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Graph Fourier transform for spatial omics
representation and analyses of
complex organs

Yuzhou Chang 1,2,11, Jixin Liu3,11, Yi Jiang1, Anjun Ma 1,2, Yao Yu Yeo 4,5,
Qi Guo1, Megan McNutt1, Jordan E. Krull 1,2, Scott J. Rodig6,7,
Dan H. Barouch 4,8, Garry P. Nolan 9, Dong Xu 10, Sizun Jiang 4,5,6,
Zihai Li 2, Bingqiang Liu 3 & Qin Ma 1,2

Spatial omics technologies decipher functional components of complex
organs at cellular and subcellular resolutions. We introduce Spatial Graph
Fourier Transform (SpaGFT) and apply graph signal processing to awide range
of spatial omics profiling platforms to generate their interpretable repre-
sentations. This representation supports spatially variable gene identification
and improves gene expression imputation, outperforming existing tools in
analyzing human andmouse spatial transcriptomics data. SpaGFT can identify
immunological regions for B cell maturation in human lymph nodes Visium
data and characterize variations in secondary follicles using in-house human
tonsil CODEX data. Furthermore, it can be integrated seamlessly into other
machine learning frameworks, enhancing accuracy in spatial domain identifi-
cation, cell type annotation, and subcellular feature inference by up to 40%.
Notably, SpaGFT detects rare subcellular organelles, such as Cajal bodies and
Set1/COMPASS complexes, in high-resolution spatial proteomics data. This
approach provides an explainable graph representation method for exploring
tissue biology and function.

Advancements in spatial omics offer a comprehensive view of the
molecular landscape within the native tissue microenvironment,
including genome, transcriptome, microbiome, T cell receptor (TCR)1,
epigenome, proteome, transcriptome-protein markers co-profiling,
and epigenome–transcriptome co-profiling2 (Fig. 1a and Supplemen-
tary Fig. 1). These approaches enable the investigation and elucidation
of functional tissue units (FTUs)3, which are defined as over-
represented multicellular functional regions with a unique

physiologic function, with both cell-centric and gene-centric approa-
ches. Specifically, cell-centric approaches involve the identification of
spatial domains with coherent gene expression and histology4,
studying cell composition and neighborhoods within specific
domains5–7, and understanding inter-cellular mechanisms. In parallel,
gene-centric approaches characterized FTUs by imputing gene
expression8 and identifying spatially variable genes (SVG)9–11 in a highly
complementary manner to cell-centric approaches.
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Classic statistical methods, such as SPARK9, SPARK-X12, and
SpatialDE11, have effectively modeled molecular variations and spatial
relationships within a tissue. However, they did not fully explore the
capacity to translate these relationships into understandable and
analyzable features. In contrast, graph-based methods present a
powerful alternative method that efficiently encodes and leverages
spatial relationships within tissue in spatial omics data
representation13. We postulate that an FTU can be intuitively con-
sidered a graph; its nodes represent spots or cells, and edges connect
spatially adjacent or functionally related nodes. Within this repre-
sentation of FTUs, a binary graph signal (e.g., 0,1), representing dis-
crete two-state information at each node, and cellular or subcellular
composition or omics features (e.g., genes) constitute continuous

graph signals, encoding a range of values across the graph’s nodes.
These graph signals define the FTU’s characterization, connect cell-
centric and gene-centric analyses, and offer mutual interpretatibility14,
through the generation of a graph embedding that harmonizes the
graph structure and signal magnitude. Furthermore, while graph-
based machine learning methods are available to learn graph embed-
dings and carry out downstream tasks (e.g., graph classification), their
learning progress is usually a “black box” and relies on an inductive
bias (i.e., a hypothesis for a particular question) to train the model15.
The characteristics of the produced graph embeddings are specifically
tailored to perform optimally in certain targeted downstream tasks.
Therefore, there is a need for a generic graph signal representation
framework with a solid mathematic foundation to reveal intricate
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relations between molecular signatures and FTUs across multiple
resolutions of spatial omics data.

To achieve this, we present the Spatial Graph Fourier Transform
(SpaGFT), an analytical feature representation approach to encode
smooth graph signals for representing biological processes within
tissues and cells. It bridges graph signal processing techniques and
spatial omics data, enabling various downstream analyses and facil-
itating insightful biological findings. Computationally, SpaGFT out-
performedother tools in identifying SVGswith hundred-fold efficiency
and gene expression imputation across human/mouse Visium data.
Biologically, SpaGFT identified key immunological areas for B cell
maturation processes from human lymph nodes Visium data and fur-
ther illustrated secondary follicle cellular, morphological, and mole-
cular diversity from exclusively in-house human tonsils CODEX data.
Moreover, SpaGFT can be seamlessly integrated into other machine
learning frameworks regarding domain identification (e.g., SpaGCN4),
annotation transfer from cell types to spots (e.g., TACCO6), the cell-to-
spot alignments (e.g., Tangram7), and subcellular hallmark inference
(e.g., CAMPA16). Notably, enhanced CAMPA has enabled the discovery
of rare subcellular structures like the Cajal body and Set1/COMPASS
complex based on iterative indirect immunofluorescence image (4i)
data17, enhancing our understanding of cellular function using spatial
omics technologies.

Results
SpaGFT reliably represents the smooth signal of spatial
omics data
We summarize current spatially resolved omics as three types of
spatial graphs related to the granularity of nodes, ranging from
subcellular level (i.e., pixel-level) to broader cellular (i.e., cell-level)
and multicellular scales (i.e., spot-level) based on the spatial reso-
lutions (Fig. 1b–k). This granularity can range from subcellular levels
to broader cellular and multicellular scales. For example, based on
the spatial graph of a spatially resolved transcriptomics (SRT)
dataset, the transcriptomic profile of a specific gene is a graph signal
and can be represented by the linear combination of its Fourier
modes (FMs, Terminology Box). To elaborate, a low-frequency FM
contributes to a low and smooth graph signal variation, representing
a spatially organized pattern, while a high-frequency FM contributes
to rapid graph signal variation and usually refers to noises in spatial
omics data18. For example, if a gene exhibits a spatially organized
pattern in SRT data, the Fourier coefficients (FCs) of corresponding
low-frequency FMs are more dominant than FCs of high-frequency
FMs in the graph Fourier representation. Notably, FMs are asso-
ciated with graph structure and do not assume any predefined
patterns18, ensuring flexibility in representing both well-defined and
irregular spatial signal patterns. Thus, regardless of single-
(Fig. 1b–d, f, g, and i), multi-modalities (Fig. 1e and h), or augmented
features (Fig. 1j and k), the spatial omics can be analytically trans-
formed into FCs to quantify the contribution of FMs in the frequency

domain19, a feature space for enhancing the interpretability and
generalizability in downstream analyses.

SpaGFT identifies spatially variable genes and enhances gene
and protein signals
Using the representation framework of SpaGFT (Fig. 2a), the mathe-
matical formulation of SVG identification can be derived as a k-ban-
dlimited signal recognition problem, which determines the first k low-
frequency FMs to best approximate the original graph signal (Fig. 2b,
Supplementary Fig. 2, and S1 of Supplementary Note 1). This for-
mulation can overcome three main limitations of SVG identification
methods: (i) no pre-assumption of regular patterns in model design
(e.g., radial hotspot, curve belt, or gradient streak)9; (ii) interpretable
representation of SVG patterns20 with spatial context; and (iii) high
computational efficiency12 when processing large-scale datasets.
Essentially, we defined and implemented a GFTscore for each gene to
quantify the contribution of low-frequency FMs by determining the
first k low-frequency FMs,weighting, and summing corresponding FCs
(S2 of Supplementary Note 1). Based on the definition, a gene is
identified as an SVG if (i) its GFTscore is greater than the inflexionpoint
based on the distribution of all genes’ GFTscore and (ii) its FCs of the
first k low-frequency FMs are significantly higher than FCs of high-
frequency FMs (S3 of Supplementary Note 1). Consequently, we eval-
uated the performance of SVG identification using 31 public SRT
datasets fromhuman andmouse brains (Supplementary Data 1)21–24. As
no golden-standard SVG database was available, we collected 849 SVG
candidates from five existing studies24–28, and 458 of themwereused as
curated benchmarking SVGs based on cross-validation with the in situ
hybridization (ISH) database of Allen Brain Atlas29 (Supplementary
Data 2 and 3, see the “Methods” section). The SVG prediction
performance of SpaGFT was compared with SPARK9, SPARK-X12,
MERINGUE30, SpatialDE11, SpaGCN4, and scGCO31 in terms of six
reference-based and two reference-free metrics (Supplementary
Note 2). The grid search of parameter combinations was conducted on
three high-quality brain datasets to evaluate each tool’s performance,
in which SpaGFT showed the highest median and peak scores (Fig. 2c
and Supplementary Data 4). In addition, the computational speed of
SpaGFT was two-fold faster than that of SPARK-X and hundreds-fold
faster than those of the other four tools on the two Visium datasets
(Supplementary Data 5). Although SpaGFT was slower than SPARK-X
on the Slide-seqV2 dataset, it showed a remarkably enhanced SVG
predictionperformance compared to SPARK-X.We then performed an
independent test on 28 independent datasets using the parameter
combination with the highest median Jaccard Index among three
datasets from the above grid-search test. The results revealed that
SpaGFT promised supremeperformance among the investigated tools
based on the evaluationmetrics (Fig. 2d, Supplementary Fig. 3a–d, and
Supplementary Data 6). Within the top 500 SVGs from each of the
above six tools, SpaGFT identified SVGs shared with other tools and
also unique SVGs that were validated as the ground truth

Fig. 1 | Schema of SpaGFT for spatial omics representation. a The panel show-
cases spatial omics technologies, including single andmulti-modalitymethods.b–d
the panels display the calculation of Fouriermodes (FM), and the transformation of
original graph signals into Fourier coefficients (FC) with different resolutions of
technologies. b The figure presents pixel graphs with nodes at the subcellular level
and edges denoting short Euclidean distances between connected pixels. This
graph represents technologies like stere-seq andmost spatial proteomics data, e.g.,
4i. The two figures following panel b illustrate a k-bandlimited signal (e.g., Afp) and
a non-k-bandlimited signal (e.g., Xbp1). c and d Cell graphs and spot graphs are
composed of nodes at the cellular level resolution and multicellular level resolu-
tion, respectively, with edges representing short Euclidean distances between
nodes in two panels. e The figure exhibits multi-modal data from a technology
called SPOTS, which can measure both proteins and genes simultaneously. The k-
bandlimited signal shown is for the Ly6a gene and its corresponding protein, while

the non-k-bandlimited signal is for the Klrb1c gene. f–h The panels show examples
of signals from Slide-DNA-seq, Slide-TCR-seq, and spatial
epigenome–transcriptome co-profiling of mouse embryo-13. i The panel shows
subcellular spatial proteome (i.e., 4i) are k-bandlimited signals. j This panel
demonstrates data augmentation for sequencing-based spatial transcriptomics
(e.g., Visium). The first step of augmentation involves using H&E images and Cell-
pose for cell segmentation and counting the number of nuclei in each spot. The
next step involves mapping reads to the microbiome genome, which then allows
for the determination of microbiome abundance. Finally, gene lists (e.g., MSigDB)
can be used to calculate the pathway activity score for each spot. k This panel
displays the signals mentioned in panel j, including cell density, microbiome
abundance, and pathway activity. Panel a is created with BioRender.com, created
with BioRender.com, released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license.
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(Supplementary Fig. 3e and Supplementary Data 7). For example,Nsmf
and Tbr1were identified by all six tools and showed clear structures of
the hippocampus, cortical region, and cerebral cortex. On the other
hand, Cartpt, Cbln2, Ttr, and Pmchwere uniquely identified by SpaGFT
and showed key functions in the brain, such as Cartpt participating in
dopaminemetabolism29 (Fig. 2e, SupplementaryFig. 4, andAnnotation
1 of Supplementary Note 3). These benchmarking results suggested

that SpaGFT is capable of leveraging upon the FM representation of
gene expression for robust and accurate identification of SVGs from
SRT data. SpaGFT takes advantage of FM representation of gene
expression patterns in SVG identification, and the SVGs identified by
SpaGFT were distinguishably separated from non-SVGs on the FM-
based UMAP with a clear boundary, whereas SVGs were irregularly
distributed on the principal component-based gene UMAP (Fig. 2f).
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In addition, the distorted graph signal correction can be used as
the mathematical formulation to impute a low-expressed gene or
denoise a high-intensity but noisy protein in SpaGFT. Essentially, FCs
are shifted towards a specific bandwidth by implementing a low-pass
filter and are inversely transformed to an enhanced graph signal using
an inverse graph Fourier transform (iGFT)32. To enhance the main
signal andmitigate noise, a low-passing filter is employed toweigh and
shift all FCs toward the low-frequency bandwidth (see the “Methods”
section). In the end, these weighted FCs are transformed back to a
corrected graph signal via iGFT (Supplementary Fig. 5a). In assessing
the performance of gene expression correction, we used 16 human
brains SRT datasets with well-annotated spatial domains23,24 and uti-
lized adjusted rand index (ARI) to measure the accuracy of predicting
spatial domains using corrected gene expression. As a result, SpaGFT
outperformed other gene enhancement tools in terms of ARI, includ-
ing Sprod8, SAVER-X, scVI, netNMF-sc, MAGIC, and DCA33,34 (Fig. 2g,
Supplementary Fig. 5b, and Supplementary Data 8). For example,
SpaGFT enhanced the low-intensity spatial omics signal broadly across
different technologies and species, such as gene TNFRSF13C for human
lymph node, gene Ano2 for mouse brain29 (Supplementary Fig. 5c), cell
density for human prostate tumor (from data of Fig. 1k), protein I-A,
and corresponding gene H2ab1 for mouse breast tumor. Similarly, the
noisy background can also be removed, such as protein LY6A/E and
corresponding gene Ly6a andproteinCD19 (Fig. 2h, i andAnnotation 2
of Supplementary Note 3).

