA, USA),
equipped with a Varian Cary single-cell Peltier accessory, using 1 cm path-length quartz
cells. Steady-state fluorescence measurements were carried out in a Varian spectroflu-
orometer, model Cary Eclipse (Agilent Technologies, Santa Clara, CA, USA), equipped
with a constant-temperature cell holder (Peltier single-cell holder) with 5 nm slit width
for excitation and emission. All photophysical assays were performed under controlled
temperature conditions (25 ◦C), using the maximum λexc and the appropriate λem range,
for each rosamine and considering the different solvents used. Rosamine stock solutions
were prepared in anhydrous dimethylsulfoxide (DMSO) and DMSO percentage was kept
under 1% regarding the reported studies with different solvents. Rhodamine B (RhB) was
used as standard in the photophysical assays and the respective solutions were prepared
in anhydrous ethanol. Solutions of the compounds, in appropriate concentration ranges,
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were prepared previously to molar absorptivity coefficients (ε) and fluorescence quantum
yield (ΦF) determination assays. Generally, fluorescence quantum yield determination
was done combining the literature-described [36,37], pH variation study was carried out
from a stock solution of rosamine 4 in water, and dilutions were performed with ionic
force adjustment (0.1 mol/L NaCl). Each pH adjustment from 2–12 was obtained by the
addition of small amounts of concentrated HCl and NaOH, followed by UV–Vis and fluo-
rescence measurements between 200–800 nm or 555–700 nm for UV–Vis and fluorescence,
respectively.

Synthesis of benzylated precursors: To a solution of 2,3-dihydroxybenzaldehyde or
3,4-dihydroxybenzaldehyde (1.00 g, 7.24 mmol) and K2CO3 (2.20 g, 15.9 mmol) in DMF
(20 mL) at 0 ◦C, benzyl bromide (1.89 mL, 15.9 mmol) was added drop-by-drop, under
N2 atmosphere. After stirring at 0 ◦C for 15 min, the reaction mixture was allowed to
warm up to room temperature and the stirring was maintained for 4 h. After that time, the
reaction mixture was precipitated into an ice/water mixture and neutralized using citric
acid. The white solid obtained was filtered, washed with water, dissolved in chloroform,
and crystallized in n-hexane to afford the respective products.

2,3-Dibenzyloxybenzaldehyde: Yield 75% (1.73 g). 1H NMR (400 MHz, CDCl3) δ:
5.19 and 5.20 (4H, 2s, 2xCH2C6H5), 7.12 (1H, dt, J 8.0 Hz and J 0.6 Hz, H-Ar), 7.23–7.26,
7.32–7.43 and 7.47–7.49 (12H, 3m, H-Ar), 10.26 (1H, s, CHO). 13C NMR (CDCl3, 100.62
MHz) δ: 71.3 (CH2), 76.5 (CH2), 119.6, 119.9, 124.2, 127.6, 128.3, 128.5, 128.6, 128.7, 128.8,
130.5, 136.3, 151.5, 152.1, 190.2 (CHO). MS (EI) m/z: 318 M+. C21H18O3

1
4 H2O calcd. C

78.12, H 5.78; found C 78.46, H 5.34.
3,4-Dibenzyloxybenzaldehyde: Yield 84% (1.94 g). 1H NMR (400 MHz, CDCl3) δ: 5.22

and 5.26 (4H, 2s, 2×CH2C6H5), 7.02 (1H, d, J 8.0 Hz, H-5), 7.32–7.49 (12H, m, H-Ar), 9.81
(1H, s, CHO) ppm. HRMS (ESI) m/z: calcd. for C21H19O3

+, 319.129; found, 319.133.