SpaGFT identifies the germinal center, T cell zone, B cell zone,
and crosstalking regions in the human lymph node
As low-frequency FC can represent smooth spatially variable patterns,
they can be used for SVG clustering, and gene clusters can correlate
withdistinct FTUs fromageneperspective (Supplementary Fig. 6a). To
demonstrate the application, we implemented SpaGFT in the publicly
available Visium data of human lymph nodes, which, as secondary
lymphoid organs contain well-known recurrent functional regions,
such as T cell zones, B cell zones, and germinal center (GC)20. First,
SpaGFT identified 1,346 SVGs and characterized nine SVG clusters
(Fig. 3a and Supplementary Data 9). To recognize the FTUs of the T cell
zone, B cell zone, and GC, we first used cell2location35,36 to determine
the cell proportion (Supplementary Fig. 6b and Supplementary
Data 10) for the nine SVG clusters and investigate function enrichment
(Supplementary Fig. 6c–e) for three selected FTUs. Based on the
molecular, cellular, and functional signatures of three regions35, we
found that SVG clusters 3, 5, and 7 (Fig. 3b) were associated with the T
cell zone, GC, and B cell zone, respectively (Annotation 3 of Supple-
mentary Note 3).

In contrast to spatial domain detection tools, SpaGFT is not
restricted to a rigid boundary for tissue-level identification of
microenvironments5. Instead, SpaGFT allows overlapping regions to

infer the functional coherence and collaboration among different
FTUs. We therefore projected three FTUs represented by SVG clusters
3, 5, and 7 on the spatial map for visual inspection, and identified their
close spatial proximity (Fig. 3c). These results are highly indicative of
tissue regions of polyfunctionality amongst these three TFUs (four
representative subregions are shown in Fig. 3c). To further investigate
the crosstalk amongst these three TFUs, we projected spots (assigned
to all three regions) to the Barycentric coordinates (the equilateral
triangle in Fig. 3d), which displayed relations and abundance of the
unique and overlapped regions regarding cell type components37. We
identified 614 spots overlapped with B cell zone and GC, 158 spots
overlappedwithGCandT zone, 93 spots overlappedwithT zone andB
cell zone, and 26 spots overlapped across three FTUs (Supplementary
Data 11), in support of the complex interactions within these three
TFUs.Wenext hypothesized that the spots from theoverlapped region
would vary in functions and cell components to support the poly-
functionality of these regions. We thus investigated the changes in
enriched functions (Supplementary Data 12) and cell types (Supple-
mentary Fig. 7) across seven regions (i.e., GC, GC–B, B, B–T, T, T–GC,
and T–B–GC). Our results identified lymph node-relevant pathways
and cell types, such as B and T cell activity and functions, as sig-
nificantly varied across those regions (Fig. 3e, f, Annotation 4 of Sup-
plementary Note 3), in support of our hypothesis.

SpaGFT reveals secondary follicle variability based on
CODEX data
The results of Visium in Fig. 3 showcased the ability of SpaGFT to
identify FTUs via SVG clustering. Given that the current resolution of
Visium (~50μmper pixel) limited our ability to interpret the variability
of finer follicle structures and their corresponding functions at the
cellular level, we next performed single-cell level spatial proteomics on
a human tonsil using a 49-plex CODEX panel at a ~0.37μm per pixel
resolution (Fig. 4a) to better characterize and interpret the follicle
variability we observed and inferred using SpaGFT on the Visium data.
Based on the anatomical patterns highlighted by B (e.g., CD20) and T
cell (e.g., CD4) lineage markers, we selected fields of view (FOV) that
would allow for a good representation of the complex tissue structures
present in the tonsil (i.e., GC and interfollicular space38) while still
highlighting the variability in follicle structure39. We first performed
cell segmentation with DeepCell40, followed by clustering with
FlowSOM41 and Marker Enrichment modeling42 to identify the diverse
cell phenotypes present in the data (Fig. 4b). Interestingly, we
observed that the clear arrangement of T and B cell patterns (e.g., A3,
A5, and A6) informed identifiable GC regions within the follicular
structure, compared to others (e.g., A4) without clear T and B cell
spatial organization (Fig. 4b). We, therefore, postulated that A4 is
comprised of multiple follicles, unlike A5 and A6, to represent a more
spatially complex FOV.

Fig. 2 | Performance for SVG idenfication and spatial omics feature imputation.
a SpaGFT considers a gene-spot expression count matrix (m×n) and spatial loca-
tions as input data, with ENC1, MOBP, and GPS1 listed as examples. b Two known
SVGs (MOBP and ENC1) and one non-SVG (GPS1) are shown as examples. The FMs
can be separated into low-frequency (red) and high-frequency (blue) domains.
c The SVG prediction evaluation was compared to five benchmarking tools. The
running time is represented as red lines. In addition, the other evaluation scores of
all parameter combinations for each tool are shown as heatmaps. The two-sided
Wilcox rank-sum test was used to calculate the p-value for the highest two tools
(i.e., N = 16 and N = 53 for SpaGFT and MERINGUE in HE_coronal data; N = 16 and
N = 54 for SpaGFT andMERINGUE in 151673 data; N = 16 and N = 18 for SpaGFT and
SPARK-X in Puck-200115-08 data). The methods are not able to identify SVG in a
reasonable time, showing NA in this panel. d The box plot shows independent test
results. The two-sidedWilcox rank-sum test is used to calculate the p-values for the
highest two tools (N = 28). Each box showcases theminimum, first quartile,median,
third quartile, and maximum Jaccard scores in panels c and d. e SVG examples that

all tools can identify (left panel) are uniquely identified by SpaGFT (middle and
right panel). Green genes are reported in the literature, while orange is not.
Expression of Nsmf, Tbr1, Cartpt, Cbln2, Ttr, and Pmch in adult mouse brain. Allen
Mouse Brain Atlas, mouse.brain-map.org/experiment/show/74821712, mouse.b-
rain-map.org/experiment/show/79591351, mouse.brain-map.org/experiment/
show/72077479, mouse.brain-map.org/experiment/show/68632172, and mouse.b-
rain-map.org/experiment/show/55. f Comparison of the UMAPs of the HE-coronal
data in Principle Component features space and Fourier space. g Boxplot show-
cases the performance of SVG signal enhancement for grid search (top) and inde-
pendent test using 151509 (bottom),where the y-axis is theARI value. The two-sided
Wilcox rank-sum test is used to calculate the p-values for the highest two tools
(N = 27). Each box showcases the minimum, first quartile, median, third quartile,
and maximum ARI scores. h and i The spatial map shows the signals before and
after enhancement and noise removal for spatial omics features. Source data are
provided as a Source Data file.
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Fig. 3 | SpaGFT reveals the region-region interaction on the lymph node.
a UMAP visualization of nine SVG clusters from the human lymph node. Each dot
represented SVGs. Upright UMAP showed SVGs in red and non-SVG in gray.
b Clusters 3, 5, and 7 were highly associated with the T cell zone, GC, and B follicle
cell components based on molecular and functional signatures. The heatmap
visualized the FTU-cell type correlation matrix. c The spatial map overlaid three
FTUs and displayed the overlapped spots and unique spots. As different colors
corresponded to spots, we selected four areas to showcase the region-to-region
interaction. A1 showcasedGC, GC-B interaction region, andB follicle. A2 showcased
the B follicle, B–T interaction region, and T cell zone. A3 showcased the GC, GC-T
interaction zone, and T cell zone. A4 displayed a B-GC-T interaction zone. d The
barycentric coordinate plot shows cell-type components and the abundance of

spots in interactive and functional regions. If the spot is closer to the vertical of the
equilateral triangle, the cell type composition of the spot tends to be signature cell
types of the functional region. The spots were colored by functional region and
interactive region categories. e and f The three plots displayed changes in enriched
functions and cell type components across seven regions (GC, GC-B, B, B–T, T,
T–GC, T–GC–B). The P-value was calculated using one-way ANOVA to test the
differences among the means of seven regions. The number of sample sizes (i.e.,
spots) in the GC zone, B cell zone, T cell zone, GC and T zone, GC and B zone, T&B
zone, and GC, T, and B zone are 116, 1367, 667, 158, 614, 93, and 26. The error bars
show the standard deviation of enrichment scores. Source data are provided as a
Source Data file.
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We investigated this further by directly using the raw CODEX ima-
ges as inputs to identify FTUs formed from spatially variable protein
(SVP) clusters within the tissue environment43. To verify whether
downsampling the CODEX image (Supplementary Fig. 8a) would result
in a loss in the power of characterizing FTUs, we first used FOV 6 to
generate three images acrossdifferent resolutions (withdownsampling),

resulting in a (1) 1000-by-1000 pixel image (~0.8μm per pixel size), (2)
500-by-500 pixel image (~1.6μmper pixel size), and 3) 200-by-200 pixel
image. Our results show that despite the generation of diverse low- and
high-frequency FMs from three pixel-level images (as illustrated in
Supplementary Fig. 8b), SpaGFT was stable to resolution changes,
characterizingFTUs acrossdifferent resolutionswith consistentpatterns
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(Supplementary Fig. 8c). We subsequently calculated the structural
similarity score (SSIM) to quantitatively evaluate pattern similarity
among identified FTUs. Each gradient pixel size image identified six
FTUs, and those patterns of FTUs showed pairwise consistency (Fig. 4c
and Supplementary Fig. 8d), suggesting that 200-by-200 pixel down-
sampled images (an approximate factor of 105-fold from the original
pixel size) were sufficient in characterizing FTUs to balance between
computational efficiency and biological insights.

We next implemented SpaGFT to characterize FTUs for the six
FOVs with 200-by-200 pixel images and annotated follicles for each
FOV based on cell components (Supplementary Fig. 9) and protein
signatures (Supplementary Data 13; Supplementary Figs. 10a, b).
Specifically, FTUs represented by SVP cluster 1 of A1 and SVP cluster
1 of A2 displayed morphological features akin to that of a mantle
zone (MZ). Molecularly, we uncovered that the B cell-specific
marker44 (CD20) and anti-apoptotic factor (BCL-2)45 were SVPs for
these two FTUs of A1 and A2 (Fig. 4d, e and Supplementary Fig. 10c).
Our results confirmed the presence of CD20 in delineating the MZ
structure, and additionally suggest that the presence of BCL-2 as an
additional feature of MZ structures46. In another case, FTUs repre-
sented SVP cluster 4 of A3, SVP cluster 9 of A4, and SVP cluster 4 of
A5 displayed GC-specific T cell signatures (Fig. 4f, g and Supple-
mentary Fig. 10d) and corresponding molecular features, including
PD-147 and CD5748, indicating the presence of well-characterized GC-
specific T follicular helper cells49. For FTUs represented by SVP
cluster 2 of A6, we observed a complex molecular environment,
where Podoplanin, CD11c, and CD11b were SVPs, thus showcasing
the existence of follicular dendritic cell (FDC)50 and GC-centric
macrophages51 networks (Fig. 4h). In addition to molecular hetero-
geneity, we further captured their variability in terms of length-scale
and morphology (Fig. 4i), cell type (Fig. 4j and k), cell–cell distance
(Fig. 4l), and cell-cell interactions (Fig. 4m). For example, from the
tissue morphology perspective, A3–A6 captured clear oval shape
patterns with different length-scales, but A1 and A2 captured mul-
tiple partial MZ patterns (Fig. 4i). Although visual inspection was
unable to distinguish between the morphological patterns of GCs in
A4 (Fig. 4b), SpaGFT was able to determine three small length-scale
GC patterns at the molecular level (Fig. 4i).

Regarding cellular characteristics, six FTUs (i.e., two MZ from A1
and A2; four GCs from A3 to A6) were dominated by B and CD4 T cells
with varying proportions (Fig. 4j-k; Supplementary Data 14). Specifi-
cally, MZs from A1 and A2 showed an average composition of 58% B
and 10% CD4 T cells. GC from A3 and A5 with similar length-scale
showed an average of 54% B and 32% CD4 T cells. A4 captured three
length-scale GCs and showcased 43% B and 46% CD4 T cells, while the
large-scale GC from A6 contained 70% B and 12% T cells, indicating B
and T cell proportions varying in different length-scale GC. We could
also infer cell–cell interaction based on distance (Fig. 4l, m). In general,
MZ from A1 and A2 show that the observed B–B distance was smaller
than the expected distance, which suggests the homogeneous biolo-
gical process of the significant B–B interaction in the GC region. In

addition, cell-cell interaction also shows heterogeneity for two MZ.
The interactions between CD4 T cells and B cells were observed in two
MZ fromA1 andA2, showcasing the infiltration ofCD4Tcells into the B
cell right mantle zone52. DC-B and CD4 T-B cell interactions in A3 and
A4 suggest light zone functions for B cell selection53,54. Macrophage-B
cell interactions in GC in A6 potentially indicated macrophage reg-
ulation on B cells (e.g., B cells that failed to trigger the cell proliferation
signals during the B cell selection process underwent apoptosis and
were subsequently engulfed by macrophages55). Our results demon-
strate the applicability of SpaGFT at an initial subsampled lower
resolution from high-plex spatial proteomics, thus efficiently identi-
fying and characterizing high-attention tissue regions, including sec-
ondary follicles, to uncover cellular and molecular variability that can
be further confirmed at the original single-cell resolution. We also
affirmed that FTUs identifiedbySpaGFTwerenot simply regionsof cell
aggregation but reflected both the cellular and regional activity and
cell–cell interactions based on spatially orchestrated molecular
signatures.

SpaGFT can generate new features and be implemented as an
explainable regularizer for machine-learning algorithms
SpaGFT can also be beneficial to enhance the performance of existing
methods as an explainable regularizer through feature or objective
engineering. To elucidate its applicative power, we exemplified three
representative analyses of SRT as follows (Supplementary Fig. 11 and
see the “Methods” section).

First, we showcase how spot clustering can identify spatial
domains spatially coherently in both gene expression and histology.
Here, we selected SpaGCN4 as the demonstration to showcase the
implementation of FC from the feature engineering aspect (Fig. 5a). To
illustrate FCs being a feature, we extended the spatial expression
matrix by concatenating a spot-by-FC matrix derived from the spot-
spot similarity. Subsequently, the new feature matrix was input into
theoriginal SpaGCNmodel andpredicted spatial domains. Same as the
SpaGCN study, we utilized 12 datasets24 of human brain SRT data for
training (twodatasets from the same tissue section) thenumberofnew
features and testing for improving SpaGCN on 10 datasets. The results
indicated improvements in eight out of ten datasets (Supplementary
Data 15) in identifying the spatial domains of the dorsolateral pre-
frontal cortex. Notably, the top five datasets exhibited enhancements
between 7.8% and 42.6%.

Second, annotation transfer will solve the challenge of insufficient
data labeling for the increasing emergence of SRT.Weused TACCO6 as
an annotation transfer example tool to showcase the application of FC
as a regularizer for the optimal transport (OT) method, which is a
machine learning method that aimed to find the most efficient way
(i.e., minimizing the overall cost associated with the movement) to
move a probability distribution from one configuration to another.
Specifically, TACCO allowed the transfer of phenotype-level annota-
tion labels (e.g., cell type) from scRNA-seq to SRT using such an OT
framework. Although TACCO has demonstrated algorithm

Fig. 4 | SpaGFT reveals the follicle heterogeneity on Tonsil CODEX data. a A 49-
plex CODEX data was generated from human tonsil tissue at a 0.37μm/pixel
resolution. Six FOVswere selected based on their varying tissuemicroenvironment
and cellular organization.bCell phenotypemaps for eachof the six FOVs, depicting
the cellular composition and organization. c The results showed the characteriza-
tion FTUs based on the gradient pixel-level images for A6. The heatmapdepicts the
SSIM score, where a higher score corresponds to a lighter color and greater
structural similarity. d A heatmap showcasing the protein expression of each FTUs
represented by the six SVP clusters, which were identified as FTUs resembling
secondary follicles. The values in the heatmap are scaled by z-scores of protein
expression. e–h Overlays of CODEX images for SVPs for FOVs 1, 3, 4, and 6,
respectively. i. Spatial maps depicting the patterns of secondary follicle FTUs from

six FOVs. Dash rectangles indicate the identified follicle regions. Note that panels d
to h are ordered by FOV 1, 2, 3, 4, 5, and 6. j Cell phenotype maps of the FTUs
identified in (i).kBarplots depicting the cell components of the identifiedFTU in (i).
The cell type colors were depicted in (b). l The graph network depicting the spatial
proximity of the top 5 abundant cell types in the FTU identified in i, as calculated by
1

1 +d, where d represents the average distance between any two cell types.
m Dumbbell plots indicated significant cell–cell interaction among B cells and
others. If the observed distance is significantly smaller than the expected distance,
the two cell types tend to be contacted and interact. Line length represents relative
distances, subtracting the expected distance from the observed distance. An
empirical permutation test was used to calculate the p-value, and the point size was
scaled using an adjusted p-value.
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effectiveness in consideration of cell similarity over all genes, we
hypothesized that projecting cell similarity to the frequency domain
and strengthening a topological regularization in OT’s objective
function will be a potential avenue for performance enhancement. In
our modification, we integrated a topological regularization term into
the original costmatrix to derive a new costmatrix (Fig. 5b and see the
“Methods” section). Leveraging the evaluation metrics of the original
TACCO study, our tests underscored an 8.7–14.9% L2-error decrease
across five simulated bead sizes in terms of transferring annotated
labels from scRNA-seq to unannotated SRT mouse brain data (Sup-
plementary Data 16).

Third, aligning single-cell data (e.g., scRNA-seq) to low-/high-
resolution SRT data was important to mutually benefit each other
regarding spatial resolution and molecular diversity. We selected
Tangram7 as an alignment tool to demonstrate the topological reg-
ulation of genes and spots in the frequency domain. Tangram opti-
mized the cell-to-spot mapping matrix through the gradient-based
method, aiming to ensure the similarity between the reconstructed
SRT based on scRNA-seq and the original SRT. The objective function

of Tangram is to measure cell density, gene-level similarity, and cell-
level similarity in the vertex domain, respectively. In alignment with
the hypothesis proposed in Fig. 5b, we constrained the similarity at
both the gene- and cell-level in the frequency domain (Fig. 5c). As a
result, our tests illustrated 7.4–15.9% Pearson correlation coefficient
increase improvement regarding aligning scRNA-seq on simulated
STARmap56 mouse brain SRT data (Supplementary Data 17).

SpaGFT introduces an inductive bias to regularize the deep
learning method and identify rare subcellular organelles
We applied SpaGFT to obtain an interpretable spreading entropy
regulation for a conditional variational autoencoder framework,
CAMPA, to identify conserved subcellular organelles across multiple
perturbed conditions on pixel-level 4i data (165 nm/pixel)16,17. To
modify the model, we introduced an entropy term in the original
reconstruction loss of CAMPA to regularize the spreading of graph
signals19. Specifically, we constrained the entropy within the first k
bandwidth and provided an inductive assumption for CAMPA to learn
embeddings that represented k-bandlimited signals (Supplementary

Fig. 5 | SpaGFT implementation for three cell-centric tools and the figure
consists of four columns, each corresponding to spatial omics analysis, com-
putational formulation, implementation of FC in optimizing examples tools,
and performance evaluation. a Spot clustering can be formulated as a many-to-
one mapping problem. Regarding the modified workflow of SpaGCN, we changed
the original input of SpaGCN. A newly formed matrix was then placed into the
frozen SpaGCNmodel for computation. The top 5 performance-increased samples
are distinctly showcased, where the y-axis is the ARI value, and the x-axis is the
sample number. b Annotation transfer is formulated as a many-to-many mapping
problem. Regarding themodifiedworkflowof TACCO,wemodified the cost matrix
for optimal transport. In the new cost matrix calculationmethod, we use weighted
FCs as the feature to calculate the distance between CT and spots and then opti-
mize the baselinemappingmatrix (e.g., TACCO output). In the evaluation, we refer
to TACCO methods to simulate spots with different bead sizes using scRNA-seq
data and use L2 error to measure differences between predicted and known cell

composition in each simulated spot. The y-axis is the bead size for a simulationdata
value, and the x-axis is the L2 error. Lower L2 error scores indicate better perfor-
mance. c The cell-spot alignment can be formulated as a many-to-many mapping
problem. Regarding the modified workflow of Tangram, we have added two addi-
tional constraint terms to its original objective function. The first constraint is
designed from a gene-centric perspective, calculating the cosine similarity of the
gene by FC matrix between the reconstructed and the original matrix. The second
constraint is designed from a cell-centric perspective, calculating the cosine simi-
larity on the spot by the FC matrix between the reconstructed and the original
matrix. In the evaluation, we first simulate spatial gene expression data using dif-
ferent window sizes based on STARmap data. Subsequently, we measure the
similarity between predicted and known cell proportions in each simulated spot
using the Pearson correlation coefficient. A higher PPC indicates better perfor-
mance (Source data are provided as a Source Data file).
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Fig. 12a). Consequently, compared to the validation loss calculated
from validation datasets (see the “Methods” section), the loss curve
from the modified model showed a reduction and entered a stable
state earlier (Fig. 6a). We observed that, by introducing the entropy
term as a regularizer, the model enhanced the training efficacy in
capturing and minimizing the reconstruction error and promoted
faster convergence of the model.

Furthermore, we validated that the modified model significantly
(p-value = 0.035) improved the baseline model regarding batch effect
removal (Supplementary Fig. 12b–e) using kBET testing57, indicating
that the learned embeddings retained conserved structures of sub-
cellular organelles acrossmultiple perturbations. Next, comparedwith

the baseline (Fig. 6b–d), the modified model additionally identified
two rare clusters (Supplementary Data 18), including cluster 5 (with an
average of0.16%pixels per cell) and cluster 6 (with an average of 0.10%
pixels per cell). Notably, the pixels assigned to these two clusters are
very stable (not random signals computationally) regardless of dif-
ferent resolution parameters of the Leiden clustering algorithm
(Supplementary Data 19 and Supplementary Fig. 12f). Subsequently,
clusters 5 and 6 were annotated as Cajal bodies58 and set1/COMPASS59,
respectively (Fig. 6e). Cluster 6 and its corresponding protein sig-
nature, SETD1A (Fig. 6f–h), displaying a highly concentrated pattern
(with an average of 0.16% pixels per cell), were strongly shown as a k-
bandlimited signal in the frequency domain. Furthermore, we also
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Fig. 6 | The case for implementing FC to CAMPA. a The first column shows pixel
clustering concepts. In this bipartite graph (second column), pixel clustering canbe
formulated as amany-to-onemapping problem, where the source node represents
the pixel, the target node represents the subcellular organelle, and the edges
denote the corresponding mapping relationships. Regarding the modified work-
flow of CAMPA (third column), we have made a modification to the original loss
function. The modified term aims to measure the spreading of graph signals in the
reconstructed image. In the frequency domain, this spreading can be quantified
using spreading entropy (see the “Methods” section). A spreading graph signal
corresponds to high entropy, while a non-spread graph signal corresponds to low
entropy. Therefore, the new regularizer term aims to minimize the spreading
entropy. In the evaluation (fourth column), we used the validation loss, which was
calculated using the same loss function and validation dataset to examine the

contribution of the spreading entropy to the model training. The y-axis is the
validation loss value, and the x-axis is the number of epochs for training theCAMPA
model.b. UMAP showsfive-pixel clusters predicted by the baselinemodel using the
Leiden clustering algorithm at 0.2 resolution. c UMAP shows seven-pixel clusters
predicted by the modified model using the Leiden clustering algorithm at 0.2
resolution. Two rare clusters were circled in this panel. d The Sanky plot shows the
cluster changes from baseline model prediction to modified model prediction.
e The heatmap shows the annotation of each cluster (modifiedmodel at resolution
0.2) using ahumanprotein atlas. The columnof theheatmap is theprotein intensity
in the cell nucleus, and the row corresponds to clusters. f–h The three figures
showcase the overview of predicted pixel clusters, cluster 6, andmarker protein for
cell 224081. i–kThe threefigures showcase theoverviewofpredictedpixel clusters,
cluster 5, and marker protein for cell 367420.
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observed similar characteristics of cluster 5 and the corresponding
marker protein, COIL (Fig. 6i–k). Therefore, by integrating the reg-
ularization of low-frequency signals from SpaGFT, the CAMPAmodel’s
stability was enhanced in learning embeddings that represented sub-
cellular organelles with k-bandlimited characteristics. This approach,
which we term “explainable regularization,” refines the detection and
characterization of finer structures exhibiting spatially organized
patterns.