3.1. Synthesis of Rosamines 1 and 2

(a) Via conventional heating using propionic acid as solvent: a solution of 3-(diethyla-
mino)phenol (0.28 g, 1.72 mmol) with the appropriate benzaldehyde (0.27 g, 0.86 mmol)
and p-TsOH (17.2 mg, 0.10 mmol) in propionic acid (10 mL) was placed in a reaction
flask and heated to 65 ◦C for 16 h. After cooling to room temperature, the mixture was
neutralized with NaOAc (3 mol/L, 100 mL). The resulting suspension was extracted with
chloroform. The combined organic extracts were dried (Na2SO4 anhydrous) and the solvent
evaporated. The resulting residue was dissolved in 40 mL of a mixture of CHCl3/MeOH
(1:1), to which chloranil (0.10 g, 0.43 mmol) was added. The mixture was vigorously stirred
for 2 h and concentrated in vacuum. The residue was purified by flash chromatography
using a mixture of CHCl3/MeOH (9:1) and vacuum dried.

(b) Via MW using propionic acid or water as solvent: a solution of 3-(diethylamino)phenol
(0.14 g, 0.86 mmol) with the appropriate benzaldehyde (0.13, 0.43 mmol) and p-TsOH
(10.0 mg, 0.06 mmol) in water or propionic acid (5 mL) was placed in a 10 mL reaction
vial, which was then sealed and placed in the cavity of a CEM microwave reactor. The
reaction was irradiated at 80 ◦C (1 min ramp to 80 ◦C and 10 min hold at 80 ◦C, using
100 W maximum power). The solvent was decanted and the resulting solid was dissolved
in 10 mL of a mixture of CHCl3/MeOH (1:1), to which chloranil (0.10 g, 0.43 mmol) was
added. The mixture was placed into the cavity of the CEM microwave using 1 min ramp to
60 ◦C and 10 min hold at 60 ◦C, using 50 W maximum power. The residue was purified by
flash chromatography using a mixture of CHCl3/MeOH (9:1) and vacuum dried.

Rosamine 1: (a) Yield 36% (95 mg); (b) Yields 43% (113 mg) and 47% (124 mg) in
propionic acid and water, respectively. 1H NMR (400 MHz, CDCl3) δ: 1.33 (12H, t, J 7.2 Hz,
4×CH3), 3.64 (8H, q, J 7.2 Hz, 4×CH2), 4.88 (2H, s, 2′-CH2C6H5), 5.27 (2H, s, 3′-CH2C6H5),
6.74–6.76 (3H, m, H-Ar), 6.77 (2H, d, J 2.4 Hz, H-4 and H-5), 6.82 (2H, dd, J 9.4 and J 2.4 Hz,
H-2 and H-7), 6.93–7.03 (3H, m, H-Ar), 7.19 (2H, d, J 9.4 Hz, H-1 and H-8), 7.23–7.27 and
7.36–7.52 (7H, 2m, H-Ar) ppm. 13C NMR (100 MHz, CDCl3) δ: 12.7 (CH3), 46.2 (CH2),
71.2 (3′-CH2C6H5), 75.2 (2′-CH2C6H5), 96.2 (C-4 and C-5), 113.7, 114.0, 116.0 (C-2 and C-7),



Molecules 2021, 26, 5082 11 of 15

122.4, 124.8, 126.7, 127.6, 127.8, 128.0, 128.4, 128.7, 132.2 (C-1 and C-8), 136.2, 136.6, 145.5
(C-2′), 152.3 (C-3′), 155.1 (C-9), 155.4 (C-3 and C-6), 157.7 (C-4a and C-5a) ppm. HRMS (ESI)
m/z: calcd. for C41H43N2O3

+, 611.327; found 611.326.
Rosamine 2: (a) Yield 12% (32 mg); (b) Yields 61% (160 mg) and 68% (179 mg) in