Discussion
SpaGFT provides a reliable feature representation through graph
Fourier transform that enhances our biological understanding of
complex tissues. This method aligns with the advanced analytical
capabilities required to dissect the intricate spatial components of
tissue biology, from subcellular tomulticellular scales. It eliminates the
need for pre-defined expression patterns and significantly improves
computational efficiency, as demonstrated in the benchmarking
across 31 human/mouse Visium and Slide-seq V2 datasets. In addition,
we also highlight our manually curated 458 mouse and human brain
genes as close-to-optimization standard SVGs. This will bring an
alternative evaluation metric based on realistic human/mouse data,
which is complementary to simulation-based evaluation methods,
such as BSP60, SPARK-X, SpatialDE, SPARK, scGCO, and other bench-
marking work61. Furthermore, implementing a low-pass filter and
inverse GFT effectively impute low-expressed gene expression and
denoise high-noisy protein intensity, leading to more precise spatial
domain predictions, as showcased in the human dorsolateral pre-
frontal cortex. Notably, SpaGFT advances the interpretation of spatial
omics data by enablingmore accuratemachine learning predictions. It
has notably improved the performance of existing frameworks by
8–40% in terms of the accuracy of spatial domain identification, lower
error of annotation transfer fromcell types to spots, the correctness of
the cell-to-spot alignments, and the validation loss of subcellular
hallmark inference, respectively.

From a computational standpoint, SpaGFT and scGCO are two
graph representationmethods, among others, for spatial omics data
analysis, with the former focusing on omic feature representation
and the latter focusing on SVG detection. scGCO employs a graph-
cut method to segment the tissue and compare the consistency
between segmentations and gene expressions in support of SVG
detection. SpaGFT uses the graph Fourier transform to find a
novel latent space to represent gene expression and achieve
various downstream tasks, including but not limited to, SVG iden-
tification, gene expression enhancement, and functional tissue unit
inference.

In addition, there is a good potential for implementing SpaGFT
into existing explainable spatial multi-modalities frameworks2, such
as UnitedNet62, MUSE63, and modalities-autoencoder64. Considering
UnitedNet62 as an example, it incorporates explainable machine
learning techniques to dissect the trained network and quantify the
relevance of features across different modalities, specifically look-
ing at cell-type-specific relationships. To bring more spatial insight
into UnitedNet, SpaGFT can provide (1) augmented features (e.g.,
modified SpaGCN in Fig. 5a) and (2) an explainable regularizer (e.g.,
modifiedCAMPA in Fig. 6). To generate the augmented spatial omics
features, SpaGFT can first calculate cell-cell relations (e.g., calcula-
tion from H&E features, gene expression, or protein intensity) in the
vertex domain and transform the relations to FCs, The FCs encode
and quantify cell–cell variation patterns, which can be regarded as
one of the inputs for UnitedNet. Regarding implementing SpaGFT as
an explainable regularizer, the spreading entropy can be introduced
into UnitedNet’s reconstruction loss function, as UnitedNet has an
encoder-decoder structure. By regularizing the entropy of encoded
and decoded spatial omics features on the Fourier domain, the
UnitedNet may be guided to learn spatially organized regions that

present a low-frequency signal (e.g., one functional tissue unit with a
specific pattern and function). These enhancements are pivotal in
characterizing complex biological structures using explainable
regularization for deep learning framework, including identifying
rare subcellular organelles, thus providing deeper insights into the
cellular machinery.

Regarding the biological implications, SpaGFT offers alternative
perspectives on spatial biology questions. Specifically, by grouping
SVGs identified by SpaGFT, we can uncover distinct FTUs within
organs. This has led to the identification of critical immunological
regions in the human lymph node Visium data, enhancing our knowl-
edge of B cell maturation and the polyfunctional areas it encompasses,
such as the B cell zone, T cell zone, GC, B–T zone, GC–B zone, T–GC,
and tri-zone Additionally, exclusive in-house CODEX data, SpaGFT has
revealed secondary follicle differences in the morphology, molecular
signatures, and cellular interactions in the human tonsil, offering a
more nuanced understanding of B cell maturation. Additionally,
SpaGFT introduces k-bandlimited signal entropy within the CAMPA
framework. This has led to the groundbreaking identification of rare
subcellular organelles, which are the Cajal body and the Set1/COM-
PASS complex. The former is integral to the regulation of gene
expression, while the latter plays a critical role in epigenetic mod-
ifications. By enabling the investigation of these organelles with
unprecedented detail, SpaGFT propels us closer to a comprehensive
understanding of the spatial dynamics of gene expression and the
epigenetic landscape within cells.

However, there is still room for improving prediction perfor-
mance and understanding the FTU mechanism. First, SpaGFT dis-
cusses low-frequency signals in the frequency domain, but there is a
lack of discussion on medium- and high-frequency signals. Although a
previous study65 described that most functionally related biological
signals are presented in the low-frequency region, certain special sig-
nals are also found in the medium and high-frequency region. For
instance, in the human brain fMRI (functional magnetic resonance
imaging, a technique thatmeasures brain activity bydetecting changes
associated with blood flow), low-frequency FMs capture the global
variation signals (e.g., daydreaming and retrieving memories).
Medium-frequency FMs capture brain networks with less global var-
iation but more rapid processing (e.g., working memory or executive
functions). High-frequency FMs capture responses to new or complex
stimuli that involve local connections between close brain regions
(e.g., acute, localized brain activities). Analogous to spatial omics data,
we assume that medium and high-frequency signals may also have
corresponding special biological signals with more local and less glo-
bal variation (e.g., regions stimulation from the environment), com-
plementing the current k-bandlimited signal approach of representing
smooth global variation. Therefore, in future studies, we might focus
more on multi-frequency signal interpretation. Second, although the
SpaGFT computation speed is very competitive, it can be further
enhanced by reducing the computational complexity from Oðn2Þ to
Oðn× logðnÞÞ using fast Fourier transform algorithms66. Third, the
alteration of the spot graph and FTU topology represents a potential
challenge in identifying FTUs across spatial samples from different
tissues or experiments, which results in diverse FM spaces and renders
the FCs incomparable. This is similar to the “batch effect” issue in
multiple single-cell RNA sequencing (scRNA-seq) integration analyses.
One possible solution to this challenge is to embed and align spatial
data points to a fixed topological space using machine learning fra-
meworks, such as optimal transport. Another possibility is to use H&E
images as a common reference for all to make the embedding tissue-
aware. Fourth, SpaGFT implementation on the CODEX image relies on
experts’ knowledge to pre-select functional regions. The future
direction of analyzing multiplexed images is to develop a topological
learning framework to automatically detect and segment functional
objects based on SpaGFT feature representation. Overall, we believe
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the value of our study is to bring an alternative view for explainable
artificial intelligence in spatial omics modeling, including multi-
resolution spatial omics data integration and pattern analysis across
spatiotemporal data13.

Methods
We introduce Spatial Graph Fourier Transform (SpaGFT) to represent
spatial omics features. The core concept of SpaGFT is to transform
spatial omics features into Fourier coefficients (FC) for downstream
analyses, such as SVG identification, expression signal enhancement,
and topological regularization for other machine algorithms. SpaGFT
framework provides graph signal transform and seven downstream
tasks: SVG identification, gene expression imputation, protein signal
denoising, spatial domain characterization, cell type annotation, cell-
spot alignment, and subcellular landmark inference. The detailed
theoretical foundation of k-bandlimited signal recognition can be
found in Supplementary Note 1.

Graph signal transform
K-nearest neighbor (KNN) Graph construction. Given a gene
expression matrix containing n spots, including their spatial coor-
dinates and m genes, SpaGFT calculates the Euclidean distances
between each pair of spots based on spatial coordinates first. In the
following, an undirected graph G= V , Eð Þ will be constructed, where
V = fv1, v2, . . . , vng is the node set corresponding to n spots; E is the
edge set while there exists an edge eij between vi and vj in E if and
only if vi is the KNN of vj or vj is the KNN of vi based on Euclidean
distance, where i, j = 1, 2, . . . ,n; and i≠ j. Based on the benchmarking
results in Supplementary Data 4, the default K is defined as 1*

ffiffiffi
n

p

among 0.5*
ffiffiffiffiffi
n,

p
1*

ffiffiffi
n

p
, 1.5*

ffiffiffi
n

p
, and 2*

ffiffiffi
n

p
. Note that all the notations

of matrices and vectors are bolded, and all the vectors are treated
as column vectors in the following description. An adjacent
binary matrix A= ðaijÞ with rows and columns as n spots is defined
as:

aij =
1, eij 2 E

0, else:

�
ð1Þ

A diagonal matrix D=diagðd1,d2, . . . ,dnÞ, where di =
Pn

j = 1aij repre-
sents the degree of vi.

Fourier mode calculation. UsingmatricesA andD, a Laplacianmatrix
L can be obtained by

L=D� A ð2Þ
L can be decomposed using spectral decomposition:

L=UΛUT

Λ=diagðλ1, λ2, . . . , λnÞ
U= μ1,μ2, . . . ,μn

� � ð3Þ

where the diagonal elements of Λ are the eigenvalues of L with
λ1 ≤ λ2 ≤ . . . ≤ λn, where λ1 is always equal to 0 regardless of graph
topology. Thus, λ1 is excluded from the following analysis. The col-
umns of U are the unit eigenvector of L. μk is the kth Fourier mode
(FM), μk 2 Rn, k = 1, 2, . . . ,n, and the set {μ1, μ2, ..., μk} is an ortho-
gonal basis for the linear space. For μk = μ1

k ,μ
2
k , . . . ,μ

n
k

� �
, where μi

k
indicates the value of the kth FM on node vi, the smoothness of μk

reflects the total variation of the kth FM in all mutual adjacent spots,
which can be formulated as

1
2

X
vi2V

X
vj2V

aij μi
k � μj

k

� �2

ð4Þ

The form can be derived by matrix multiplication as
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kAμk

=μT
kLμk

= λk

ð5Þ

where μT
k is the transpose of μk. According to the definition of

smoothness, if an eigenvector corresponds to a small eigenvalue, it
indicates the variation of FM values on adjacent nodes is low. The
increasing trend of eigenvalues corresponds to an increasing trend of
oscillations of eigenvectors; hence, the eigenvalues and eigenvectors
of L are used as frequencies and FMs in our SpaGFT, respectively.
Intuitively, a small eigenvalue corresponds to a low-frequency FM,
while a large eigenvalue corresponds to a high-frequency FM.

Graph Fourier transform. The graph signal of a gene g is defined as
fg = f 1g , f

2
g , . . . , f

n
g

� �
2 Rn, which is a n-dimensional vector and repre-

sents the gene expression values across n spots. The graph signal fg is
transformed into a Fourier coefficient f̂ g by

f̂ g = f̂
1

g , f̂
2

g , . . . , f̂
n

g

� 	
=UTfg ð6Þ

In such a way, f̂
k

g is the projection of fg on FM μk, representing the
contribution of FM μk to graph signal fg, k is the index of fg (e.g.,
k = 1, 2, . . . ,n). This Fourier transformharmonizes gene expression and
its spatial distribution to represent gene g in the frequency domain.
The details of SVG identification using f̂ g can be found below.

SVG identification
GFTscore definition. We designed a GFTscore to quantitatively mea-
sure the randomness of gene expressions distributed in the spatial
domain, defined as

GFTscore f g
� �

=
Xn

k = 1

e�λkef kg ð7Þ

where λk is the pre-calculated eigenvalueofL, and e�λk is used toweigh
theef kg to further enhance the smoothnessof the spatial omics variation
signal and reduce its noisy components (Supplementary
Note 1S2.3)18,67. The normalized Fourier coefficient ef kg is defined as

ef kg =
jf̂ kg j

Pn
i= 1jf̂

i

g j
ð8Þ

The gene with a high GFTscore tends to be SVG and vice versa.
Therefore, all m genes are decreasingly ranked based on their
GFTscore from high to low and denote these GFTscore values as
y1 ≥ y2 ≥ . . . ≥ ym. In order to determine the cutoff yz to distinguish SVG
and non-SVGs based on GFTscore, we applied the Kneedle algorithm68

to search for the inflection point of a GFTscore curve described in
Supplementary Note 1.

Wilcoxon rank-sum test implementation for determining SVGs.
Although the above GFTscore is an indicator to rank and evaluate the
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potential SVGs, a rigorous statistical test is needed to calculate the p-
value for SVGs and control type I error. First, SpaGFT determines low-
frequency FM and high-frequency FMs and corresponding FCs by
applying the Kneedle algorithm to the eigenvalues of L. The inflection
points are used for determining the low-frequency FMs and high-
frequency FMs when the direction parameters are ‘increasing’ and
‘decreasing’, respectively. Second, the Wilcoxon rank-sum test is uti-
lized to test the differences between low-frequency FCs and high-
frequency FCs to obtain statistical significance. If a gene has a high
GFTscore and significantly adjusted p-value, the gene can be regarded
as an SVG. We use f = ðf 1, f 2, . . . ,f nÞ to represent the expression of a
random signal on n spots. If the gene corresponding to the graph
signal is a non-SVG, the gene expressions on neighboring spots are
independent. Otherwise, it will exhibit spatial dependence. Hence, we
can assume that ðf 1, . . . , f nÞ∼Nðμf ,σ

2
f IÞ, similar in SpatialDE11, where

μf , σ
2
f and I are themean, variance, and identitymatrix, respectively. In

this case, each f i follows a Gaussian distribution, which is independent
and identically distributed. By implementing GFT on ðf 1, f 2, . . . , f nÞ, we
obtain Fourier coefficients FC1, FC2, � � � ,FCp, where p is the number of
low-frequency FCs and reflects the contributions from low-frequency
FMs. We also obtain the FCp+ 1,FCp+ 2, � � � ,FCp +q, where q is the
number of high-frequency FCs and reflects the contributions from
noise. Hence, we form the null hypothesis that no difference exists
between low-frequency FCs and high-frequency FCs (Proof can be
found in S3 of Supplementary Note 1). Accordingly, a non-parametrical
test (i.e., Wilcoxon rank-sum test) is used for testing the difference
between median values of low-frequency FCs and high-frequency FCs.
Especially, the null hypothesis is that the median of low-frequency FCs
of an SVG is equal to or lower than the median of high-frequency FCs.
The alternative hypothesis is that the median of low-frequency FCs of
an SVG is higher than themedian of high-frequency FCs. The p-value of
eachgene is calculated basedon theWilcoxonone-sided rank-sum test
and then adjusted using the false discovery rate (FDR) method. Even-
tually, a gene with GFTscore higher than yz and adjusted p-value less
than 0.05 is considered an SVG.

Benchmarking data setup
Dataset description. Thirty-two spatial transcriptome datasets were
collected from thepublicdomain, including 30 10XVisiumdatasets (18
human brain data, 11 mouse brain data, and one human lymph node
data) and two Slide-seqV2 datasets (mouse brain). More details can be
found in SupplementaryData 1. Those sampleswere sequenced by two
different SRT technologies: 10X Visiummeasures ~55μmdiameter per
spot, and Slide-seqV2 measures ~10μm diameter per spot. Three
datasets were selected as the training sets for grid-search parameter
optimization in SpaGFT, including two highest read-depth datasets in
Visium (HE-coronal) and Slide-seqV2 (Puck-200115-08), one signature
dataset in Maynard’s study24. The remaining 28 datasets (excluding
lymph node data) were used as independent test datasets.

Data preprocessing. For all 32 datasets, we adopt the same pre-
processing steps based on squidpy (version 1.2.1), including filtering
genes that have expression values in <10 spots, normalizing the raw
count matrix by counts per million reads method, and implementing
log-transformation to the normalized count matrix. No specific pre-
processing step was performed on the spatial location data.

Benchmarking SVG collection. We collected SVG candidates from
five publications24–28, with data from either human or mouse brain
subregions. (i) A total of 130 layer signature genes were collected from
Maynard’s study24. These genes are potential multiple-layer markers
validated in the human dorsolateral prefrontal cortex region. (ii) A
total of 397 cell-type-specific (CTS) genes in the adult mouse cortex
were collected from Tasic’s study (2016 version)28. The authors per-
formed scRNA-seq on the dissected target region, identified 49 cell

types, and constructed a cellular taxonomy of the primary visual cor-
tex in the adult mouse. (iii) A total of 182 CTS genes in mouse neo-
cortex were collected from Tasic’s study27. Altogether, 133 cell types
were identified from multiple cortical areas at single-cell resolution.
(iv) A total of 260 signature genes across differentmajor regions of the
adult mouse brain were collected from Ortiz’s study25. The authors’
utilized spatial transcriptomics data to systematically profile sub-
regions anddelivered the subregional genes using consecutive coronal
tissue sections. (v) A total of 86 signature genes in the cortical region
shared by humans and mice were collected from Hodge’s study26.
Collectively, a total of 849 genes were obtained, among which 153
genes were documented by multiple papers. More details, such as
gene names, targeted regions, and sources, can be found in Supple-
mentary Data 2.

Next, the above 849 genes were manually validated on the in-situ
hybridization (ISH) database deployedon theAllen Brain Atlas (https://
mouse.brain-map.org/). The ISH database provided ISH mouse brain
data across 12 anatomical structures (i.e., Isocortex, Olfactory area,
Hippocampal formation, Cortical subplate, Striatum, Pallidum, Thala-
mus, Hypothalamus, Midbrain, Pons, Medulla, and Cerebellum). We
filtered the 849 genes as follows: (i) If a gene is showcased in multiple
anatomical plane experiments (i.e., coronal plane and sagittal plane), it
will be counted multiple times with different expressions in the cor-
responding experiments, such that 1327 genes were archived (Sup-
plementary Data 3). (ii) All 1327 genes were first filtered by low gene
expressions (cutoff is 1.0), and the FindVariableFeatures function (“vst”
method) in the Seurat (v4.0.5) was used for identifying highly variable
genes across twelve anatomical structures. Eventually, 458 genes were
kept and considered as curated benchmarking SVGs. The evaluation
criteria can be found in Supplementary Note 2.

Statistics and reproducibility
In our benchmarking experiment, we implemented a two-sided Wil-
coxon-rank sum test to conduct a significance test. No data were
excluded from the analyses. The experiments were not randomized.
Randomization is not relevant to this study since each data was ana-
lyzed separately. We then computed the key evaluation metrics,
including the Jaccard index, odds ratio, precision, recall, F1 score,
Tversky index, Moran’s Index, and Geary’s C.

SpaGFT implementation and grid search of parameter
optimization
A grid-search was set to test for six parameters, including ratio_-
neighbors (0.5, 1, 1.5, 2) for KNN selection and S (4, 5, 6, 8) for the
inflection point coefficient, resulting in 16 parameter combinations. We
set K =

ffiffiffiffi
n

p
as the default parameter for constructing the KNN graphs in

SpaGFT. SVGs were determined by genes with high GFTscore via the
KneeLocator function (curve=’convex’, direction=’deceasing’, and S=6)
in the kneed package (version 0.7.0) and FDR (cutoff is less than 0.05).

Parameter setting of other tools
(i) SpatialDE (version 1.1.3) is a method for identifying and describing
SVGs based on Gaussian process regression used in geostatistics.
SpatialDE consists of four steps, establishing the SpatialDE model,
predicting statistical significance, selecting the model, and expressing
histology automatically. We selected two key parameters, design_
formula (‘0’ and ‘1’) in the NaiveDE.regress_out function and kernel_-
space (“{‘SE’:[5.,25.,50.],‘const’:0}”, “{‘SE’:[6.,16.,36.],‘const’:0}”,
“{‘SE’:[7.,47.,57.],‘const’:0}”,“{‘SE’:[4.,34.,64.],‘const’:0}”,“{‘PER’:[5.,25.,50.],
‘const’:0}”, “{‘PER’:[6.,16.,36.],‘const’:0}”, “{‘PER’:[7.,47.,57.],‘const’:0}”,
“{‘PER’:[4.,34.,64.],‘const’:0}”, and “{‘linear’:0,‘const’:0}”) in the Spa-
tialDE.run function for parameter tunning, resulting in 18 parameter
combinations.

(ii) SPARK (version 1.1.1) is a statistical method for spatial count
data analysis through generalized linear spatial models. Relying on
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statistical hypothesis testing, SPARX identifies SVGs via predefined
kernels. First, raw count and spatial coordinates of spots were used to
create the SPARK object via filtering low-quality spots (controlled by
min_total_counts) or genes (controlled by percentage). Then the
object was followed by fitting the count-based spatial model to esti-
mate the parameters via spark.vc function, which is affected by the
number of iterations (fit.maxiter) and models (fit.model). Lastly, ran
spark.test function to test multiple kernel matrices and obtain the
results. We selected four key parameters, percentage (0.05, 0.1, 0.15),
min_total_counts (10, 100, 500) in CreateSPARKObject function, fit.-
maxiter (300, 500, 700), and fit.model (“poisson”, “gaussian”) in
spark.vc function for parameter tuning, resulting in 54 parameter
combinations.

(iii) SPARK-X (version 1.1.1) is a non-parametric method that tests
whether the expression level of the gene displays any spatial expres-
sion pattern via a general class of covariance tests. We selected three
key parameters, percentage (0.05, 0.1, 0.15),min_total_counts (10, 100,
500) in the CreateSPARKObject function, and option (“single”, “mix-
ture”) in the sparkx function for parameter tuning, resulting in 18
parameter combinations.

(iv) SpaGCN (version 1.2.0) is a graph convolutional network
approach that integrates gene expression, spatial location, and his-
tology in spatial transcriptomics data analysis. SpaGCN consisted of
four steps, integrating data into a chart, setting the graph convolu-
tional layer, detecting spatial domains by clustering, and identifying
SVGs in spatial domains. We selected two parameters, the value of the
ratio (1/3, 1/2, 2/3, and 5/6) in the find_neighbor_cluster function and
res (0.8, 0.9, 1.0, 1.1, and 1.2) in the SpaGCN.train function for para-
meter tuning, resulting in 20 parameter combinations.

(v)MERINGUE (version 1.0) is a computational framework based
on spatial autocorrelation and cross-correlation analysis. It is com-
posed of three major steps to identify SVGs. Firstly, Voronoi tes-
sellationwas utilized to partition the graph to reflect the length scale
of cellular density. Secondly, the adjacency matrix is defined using
geodesic distance and the partitioned graph. Finally, gene-wise
autocorrelation (e.g., Moran’s I) is conducted, and a permutation
test is performed for significance calculation. We selected min.read
(100, 500, 1000), min.lib.size (100, 500, 1000) in the cleanCounts
function and filterDist (1.5, 2.5, 3.5, 7.5, 12.5, 15.5) in the getSpa-
tialNeighbors function for parameter tuning, resulting in 54 para-
meter combinations.

(vi) scGCO (version 1.1.2) is a graph-cut approach that integrates
gene expression and spatial location in spatial transcriptomics data
analysis. scGCO consists of four steps: representing a gene’s spatial
expression with hidden Markov random field (HMRF), optimizing
HMRF with graph cuts with varying hyperparameters, identifying best
graph cuts, and calculating the significance of putative SVGs. We
selected three parameters, the value of unary_scale_factor (50, 100,
and 150) and smooth_factor (5, 10, and 15) in the identify_spatial_genes
function for parameter tuning and fdr_cutoff (0.025, 0.05, and 0.075)
in the final pipeline for identification of SVG, resulting in 27 parameter
combinations.

Visualization of frequency signal of SVGs in PCA and UMAP
Mouse brain (i.e., HE coronal sample) with 2702 spots was used for
demonstrating FCs on distinguishing SVG and non-SVG in the 2D
UMAP space. SpaGFT determined 207 low-frequency FMs using the
Kneedle Algorithm and computed corresponding FCs. PCA was also
used for producing low-dimension representation. The transposed
and normalized expression matrix was decomposed by using the
sc.tl.pca function from the scanpy package (version 1.9.1). The first 207
principal components (PC) were selected for UMAP dimension
reduction and visualization. The function sc.tl.umap was applied to
conduct UMAP dimension reduction for FCs and PCs.

SVG signal enhancement
An SVG may suffer from low expression or dropout issues due to
technical bias8. To solve this problem, SpaGFT implemented the low-
pass filter to enhance the SVG expressions. For an SVG with an
observed expression value fg 2 Rn, we define �fg 2 Rn as the expected
gene expression value of this SVG, and fg =

�fg + ϵg, where ϵg 2 Rn

represents noises. SpaGFT estimates an approximated FCs fg to
expected gene expression �fg in the following way, resisting the noise
ϵg . The approximation has two requirements (i) the expected gene
expression after enhancement should be similar to the originally
measuredgeneexpression, and (ii) keep lowvariationwithin estimated
gene expression to prevent inducing noises. Therefore, the following
optimization problem is proposed to find an optimal solution fg for

�fg

f ?g = argminf ½jjf � fgjj2 + c
1
2

X
vi2V

X
vj2V

aijðf i � f jÞ2�

= argminf ½jjf�fgjj2 + cfTLf �
ð9Þ

where || ∙ || is the L2-norm, f = f 1, f 2, . . . , f n
� �

2 Rn is the variable in
solution space, and i, j = 1, 2, . . . ,n. c is a coefficient to determine the
importance of variation of the estimated signals, and c>0. According
to convex optimization, the optimal solution f ?g can be formulated as

2 f ?g � fg
� �

+2cLf ?g =0

¼) I+ cLð Þf ?g = fg
¼) UUT + cUΛUT

� �
f?g = fg

¼)U I+ cΛð ÞUTf ?g = fg

¼)f ?g =U I+ cΛð Þ�1UTfg =U I+ cΛð Þ�1 f̂ g

ð10Þ

whereΛ=diag λ1, λ2, . . . , λn
� �

, and I is an identitymatrix. I+ cΛð Þ�1 is the
low-pass filter and I+ cΛð Þ�1 f̂ g is the enhanced FCs. f ?g =U I+ cΛð Þ�1 f̂ g
represents the enhanced SVG expression using inverse graph Fourier
transform. Specifically, in HE-coronal mouse brain data analysis, we
selected 1300 (= 25

ffiffiffi
n

p
,n =2702) low-frequency FCs for enhancing

signal and recovering spatial pattern by using iGFT with c=0:0001.

Data preprocessing on the human prostate cancer Visium data
Cell segmentation. The Visium image of human prostate cancer
(adenocarcinoma with invasive carcinoma) from the 10X official web-
site was cropped into patches according to spot center coordinates
and diameter length. Each patch is processed by Cellpose for nuclei
segmentation using the default parameter. Cell density in eachpatch is
determined using the number of segmented cells.