propionic acid and water, respectively. 1H NMR (400 MHz, CDCl3) δ: 1.32 (12H, t, J 7.2 Hz,
4×CH3), 3.63 (8H, q, J 7.2 Hz, 4×CH2), 5.24 (2H, s, 3′-CH2C6H5), 5.31 (2H, s, 4′-CH2C6H5),
6.77 (2H, d, J 2.4 Hz, H-4 and H-5), 6.80 (2H, dd, J 9.6 and J 2.4 Hz, H-2 and H-7), 6.89 (1H,
d, J 2.0 Hz, H-2′), 6.92 (1H, dd, J 8.0 and J 2.0 Hz, H-6′), 7.17 (1H, d, J 8.0 Hz, H-5′), 7.27 (2H,
d, J 9.6 Hz, H-1 and H-8), 7.31–7.45 (8H, m, H-Ar), 7.53 (2H, d, J 7.2 Hz, H-Ar) ppm. 13C
NMR (100 MHz, CDCl3) δ: 12.8 (CH3), 46.2 (CH2), 71.2 and 71.3 (CH2C6H5), 96.5 (C-4 and
C-5), 113.2 (C-1a and C-8a), 114.1 (C-2 and C-7), 114.4 (C-5′), 116.9 (C-2′), 123.8 (C-6′), 124.2
(C-1′), 127.37, 127.41, 128.0, 128.2, 128.76, 128.79, 132.2 (C-1 and C-8), 136.6, 136.7, 148.4
(C-3′), 151.1 (C-4′), 155.4 (C-3 and C-6), 157.1 (C-9), 158.0 (C-4a and C-5a) ppm. HRMS (ESI)
m/z: calcd. for C41H43N2O3

+, 611.327; found, 611.326.

3.2. Synthesis of Rosamines 3 and 4

A 1 mol/L solution of boron trichloride in dichloromethane (2 mL) was dropped
slowly into an ice-bath cooled suspension of rosamine 1 or 2 (85.6 mg, 0.14 mmol) in
dry dichloromethane (8 mL) under a N2 atmosphere. The mixture was stirred at room
temperature for 18 h. Methanol (20 mL) was added to stop the reaction, followed by several
washings with acetone and methanol. After removal of the solvent in vacuum, the residue
was precipitated with methanol/acetone.

Rosamine 3: Yield 41% (25 mg). 1H NMR (400 MHz, DMSO-d6) δ: 1.21 (12H, t, J
7.2 Hz, 4×CH3), 3.65 (8H, q, J 6.8 Hz, 4×CH2), 6.66 (1H, d, J 7.6 Hz, H-6′), 6.89 (1H, dd,
J 8.0 and J 7.6 Hz, H-5′), 6.96 (2H, d, J 2.2 Hz, H-4 and H-5), 7.07 (1H, d, J 8.0 Hz, H-4′),
7.14 (2H, dd, J 9.4 and J 2.2 Hz, H-2 and H-7), 7.26 (2H, d, J 9.4 Hz, H-1 and H-8), 9.00 (1H,
s, OH), 9.96 (1H, s, OH) ppm. 13C NMR (100 MHz, DMSO-d6) δ: 12.5 (CH3), 45.3 (CH2),
95.8 (C-4 and C-5), 113.0 (C-1a and C-8a), 114.3 (C-2 and C-7), 117.2 (C-4′), 119.3 (C-1′),
119.5 (C-5′), 120.4 (C-6′), 131.9 (C-1 and C-8), 143.0 (C-2′), 145.8 (C-3′), 155.1 (C-3 and C-6),
155.6 (C-9), 157.4 (C-4a and C-5a) ppm. MS (ESI) m/z: 431.2 M+. C27H31ClN2O3.3/2CH2Cl2
calcd. C, 57.59, H, 5.77, N, 4.71; found C, 58.07, H, 5.46, N, 4.75.

Rosamine 4: Yield 91% (55 mg). 1H NMR (400 MHz, DMSO-d6) δ: 1.22 (12H, t, J
7.2 Hz, 4×CH3), 3.65 (8H, q, J 6.8 Hz, 4×CH2), 6.79 (1H, dd, J 8.0 and J 2.1 Hz, H-6′), 6.94
(3H, d, J 2.1 Hz, H-4, H-5 and H-2′), 7.05 (1H, d, J 8.0 Hz, H-5′), 7.16 (2H, dd, J 9.8 and J
2.1 Hz, H-2 and H-7), 7.47 (2H, d, J 9.8 Hz, H-1 and H-8), 9.77 (2H, s broad, 2×OH) ppm.
13C NMR (100 MHz, DMSO-d6) δ: 12.5 (CH3), 45.3 (CH2), 95.9 (C-4 and C-5), 112.5 (C-1a
and C-8a), 114.2 (C-2 and C-7), 116.0 (C-5′), 117.3 (C-2′), 121.7 (C-6′), 122.3 (C-1′), 132.1 (C-1
and C-8), 145.6 (C-3′), 147.8 (C-4′), 154.9 (C-3 and C-6), 157.3 (C-9), 157.4 (C-4a and C-5a)
ppm. MS (ESI) m/z: 431.2 M+. C27H31ClN2O3. 1