Microbial alignment
Following the tutorial69, the corresponding bam files were processed
via Kraken packages by (1) removing host sequences and retaining
microbial reads, (2) assigningmicrobial reads to a taxonomic category
(e.g., species and genus), and (3) computing the relative abundance of
different species in each spot.

SVG signal enhancement benchmarking
Sixteen human brain datasets with well-annotated labels were used for
enhancement benchmarking23,24. Samples 151510, 151672, and 151673
were used for grid search.Other 13 datasetswere used for independent
tests. SpaGFT can transform graph signals to FCs, and apply corre-
spondence preprocessing in the frequency domain to realize signal
enhancement of genes. Briefly, it is composed of three major steps.
Firstly, SpaGFT is implemented to obtain FCs. Secondly, a low-pass
filter is applied to weigh and recalculate FCs. Lastly, SpaGFT

Article https://doi.org/10.1038/s41467-024-51590-5

Nature Communications |         (2024) 15:7467 14

www.nature.com/naturecommunications


implements iGFT to recover the enhanced FCs to graph signals. We
select c (0.003, 0.005, 0.007) and ratio_fms (13, 15, 17) in the low_-
pass_enhancement function, resulting in 9 parameter combinations.
c =0.005 and ratio_fms = 15were selected for the independent test. For
the parameters used for other computational tools, the details can be
found as follows.
(i) SAVER-X (version 1.0.2) is designed to improve data quality, which

extracts gene-gene relationships by adopting a deep auto-
encoder and a Bayesian model simultaneously. SAVER-X is
composed of three major steps roughly. Firstly, train the target
data with an autoencoder without a chosen pretraining model.
Secondly, filter unpredictable genes using cross-validation. Lastly,
estimate the final denoised values with empirical Bayesian
shrinkage. Two parameters were considered to explore the
performance as well as the robustness of SAVER-X, including
batch_size (32, 64, 128) in the saverx function and fold (4, 6, 8) in
the autoFilterCV function, resulting in 9 parameter combinations.

(ii) Sprod (version 1.0) is a computational framework based on latent
graph learning of matched location and imaging data by lever-
aging information from the physical locations of sequencing to
impute accurate SRT gene expression. The framework of Sprod
can be divided into twomajor steps roughly, which are building a
graph and optimizing objective function for such a graph to
obtain the de-noised gene expression matrix. To validate its
robustness, two parameters were adjusted, including sprod_R
(0.1, 0.5) and sprod_latent_dim (8, 10, 12), to generate nine
parameter combinations.

(iii) DCA (version 0.3.1) is a deep count autoencoder network with
specialized loss functions targeted todenoise scRNA-seqdatasets.
It uses the autoencoder framework to estimate three parameters
ðμ,θ,πÞ of zero-inflated negative binomial distribution condi-
tioned on the input data for each gene. In particular, the
autoencoder gives three output layers, representing for each
gene the three parameters that make up the gene-specific loss
function to compare to the original input of this gene. Finally, the
mean ðμÞ of the negative binomial distribution represents
denoised data as the main output. We set neurons of all hidden
layers except for the bottleneck to (48, 64, 80) and neurons of
bottleneck to (24, 32, 40) for parameter tuning, resulting in 9
parameter combinations.

(iv) MAGIC (version 3.0.0) is a method that shares information across
similar cells via data diffusion to denoise the cell countmatrix and
fill in missing transcripts. It is composed of two major steps.
Firstly, it builds its affinity matrix in four steps which include a
data preprocessing step, converting distances to affinities using
an adaptive Gaussian Kernel, converting the affinity matrix A into
a Markov transition matrix M, and data diffusion through expo-
nentiation of M. Once the affinity matrix is constructed, the
imputation step of MAGIC involves sharing information between
cells in the resulting neighborhoods through matrix multi-
plication. We applied the knn settings (3, 5, 7) and the level of
diffusion (2, 3, 4) in the MAGIC initialization function for para-
meter tuning, resulting in 9 parameter combinations.

(v) scVI (version 0.17.3) is a hierarchical Bayesian model based on a
deep neural network, which is used for probabilistic representa-
tion and analysis of single-cell gene expression. It consists of two
major steps. Firstly, the gene expression is compressed into a low-
dimensional hidden space by the encoder, and then the hidden
space is mapped to the posterior estimation of the gene
expression distribution parameters by the neural network of the
decoder. It uses random optimization and deep neural networks
to gather information on similar cells and genes, approximates
the distribution of observed expression values, and considers the
batch effect and limited sensitivity for batch correction, visualiza-
tion, clustering, and differential expression.We selected n_hidden

(64, 128, 256) and gene_likelihood (‘zinb’, ‘nb’, ‘poisson’) in the
model.SCVI function for parameter tuning, resulting in 9 para-
meter combinations.

(vi) netNMF-sc (version0.0.1) is a non-negativematrix decomposition
method for network regularization, which is designed for the
imputation anddimensionality reduction of scRNA-seq analysis. It
uses a priori gene network to obtain a more meaningful low-
dimensional representation of genes, and network regularization
uses a priori knowledge of gene–gene interaction to encourage
gene pairs with known interactions to approach each other in low-
dimensional representation. We selected d (8, 10, 12) and alpha
(80, 100, 120) in the netNMFGD function for parameter tuning,
resulting in 9 parameter combinations.

SVG clustering and FTU identification
The pipeline is visualized in Supplementary Fig. 6a. As the pattern of
one SVG cluster can demonstrate specific functions of one FTU, the
FTUmay not necessarily display a clear boundary to its neighbor FTUs.
On the contrary, the existence of overlapped regions showing poly-
functional regions is allowed. Computationally, the process of FTU
identification is to optimize the resolution parameter of the
Louvain algorithm for obtaining a certain number of biology-informed
FTUs, which minimizes the overlapped area. Denote G' as the
set of SVGs identified by SpaGFT. For each resolution parameter
res >0, G' can be partitioned to {G0

1,G
0
2, . . . ,G

0
nres

g (i.e., SkG
0
i =G

0 and

G0
k
T
G0
l = +,8k ≠ l:) by applying the Louvain algorithm on FCs, and

the resolution will be optimized by the loss function below. Denote

X = ðxs,g Þ 2 R Sj j× G0j j as the gene expression matrix, where S is the

set of all spots. In the following, for each SVG group G0
k ,

pseudoðss,G0
k
Þ=Pg2G0

k
logðxs,g Þ represents the pseudo expression

value4 for spot i. Apply k-means algorithms with k = 2 on

fpseudo s1,G0
k

� �
,pseudo s2,G0

k

� �
, . . . , pseudo s Sj j,G0

k

� �
g to pick out one

spot cluster whose spots highly express genes in SVG group G0
k and

such spot cluster is identified as a FTU, denoted as Si 2 S. Our objective
function aims to find the best partition of G0 such that the average
overlap between any two Si, Sj is minimized:

argminres>0
2×

P
k≠l

Sk\Slj j
nres × ðnres�1Þ

SpaGFT implementation on the lymph node Visium data and
interpretation
Lymph node SVG cluster identification and FTU interpretation.
SVGs were identified on the human lymph node data (Visium) with the
default setting of SpaGFT. To demonstrate the relations between cell
composition and annotated FTUs, cell2location35 was implemented to
deconvolute spot and resolve fine-grained cell types in spatial tran-
scriptomic data. Cell2location was first used to generate the spot-cell
type proportion matrix as described above, resulting in a cell pro-
portion of 34 cell types. Then, pseudo-expression values across all
spots for one FTU were computed using the method from the FTU
identification section. Then, an element of the FTU-cell type correla-
tion matrix was calculated by computing the Pearson correlation
coefficient between the proportion of a cell type and the pseudo-
expression of an FTU across all the spots. Subsequently, the FTU-cell
type correlation matrix was obtained by calculating all elements as
described above, with rows representing FTUs and columns repre-
senting cell types. Lastly, the FTU-cell type matrix was generated and
visualized on a heatmap, and threemajor FTUs in the lymphnodewere
annotated, i.e., the T cell zone, GC, and B follicle.

Visualization of GC, T cell zone, and B follicles in the Barycentric
coordinate system. Spot-cell proportionmatrixwas used to select and
merge signature cell types of GC, T cell zone, and B follicles for gen-
erating amerged spot-cell type proportionmatrix (anN-by-3matrix, N
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is equal to the number of spots). For GC, B_Cycling, B_GC_DZ, B_GC_LZ,
B_GC_prePB, FDC, and T_CD4_TfH_GC were selected as signature cell
types. For T cell zone, T_CD4, T_CD4_TfH, T_TfR, T_Treg, T_CD4_naive,
and T_CD8_naive were selected as signature cell types. For B follicle,
B_mem, B_naive, and B_preGC were regarded as signature cell types.
The merged spot-cell type proportion matrix was calculated by sum-
ming up the proportion of signature cell types for GC, T cell zone, and
B follicle, respectively. Finally, annotated spots (spot assignment in
Supplementary Data 11) were selected from the merged spot-cell type
proportionmatrix for visualization. The subset spots from themerged
matrix were projected on an equilateral triangle via Barycentric coor-
dinate project methods37. The projected spots were colored by FTU
assignment results. Unique and overlapped spots across seven regions
(i.e., GC, GC–B, B, B–T, T, T–GC, and T–GC–B) from three FTUs were
assigned and visualized on the spatial map. Gene module scores were
calculated using theAddModuleScore function from the Seurat (v4.0.5)
package. Calculated gene module score and cell type proportion were
then grouped by seven regions and visualized on the line plot
(Fig. 3e, f). One-way ANOVA using function aov in R environment was
conducted to test the difference among the means of seven regions
regarding gene module scores and cell type proportions, respectively.

CODEX tonsil tissue staining
AnFFPEhuman tonsil tissue (providedbyDr. Scott Rodig, Brighamand
Women’s Hospital Department of Pathology) was sectioned onto a No.
1 glass coverslip (22x22mm) pre-treated with Vectabond (SP-1800-7,
Vector Labs). The tissue was deparaffinized by heating at 70 °C for 1 h
and soaking in xylene 2× for 15min each. The tissue was then rehy-
drated by incubating in the following sequence for 3min each with
gentle rocking: 100%EtOH twice, 95% EtOH twice, 80%EtOHonce, 70%
EtOH once, ddH2O thrice. To prepare for heat-induced antigen
retrieval (HIER), a PT module (A80400012, Thermo Fisher) was filled
with 1X PBS, with a coverslip jar containing 1X Dako pH 9 antigen
retrieval buffer (S2375, Agilent) within. The PT module was then pre-
warmed to 75 °C. After rehydration, the tissue was placed in the pre-
warmed coverslip jar, then the PT module was heated to 97 °C for
20min and cooled to 65 °C. The coverslip jar was then removed from
the PT module and cooled for ~15–20min at room temperature. The
tissue was then washed in rehydration buffer (232105, Akoya Bios-
ciences) twice for 2min each then incubated in CODEX staining buffer
(232106, Akoya Biosciences) for 20min while gently rocking. A
hydrophobic barrier was then drawn on the perimeter of the coverslip
with an ImmEdge Hydrophobic Barrier pen (310018, Vector Labs). The
tissue was then transferred to a humidity chamber. The humidity
chamber was made by filling an empty pipette tip box with paper
towels and ddH2O, stacking the tip box on a cool box (432021, Corn-
ing) containing a −20 °C ice block, then replacing the tip box lid with a
six-well plate lid. The tissue was then blocked with 200μL of blocking
buffer.

The blocking buffer was made with 180μL BBDG block, 10μL
oligo block, and 10μL sheared salmon sperm DNA; the BBDG block
was prepared with 5% donkey serum, 0.1% Triton X-100, and 0.05%
sodium azide prepared with 1X TBS IHC Wash buffer with Tween 20
(935B-09, Cell Marque); the oligo block was prepared by mixing 57
different custom oligos (IDT) in ddH2O with a final concentration of
0.5μM per oligo; the sheared salmon sperm DNA was added from its
10mg/ml stock (AM9680, Thermo Fisher). The tissue was blocked
while photobleaching with a custom LED array for 2 h. The LED array
was set up by inclining two Happy Lights (6460231, Best Buy) against
both sides of the cool box and positioning an LED Grow Light
(B07C68N7PC, Amazon) above. The temperature was monitored to
ensure that it remained under 35 °C. The staining antibodies were then
prepared during the 2-h block.

DNA-conjugated antibodies at appropriate concentrations were
added to 100μL of CODEX staining buffer, loaded into a 50-kDa

centrifugal filter (UFC505096, Millipore) pre-wetted with CODEX
staining buffer, and centrifuged at 12,500×g for 8min. Concentrated
antibodies were then transferred to a 0.1μm centrifugal filter
(UFC30VV00, Millipore) pre-wetted with CODEX staining buffer, filled
with extra CODEX staining buffer to a total volume of 181μL, added
with 4.75μL of each Akoya blockers N (232108, Akoya), G (232109,
Akoya), J (232110, Akoya), and S (232111, Akoya) to a total volume of
200μL, then centrifuged for 2min at 12,500×g to remove antibody
aggregates. The antibody flow through (99μL) was used to stain the
tissue overnight at 4 °C in a humidity chamber covered with a foil-
wrapped lid.

After the overnight antibody stain, the tissue was washed in
CODEX staining buffer twice for 2min each before fixing in 1.6% par-
aformaldehyde (PFA) for 10minwhile gently rocking. The 1.6%PFAwas
prepared by diluting 16% PFA in CODEX storage buffer (232107,
Akoya). After 1.6% PFA fixation, the tissue was rinsed in 1X PBS twice
and washed in 1X PBS for 2min while gently rocking. The tissue was
then incubated in the cold (−20 °C) with 100% methanol on ice for
5min without rocking for further fixation and then washed thrice in 1X
PBS as before while gently rocking. The final fixation solution was then
prepared by mixing 20μL of CODEX final fixative (232112, Akoya) in
1000μL of 1x PBS. The tissue was then fixed with 200μL of the final
fixative solution at room temperature for 20min in a humidity cham-
ber. The tissue was then rinsed in 1X PBS and stored in 1X PBS at 4 °C
prior to CODEX imaging.

A black flat bottom 96-well plate (07-200-762, Corning) was used
to store the reporter oligonucleotides, with each well corresponding
to an imaging cycle. Each well contained two fluorescent oligonu-
cleotides (Cy3 andCy5, 5μL each) added to 240μL of platemastermix
containing DAPI nuclear stain (1:600) (7000003, Akoya) and CODEX
assay reagent (0.5mg/mL) (7000002, Akoya). For the first and last
blank cycles, an additional plate buffer was used to substitute for each
fluorescent oligonucleotide. The 96-well platewas securely sealedwith
aluminum film (14-222-342, Thermo Fisher) and kept at 4 °C prior to
CODEX imaging.

CODEX antibody panel
The following antibodies, clones, and supplierswere used in this study:

BCL-2 (124, Novus Biologicals, 1:50), CCR6 (polyclonal, Novus
Biologicals, 1:25), CD11b (EPR1344, Abcam, 1:50), CD11c (EP1347Y,
Abcam, 1:50), CD15 (MMA, BD Biosciences, 1:200), CD16 (D1N9L, Cell
Signaling Technology, 1:100), CD162 (HECA-452, Novus Biologicals,
1:200), CD163 (EDHu-1, Novus Biologicals, 1:200), CD2 (RPA-2.10, Bio-
legend, 1:25), CD20 (rIGEL/773, Novus Biologicals, 1:200), CD206
(polyclonal, R&D Systems, 1:100), CD25 (4C9, Cell Marque, 1:100),
CD30 (BerH2, Cell Marque, 1:25), CD31 (C31.3 + C31.7 + C31.10, Novus
Biologicals, 1:200), CD4 (EPR6855, Abcam, 1:100), CD44 (IM-7, Biole-
gend, 1:100), CD45 (B11 + PD7/26, Novus Biologicals, 1:400), CD45RA
(HI100, Biolegend, 1:50), CD45RO (UCH-L1, Biolegend, 1:100), CD5
(UCHT2, Biolegend, 1:50), CD56 (MRQ-42, Cell Marque, 1:50), CD57
(HCD57, Biolegend, 1:200), CD68 (KP-1, Biolegend, 1:100), CD69
(polyclonal, R&D Systems, 1:200), CD7 (MRQ-56, Cell Marque, 1:100),
CD8 (C8/144B, Novus Biologicals, 1:50), collagen IV (polyclonal,
Abcam, 1:200), cytokeratin (C11, Biolegend, 1:200), EGFR (D38B1, Cell
Signaling Technology, 1:25), FoxP3 (236A/E7, Abcam, 1:100), granzyme
B (EPR20129-217, Abcam, 1:200), HLA-DR (EPR3692, Abcam, 1:200),
IDO-1 (D5J4E, Cell Signaling Technology, 1:25), LAG-3 (D2G4O, Cell
Signaling Technology, 1:25), mast cell tryptase (AA1, Abcam, 1:200),
MMP-9 (L51/82, Biolegend, 1:200), MUC-1 (955, Novus Biologicals,
1:100), PD-1 (D4W2J, Cell Signaling Technology, 1:50), PD-L1 (E1L3N,
Cell Signaling Technology, 1:50), podoplanin (D2-40, Biolegend,
1:200), T-bet (D6N8B, Cell Signaling Technology, 1:100), TCR β (G11,
Santa Cruz Biotechnology, 1:100), TCR-γ/δ (H-41, Santa Cruz Bio-
technology, 1:100), Tim-3 (polyclonal, Novus Biologicals, 1:50),
Vimentin (RV202, BD Biosciences, 1:200), VISTA (D1L2G, Cell Signaling
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Technology, 1:50), α-SMA (polyclonal, Abcam, 1:200), and β-catenin
(14, BD Biosciences, 1:50). Readers of interest are referred to
publication70 for more details on the antibody clones, conjugated
fluorophores, exposure, and titers.

CODEX tonsil tissue imaging
The tonsil tissue coverslip and reporter plate were equilibrated to
room temperature andplacedon theCODEXmicrofluidics instrument.
All buffer bottles were refilled (ddH2O, DMSO, 1X CODEX buffer
(7000001, Akoya)), and the waste bottle was emptied before the run.
To facilitate the setting up of imaging areas and zplanes, the tissuewas
stainedwith 750μL of nuclear stain solution (1μL of DAPI nuclear stain
in 1500μL of 1XCODEXbuffer) for 3min, thenwashedwith theCODEX
fluidics device. For each imaging cycle, three images that corre-
sponded to the DAPI, Cy3, and Cy5 channels were captured. The first
and last blank imaging cycles did not contain any Cy3 or Cy5 oligos,
and thus are used for background correction.

The CODEX imaging was operated using a ×20/0.75 objective
(CFI Plan Apo λ, Nikon) mounted to an inverted fluorescence
microscope (BZ-X810, Keyence) which was connected to a CODEX
microfluidics instrument and CODEX driver software (Akoya Bios-
ciences). The acquired multiplexed images were stitched, and
background corrected using the SINGER CODEX Processing Soft-
ware (Akoya Biosciences). For this study, six independent
2048 × 2048 field-of-views (FOV) were cropped from the original
20,744 × 20,592 image. The FOVs were selected to include key cell
types and tissue structures in tonsils, such as tonsillar crypts or
lymphoid nodules.

Cell segmentation
Custom ImageJ macros were used to normalize and cap nuclear and
surface image signals at the 99.7th percentile to facilitate cell seg-
mentation. Cell segmentation was performed using a local imple-
mentation of Mesmer from the DeepCell library (deepcell-tf 0.11.0)40,
where themultiplex_segmentation.py scriptwasmodified to adjust the
segmentation resolution (microns per pixel, mpp). model_mpp =0.5
generated satisfactory segmentation results for this study. Single-cell
features based on the cell segmentation mask were then scaled to cell
size and extracted as FCS files.

Cell clustering and annotation
Single-cell features were normalized to each FOV’s median DAPI signal
to account for FOV signal variation, arcsinh transformed with cofac-
tor = 150, capped between 1st–99th percentile, and rescaled to 0–1.
Sixteen markers (cytokeratin, podoplanin, CD31, αSMA, collagen IV,
CD11b, CD11c, CD68, CD163, CD206, CD7, CD4, CD8, FoxP3, CD20,
CD15) were used for unsupervised clustering using FlowSOM41 (66
output clusters). The cell type for each cluster was annotated based on
its relative feature expression, as determined via Marker Enrichment
Modeling42, and annotated clusters were visually compared to the
original images to ensure accuracy and specificity. Cells belonging to
indeterminable clusters were further clustered (20 output clusters)
and annotated as above.

SpaGFT implementation on tonsil CODEX data and
interpretation
Resize CODEX images and SpaGFT implementation. As each FOV
consisted of 2048 by 2048 pixels (~0.4μm per pixel size), the CODEX
image needed to be scaled down to 200 by 200 pixels (~3.2μm per
pixel size) to reduce the high computational burden (Supplementary
Fig. 8a). Therefore, original CODEX images (2048 by 2048 pixels) were
resized to 200 by 200 images by implementing function “resize” and
selecting cubic interpolation from the imager package (v.42) in R
environments. SpaGFT was then applied to the resized images by fol-
lowing default parameters.

Structural similarity (SSIM) calculation. The Structural Similarity
(SSIM) score was a measurement for locally evaluating the similarity
between two images regardless of image size71. The SSIM score ranged
from0 to 1; a higher scoremeansmore similarity between two images.
It was defined as follows:

SSIM= l x, yð Þa � c x, yð Þβ � s x, yð Þγ

x and y were windows with 8 by 8 pixels; l x, yð Þ= 2μxμy +C1

μ2
x + μ

2
x +C1

was the

luminance comparison function for comparing the average brightness
of the two images regarding pixels x and y. C1 is constant, and α is the

weight factor of luminance comparison. c x, yð Þ= 2σxσy +C1

σ2
x + σ

2
x +C2

was the

contrast comparison function for measuring the standard deviation of
two images. C2 is constant, and β is the weight factor of contrast

comparison. s x, yð Þ= σxy +C3

σxσy +C3
was the structure comparison by calcu-

lating the covariance between the two images. C3 is constant, and γ is
the weight factor of structure comparison.

Cell–cell distance and interaction analysis. To compute cell–cell
distance within one FTU, we first select cells assigned to each FTU. An
undirected cell graph was then constructed, where the cell was a node
and edge connected by every two cells defined by the Delaunay tri-
angulation using the deldir function from the deldir package (v.1.0-6).
Subsequently, the edge represented the observed distance between
the connected two cells, and Euclidean distance was used for calcu-
lating the distance72. Lastly, the average distance among different cell
types was computed by taking the average of the observed cell–cell
distance to generate the network plot. Regarding the determination of
the cell–cell interaction, the spatial location of cells assigned in each
FTU was permutated and re-calculated cell–cell distance as expected
distance. If the cell–cell distance is lower than 15μm73 (~5 pixels in the
200 by 200-pixel image), the cells will contact and interact with each
other. Wilcoxon rank-sum test was used for the computed p-value for
expected distance and observed distance. If the expected distancewas
significantly smaller than the observed distance, it suggested that cells
would interact with each other.

SpaGFT implementation in SpaGCN
Let Xspa be the SRT gene expression matrix with the dimension
nspot ×ngene, in which nspot and ngene represent the numbers of spots
and genes, respectively. Uponnormalization, the spot cosine similarity
matrix Xs is computed by the formula Xs =XspaX

T
spa, yielding a matrix

with dimension nspot ×nspot. Denote U = ðμ1,μ2, . . .,μnFC
Þ, where each

μl is the lth eigenvector of the Laplacianmatrix of the spatial graph and
nFC is the number of Fourier coefficients. Hence, graph Fourier trans-
form is implemented to transform Xs into the frequency domain by:

X̂s =U
TXs

Subsequently, the newly augmented spot-by-feature matrix is
obtained by concatenating SRT gene expression matrix Xspa and
transformed signal matrix X̂s:

Xnew = concatðXspa, X̂sÞ

Finally, the matrix Xnew is inputted into SpaGCN as a replacement
for the original gene expression matrix to predict the spatial domain
cluster labels across all spots.

To evaluate the performance of such modification, 12 human
dorsolateral prefrontal cortex of 10x Visium datasets were applied in
benchmarking basedon annotations from the initial study of SpaGCN4.
The adjusted Rand index (ARI) was selected as the evaluationmetric to
measure the consistency between the predicted spot clusters and
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manually annotated spatial domain. The parameter num_fcs, which
controlled the count of FCs, was determined by utilizing a grid search
methodology executed on datasets 151508 and 151670. The search
spanned a range of values from 600 to 1400, sampled per 100 steps.
Upon analysis, the optimal parameter value was established at 1000
(Supplementary Data 15), while the other parameters were set to the
default in SpaGCN. Next, the performance was compared on the 10
remaining datasets for the independent test.

SpaGFT implementation in TACCO
SpaGFT was implemented to improve the performance of TACCO,
which leveraged optimal transport (OT) to transfer annotation labels
from scRNA-seq to spatial transcriptomics data. The core objective
function of TACCO is denoted by a cost matrix C= ðctbÞ and a pro-
portion matrix Γ= ðγtbÞ:

Φ Γð Þ=
X
tb

γtbctb

Specifically, ctb quantifies the cost that transports an object b to
an annotation t. In TACCO, principal component analysis (PCA) was
used to reduce the dimension of scRNA-seq and spatial tran-
scriptomics gene expression matrices to the PC matrices by keeping
the first 100 PCs, respectively. Subsequently, C is computed by cal-
culating the Bhattacharyya coefficients between cell type-averaged
scRNA-seq and spatial transcriptomics PC matrices. Finally, the OT’s
optimization is solved by using the Sinkhorn–Knopp matrix scaling
algorithm to yield a ‘good’ proportion matrix Γ.