2 CH2Cl2 calcd. C, 64.83, H, 6.33, N, 5.50;
found C, 64.41, H, 6.28, N, 5.42.

3.3. Reaction of Rosamine 4 with Amines

(a) Protocol at 4 ◦C with n-butylamine: To an ice-bath cooled solution of rosamine
4 (9.9 mg, 23 mmol) in chloroform (500 µL), n-butylamine (34.3 µL, 0.35 mol, 15 equiv.)
was added dropwise and the mixture was stirred at 0 ◦C for 2 h. Afterward, the reactional
mixture was placed in the refrigerator for 22 h. After that time, the reaction mixture was
washed with diethyl ether to remove the n-butylamine excess and purified by preparative
TLC using a chloroform/methanol mixture (9:1). Amino-pyronin 5 was obtained as a
yellow solid (24% yield, 2.2 mg), whereas initial rosamine 4 (22%, 2.4 mg) was recovered.
A similar procedure was performed using methanol as the solvent, with an extended
reaction time to six days. Amino-pyronin 5 was obtained as a yellow solid (53% yield, 4.8
mg), whereas no rosamine 4 was recovered. A similar experiment using rosamine 3 in
chloroform at 4 ◦C was performed but, in this case, a complex mixture of products was
obtained.
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(b) Protocol under MW with n-butylamine: A solution of rosamine 4 (9.9 mg, 23 mmol)
in NMP (N-methylpyrrolidine, 0.1 mL) was placed in a 10 mL reaction vial, to which
n-butylamine (34.0 µL, 0.35 mol, 15 equiv.) was added. The vial was then sealed and
placed in the cavity of a CEM microwave reactor. The reaction was irradiated at 200 ◦C
(1 min ramp to 200 ◦C and 35 min hold at 200 ◦C, using 150 W maximum power). The
reaction was controlled by TLC at 5, 20, and 35 min. The resulting mixture was purified
by preparative TLC using a mixture of chloroform/methanol (8:2) and vacuum dried,
affording amino-pyronin 5 (10% yield, 0.9 mg), whereas rosamine 4 (7% yield, 0.7 mg)
was recovered.

Amino-pyronin 5: (a) Yield 53% (4.8 mg) and (b) Yield 10% (0.9 mg) 1H NMR (600 MHz,
MeOD-d4) δ: 1.05 (3H, t, J 7.4 Hz, NHCH2CH2CH2CH3), 1.29 (12H, t, J 6.8 Hz, 4×CH2CH3),
1.55 (2H, q, J 7.4 Hz, NHCH2CH2CH2CH3), 1.93 (2H, t, J 7.4 Hz, NHCH2CH2CH2CH3),
3.60 (8H, q, J 6.8 Hz, 4×CH2CH3), 4.02 (2H, t, J 7.4 Hz, NHCH2CH2CH2CH3), 6.73 (2H, s
broad, H-4 and H-5), 6.98 (2H, dd, J 9.0 and J 1.8 Hz, H-2 and H-7), 8.12 (2H, d, J 8.4 Hz,
H-1 and H-8) ppm. 13C NMR (150 MHz, MeOD-d4) δ: 11.3 (NHCH2CH2CH2CH3), 12.6
(CH2CH3), 19.7 and 31.2 and 47.2–48.2 (CH2, where one of the signals is under the signal of
MeOD-d4), 44.5 (CH2CH3), 67.7, 81.7, 96.2 (C-4 and C-5), 110.7 (C-2 and C-7), 128.5, 153.4,
154.6. HRMS (ESI) m/z: calcd. for C25H36N3O+, 394.3285; found, 394.285.