For finding Γ, the cost matrix C plays the most important role in
the OT’s optimization process. Based on the originally calculated C, an
updated cost matrix Cupdate considering spatial topology information
is fused. To incorporate this topology information from the spatial
data, the coordinates of spatial spots are used to construct a spatial
graph, which is as the input with gene expression and initial TACCO-
calculated mapping Γ, which represent cell-type proportions into
SpaGFT for calculating FCs of genes and cell types (CT). Subsequently,
these gene FCs matrices were weighted and averaged by spot
expression value to obtain the spots’ FCs for obtaining spot level
constraints. The cosine distance is calculated between the FCs of
spatial spots and the FCs of cell types to create the updated CT-spot
cost matrix Cupdate. The C0 is a united cost matrix fused by C and
Cupdate with a balancing parameter β as

C0 =βC+ ð1� βÞCupdate

This updated C0 is then fed back into TACCO’s OT algorithm to
predict revised cell type proportions for the spatial data. In addition,
we used a simulated validation dataset with the setting of bead size = 5
to conduct a grid search on the input parameters S, the sensitivity in
the Kneedle algorithm from SpaGFT, and β for determining these
hyperparameters. While maintaining computational efficiency, we
ascertained that the updated TACCO with β=0:8 and S=24 can
achieve the best performance. Our experiments reveal that the upda-
ted TACCO, enriched with SpaGFT features, outperforms the baseline
TACCO model in the simulated independent test dataset with the
setting of bead size 2 ½10, 20, 30, 40, 50�.

SpaGFT implementation in Tangram
Denote Xsc as the gene expression matrix of scRNA-seq with the
dimension ncell ×ngene, in which ncell and ngene represent the numbers
of cells and genes, respectively.Xspa is the SRT gene expressionmatrix
with dimension nspot × ngene, and nspot represents the number of spots.

Tangram aims to find a mapping matrix M= mij

� �
ncell ×nspot

, where

0≤mij ≤ 1,
Pnspot

i mij = 1 andmij reflects the probability of cell imapping

to spot j. Hence,MTXsc can be treated as the reconstructed SRT gene

expression matrix using scRNA-seq. Let Xre =M
TXsc. The regulariza-

tion part of the original objective function of Tangram is as follows:

Φ Mð Þ=w1

Xngene

k = 1

cosineðX�,k
re ,X

�,k
spaÞ+w2

Xnspot

j = 1

cosineðXj, �
re ,X

j, �
spaÞ

where the first term describes the cosine similarity of gene k across all
spots in reconstructed SRT gene expression matrix and real SRT gene
expressionmatrix, weighted byw1; and the second term describes the
cosine similarity of spot j across all genes in reconstructed SRT gene
expression matrix and real SRT gene expression matrix, weighted by
w2. Bymaximizing the objective function, the optimalmappingmatrix
M* can be obtained.

DenoteU= μ1,μ2, . . .,μnFC

� �
, where each μl is the lth eigenvector

of the Laplacian matrix of the spatial graph and nFC is the number of
Fourier coefficients. Hence, we can implement graph Fourier trans-
form for genes by

X̂spa =U
TXspa

X̂re =U
TXre

Therefore, both X̂spa and X̂re are the representations of genes in
the frequency domain with the dimension nFC ×ngene. In addition,
X0
spa =XspaX

T
spa can be considered as the spot similarity matrix calcu-

lated by gene expression from real SRT data with dimension is
nspot ×nspot. Similarly, X0

re = ðMTXscÞðMTXscÞ
T

represents the spot
similarity matrix calculated by gene expression in reconstructed SRT
data. In this way, we can implement graph Fourier transform for spots
by:

eXspa =U
TX0

spa

eXre =U
TX0

re

Therefore, both eXspa and eXre are the new representations of spots
in the frequency domain with the dimension nFC ×nspot. Therefore, we
improved the objective function of Tangram by adding the similarity
measurements of genes and spots in the frequency domain. The new
objective function is

Φ Mð Þ=w1

Xngene

k = 1

cosineðX�,k
re ,X

,k
spaÞ+w2

Xnspot

j = 1

cosineðXj, �
re ,X

j,
spaÞ

+w3

Xngene

k = 1

cosineðX̂�,k
re , X̂

�,k
spaÞ+w4

Xnspot

j = 1

cosineðeXj�
re,eX

j, �
spaÞ

wherew1weights similarities of genes in the vertex domain;w2 weights
similarities of spots in the vertex domain;w3 weights the similarities of
genes in the frequency domain andw4 weights the similarities of spots
in the frequency domain.

To evaluate the performance of such modification. We adopted
the evaluation scheme from Bin Li et al. study. In addition, we simu-
lated this SRT dataset by ‘gridding’ a dataset (STARmap) using various
window sizes (400, 450, …, 1200). In addition, simulated datasets of
window sizes 400 and 1200were used for grid search to determine the
hyperparameters. In this way, w3 and w4 were set to 11 and 1, respec-
tively, and other parameters (including w1 and w2) were the default
parameters of Tangram. Our experiments reveal that the updated
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Tangram, enriched with SpaGFT features, outperforms the baseline
Tangram model.

SpaGFT implementation in CAMPA
Overall, the CAMPA framework, a conditional variational autoencoder
for identifying conserved subcellular organelle on pixel-level iterative
indirect immunofluorescence, was modified by adding an entropy
term on its loss function to regularize graph signal (e.g., protein
intensity) spreading or concentration. Specifically, compared with the
baseline CAMPA loss function, which computed the mean squared
error (MSE) loss for each pixel, the modified loss function additionally
considered protein global spreading at the cell level.

Data preparation for model training, testing, and validation. Fol-
lowing the baseline CAMPA paper and guidelines16, 292,548 (0.05% of
full data) pixels datasets were down-sampled from processed cell
nuclei of I09 (normal), I10 (Triptolide treatment), I11 (normal), and I16
(TSA treatment) wells based on 184A1 cell line. The training, testing,
and validation data were set to 70%, 10%, and 20%, respectively.

Entropy regularization. For cell i 2 I, where I was the complete set of all
cells in the down-sampled data, the corresponding original protein sig-
natures in each cell were denoted as Xi with the dimension
npixel ×nchannel , where npixel and nchannel represented the number of
pixels in one cell and the number of proteins, respectively. Similarly, X̂

i

was denoted as reconstructed protein signatures for cell i. To measure
the spreading of reconstructed protein signatures in the frequency
domain, X̂

i
and the coordinates of pixels were input into SpaGFT for

computing theFC F̂
i
with thedimension, inwhichnFC was thenumberof

FC. DenoteU= ðμ1,μ2, . . .,μnFC
Þ, where each μk was the kth eigenvector

of the Laplacianmatrix of the spatial neighboring graph for cell i. Hence,
FCs of reconstructed protein signatures for cell i was calculated by

F̂
i
=UTX̂

i

Subsequently, F̂
i
= ðf̂ i1, f̂

i

2, , f̂
i

nFC
Þ was used to calculate entropy by

the entropy function, which regularized a concentrated graph
signal19,74

LEntropy = �
X
i2I

XnFC

k = 1

jbf i

kj
2

k bFi k2
log

jbf i

kj
2

k bFi k2

where k � k2 presents L2-norm.
In addition, the η parameter was used as a weighting term to

balance the initial loss function and the entropy-decreasing loss
function, assignedwith 0.3 asdefault. The formula of themodified loss
function Lmodified was as follows:

Lmodified = η
XI

i

Dlnσ +
D
2σ2 MSE X̂

i
,Xi

� �
+ ð1� ηÞLEntropy

where D is a constant, which was used the same as the baseline mode
(D =0.5). The initial decoder loss function was a part of the objective
function in CAMPA, which used an analytical solution from σ-VAE75 to
learn the variance of the decoder. The MSE and the logarithm of the
variance were minimized through σ, which was a weighting parameter
between the MSE reconstruction term and the KL-divergence term in
the CAMPA objective function. There was an analytic solution to
compute the value of σ:

σ*2 =MSEðXi,νiÞ

σ*2 was estimated value for σ2 and νi presented the estimated latent
mean for Xi.

Regarding the implementation, the training and testing datasets
were selected to build themodified and baseline models, respectively.
Subsequently, to fairly compare the two models’ training efficiency,
the same validation dataset and initial loss were implemented to
evaluate the convergence of validation loss.

To interpret the modified CAMPA training efficiency improve-
ment regarding biological perspective, batch effect removal and pre-
diction accuracy were evaluated. Regarding batch effect removal, a
proportion of 1% of pixels were subsampled from prepared data. First,
UMAP embeddings calculated from the CAMPA latent representations
were generated to visualize the mixture of three perturbation condi-
tions. To quantitatively compare the batch effect removal between the
baseline and modified model, the kBET57 score was computed using
the CAMPA latent representations across perturbation conditions.
Following the kBET suggestion, 0.5% pixels (~1500 pixels) were itera-
tively selected for calculating the kBET score (a higher rejection rate
suggested a better batch effect removal result) 10000 times using
1–100 neighbors.

Subsequently, the CAMPA latent representations were clustered
utilizing the Leiden algorithm16 at resolutions of 0.2, 0.4, 0.6, 0.8, 1.2,
1.6, and 2.0. To understand the identity of each cluster predicted by
the modified CAMPA under the resolution of 0.2, the protein inten-
sities in each pixel cluster were visualized in the heatmap. Each pixel’s
channel valueswere averaged at the cluster level and scaled by channel
(column-level) z-score. Clusters were annotated based on the highest
expressed markers and human protein atlas.

To evaluate the conserveness and homogeneity of the predicted
cluster across different resolutions, we implemented high-label
entropy to quantify the trend of diverging from one cluster into two
clusters76. For example, at the resolution of 0.2, all pixels of cluster 6
predicted by the modified model were used to calculate entropy via a
probability vectorwith two lengths. Thefirst elementof this vectorwas
a percentage of pixels at the current resolution (i.e., 0.2), which tended
to be the largest cluster at the next resolution (e.g., 0.4). The second
elementof this vectorwas thepercentageof the restof thepixels at the
current resolution, which tended to be other clusters at the next
resolution. The high-label entropy was repeatedly calculated on the
same pixels of one cluster within/across baseline and modified model
across gradient resolutions (i.e., 0.2, 0.4, 0.6, 0.8, 1.2, 1.6, and 2.0). To
visualize intact cells and summarize the relation between pixel and cell
in Supplementary Data 19, seven clusters predicted by the modified
model based on resolution 0.2 were transferred to all pixels from full-
size data via function project_cluster_data in the CAMPA package. The
illustrated examples (id: 367420 and 224081) were extracted to cal-
culate the FC of COIL and SETD1A and visualize.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets from 10x Visium can be accessed from https://www.
10xgenomics.com/products/spatial-gene-expression. Slide-DNA-seq
data is available as accession code SCP1278 in the Single Cell Portal.
Slide-TCR-seq data is available as accession code SCP1348 in the Single
Cell Portal. TheGSM5519054_Visium_MouseBrain data can be accessed
via the GEO database with an accession code GSM5519054. Regarding
the human brain dataset, twelve samples can be accessed via endpoint
“jhpce#HumanPilot10x” on Globus data transfer platform at http://
research.libd.org/globus/. The other six human brain datasets (2-3-
AD_Visium_HumanBrain, 2-8-AD_Visium_HumanBrain, T4857-AD_Vi-
sium_HumanBrain, 2-5_Visium_HumanBrain, 18-64_Visium_Human-
Brain, and 1-1_Visium_HumanBrain) can be accessed via the GEO
database with an accession code GSE220442 and https://bmbls.bmi.
osumc.edu/scread/stofad-2. The two Slide-seqV2 datasets are available
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as accession code SCP815 in the Single Cell Portal. MERFISH data (Sli-
ce1_Replicate1-Vizgen_MouseBrainReceptor) can be accessed from
https://console.cloud.google.com/marketplace/product/gcp-public-
data-vizgen/vizgen-mouse-brain-map?pli=1&project=vizgen-gcp-
share. Xenium data (Rep1-Cancer_Xenium_HumanBreast) is down-
loaded from https://www.10xgenomics.com/products/xenium-in-situ/
human-breast-dataset-explorer. Spatial-CITE-seq data can be accessed
via the GEO database with an accession number of GSE213264. Spatial
epigenome–transcriptome co-profiling data (spatial_ATAC_RNA_Mou-
seE13) can be accessed via the GEO database with an accession code
GSE205055. The 184A1 datasets used to train modified CAMPA
reported in this manuscript can be found at https://doi.org/10.5281/
zenodo.7299516. SPOTdata canbe accessed via theGEOdatabasewith
an accession number of GSE198353. The CODEX tonsil data generated
in this study have been deposited in the Zenodo database under
accession code 10433896. Source data are provided in this
paper. Source data are provided with this paper.

Code availability
SpaGFT is a Python package for modeling and analyzing spatial tran-
scriptomics data. The SpaGFT source code and the analysis scripts for
generating results and figures in this paper are available at https://
github.com/OSU-BMBL/SpaGFT. The source code is also available on
Zenodo77 with link https://doi.org/10.5281/zenodo.12595086.
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