(c) Protocol at 4 ◦C with putrescine: To an ice-bath solution of rosamine 4 (10.2 mg,
2.4 × 10−2 mol) in chloroform (500 µL), putrescine (17.8 µL, 0.18 mol, 7.5 equiv.) was
added dropwise and the mixture was stirred at 0 ◦C for 2 h. Then, the reactional mixture
was placed in the refrigerator for 22 h. After that time, the reaction mixture was washed
with diethyl ether to remove the amine excess and purified by preparative TLC using a
chloroform/methanol mixture (9:1), to give amino-pyronin 6a (26% yield, 2.5 mg) as a
yellow solid, and only trace amount of 6b (dimer).

Amino-pyronin 6a: Yield 26% (2.5 mg) 1H NMR (600 MHz, MeOD-d4) δ: 1.28 (12H,
t, J 6.8 Hz, 4×CH2CH3), 1.83 and 2.01 (4H, 2t, J 7.2 Hz, NHCH2CH2CH2CH2NH2), 3.02
(2H, t, J 7.2 Hz, NHCH2CH2CH2CH2NH2), 3.59 (8H, q, J 7.2 Hz, 4×CH2CH3), 4.08 (2H, t, J
7.2 Hz, NHCH2CH2CH2CH2NH2), 6.73 (2H, s broad, H-4 and H-5), 6.97 (2H, dd, J 9.3 and
J 2.4 Hz, H-2 and H-7), 8.13 (2H, d, J 9.3 Hz, H-1 and H-8) ppm. MS (MALDI) m/z: calcd for
C25H37N4O+, 409.296; found, 409.409.

(d) Protocol at 4 ◦C with cadaverine: To an ice-bath cooled solution of rosamine 4
(10.2 mg, 2.4 × 10−2 mol) in chloroform (500 µL), cadaverine (20.8 µL, 0.18 mol, 7.5 equiv.)
was added dropwise and the mixture was stirred at 0 ◦C for 2 h. Afterward, the reactional
mixture was placed in the refrigerator for 22 h. After that time, the reaction mixture was
washed with diethyl ether to remove the amine excess and purified by preparative TLC
using a chloroform/methanol mixture (9:1) to give amino-pyronin 7a (15% yield, 1.5 mg)
and 7b (0.6 mg, 3%).

Amino-pyronin 7a: Yield 15% (1.5 mg) 1H NMR (600 MHz, MeOD-d4) δ: 1.29 (12H, t,
J 6.8 Hz, 4×CH2CH3), 1.60, 1.78 and 2.01 (6H, 3t, J 7.3 Hz, NHCH2CH2CH2CH2CH2NH2),
2.99 (2H, t, J 7.3 Hz, NHCH2CH2CH2CH2CH2NH2), 3.61 (8H, q, J 6.8 Hz, 4×CH2CH3),
4.06 (2H, t, J 7.3 Hz, NHCH2(CH2)4NH2), 6.74 (2H, s broad, H-4 and H-5), 6.99 (2H, dd, J
9.0 and J 2.1 Hz, H-2 and H-7), 8.15 (2H, d, J 9.0 Hz, H-1 and H-8) ppm. MS (MALDI) m/z:
calcd. for C26H39N4O+, 423.312; found, 423.450.

Amino-pyronin 7b: Yield 3% (0.6 mg) 1H NMR (400 MHz, MeOD-d4) δ: 1.26 (24H, t,
J 7.2 Hz, 8×CH2CH3), 1.71 (2H, t, J 7.3 Hz, NHCH2CH2CH2CH2CH2NH), 2.04 (4H, t, J
7.3 Hz, NHCH2CH2CH2CH2CH2NH), 3.57 (16H, q, J 7.2 Hz, 8×CH2CH3), 4.05 (4H, t, J
7.3 Hz, NHCH2(CH2)3CH2NH2), 6.66 (4H, d, J 2.5 Hz, H-4 and H-5), 6.89 (4H, dd, J 9.6 and
J 2.5 Hz, H-2 and H-7), 8.07 (4H, d, J 9.6 Hz, H-1 and H-8) ppm. MS (MALDI) m/z: calcd.
for C47H63N6O2

+, 743.501; found, 743.969.

3.4. Sensing Study of Rosamine 4 with Different Biogenic Amines

(a) Preliminary studies in solution. Nine samples were prepared from 500 µL of
rosamine 4 dissolved in acetonitrile with a concentration of 10−5 M. Then, 2, 4, and up
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to 8 equiv. of 5 µL solutions of biogenic amines (1-histamine, 2-tyramine, 3-cadaverine,
4-putrescine, 5-phenylethylamine, 6-spermidine, 7-spermine, 8-n-butylamine, and 9-rosamine
4) dissolved in water were added. The changes were observed under visible and UV light
and registered.

(b) UV-Vis and fluorescence studies in solution. A stock solution of rosamine 4 in
DMSO was diluted to 35 µM in acetonitrile. Then 0.1, 0.5, 1.0, 2.0, 4.0, and 8.0 equiv. of amine
solutions (n-butylamine, t-butylamine, cadaverine, and putrescine) in acetonitrile were
added. UV–Vis and fluorescence spectra were recorded in the appropriate concentration
and wavelength ranges between 225 and 800 nm (absorbance) and 561–800 nm (emission;
λexc = 551 nm, 5 nm slit width for excitation and emission and 650 V) at 25 ◦C.

(c) Studies in gas phase. The study was carried out using 2.5 mL of rosamine 4 dis-
solved in acetonitrile and with a concentration of 5 µM. To dispose the amines in the
gas phase, a small amount of each commercial biogenic amine (cadaverine, spermidine,
spermine, phenylethylamine, histamine, tyramine, tryptamine, and putrescine) was placed
in 10 mL vials, closed with a septum, and heated on a heating plate, as shown in Figure S32,
at different temperatures depending on the boiling point of each amine. The vapor pro-
duced was transferred with a syringe and bubbled into a cuvette containing 2.5 mL of 4.
Afterward, the measurement was carried out in the spectrophotometer at 533 nm. The
same procedure was carried out using nitrogen, air, and water vapor to check any putative
effects on probe 4.

4. Conclusions

Two catechol-derived rosamine dyes were synthesized through a simple and straight-
forward strategy involving the microwave-assisted synthesis of rosamines 1 and 2, with
subsequent debenzylation using boron trichloride to give derivatives 3 and 4. Significant
changes in the UV–Vis spectra were observed for the catechol derived rosamine 4 toward
biogenic amines (BAs), especially for putrescine, where two new bands appeared at 512
and 649 nm and a quench was observed at 551 nm. The highest fluorescence intensity
quenching was observed for the addition of 8 equiv. of putrescine (55%).

Furthermore, we found that methanolic solutions of rosamine 4 and n-butylamine
showed an expressive color change over time, which was attributed to the formation of
the 9-aminopyronin 5. Different parameters including solvent, temperature, and reaction
time influence the outcome of this transformation; the best yield was obtained in methanol
at 4 ◦C for ca. 144 h, affording 5 in 53% yield. Other 9-aminopyronins 6a, 6b, 7a, and
7b were obtained from methanolic solutions of 4 with putrescine and cadaverine. All
9-aminopyronins exhibited exceptional spectroscopic properties with blue shifts in absorp-
tion and emission spectra as well as a high increase in the fluorescence quantum yield,
comparatively to the pristine rosamine 4.

The present results corroborate the high reactivity of the catechol derivative 4 toward
amines, and hint that this rosamine can be considered in the future as a biogenic amine
sensor in solution (acetonitrile) and in the gas phase.

Supplementary Materials: The following are available online: MS, 1H, 13C, and 2D NMR spectra of
the new compounds; additional UV–Vis and fluorescence measurements including the fluorescence
intensity of 4 with pH variation and detection of biogenic amines in solution and in the gas phase.
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