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Abstract

Mathematical modeling has an extensive history in vector-borne disease epidemiology, and is 

increasingly used for prediction, intervention design, and understanding mechanisms. Many 

studies rely on parameter estimation to link models and data, and to tailor predictions and 

counterfactuals to specific settings. However, few studies have formally evaluated whether vector-

borne disease models can properly estimate the parameters of interest given the constraints of a 

particular dataset. Identifiability analysis allows us to examine whether model parameters can be 

estimated uniquely—a lack of consideration of such issues can result in misleading or incorrect 

parameter estimates and model predictions. Here, we evaluate both structural (theoretical) and 

practical identifiability of a commonly used compartmental model of mosquito-borne disease, 

using the 2010 dengue epidemic in Taiwan as a case study. We show that while the model is 

structurally identifiable, it is practically unidentifiable under a range of human and mosquito time 

series measurement scenarios. In particular, the transmission parameters form a practically 

identifiable combination and thus cannot be estimated separately, potentially leading to incorrect 

predictions of the effects of interventions. However, in spite of the unidentifiability of the 

individual parameters, the basic reproduction number was successfully estimated across the 

unidentifiable parameter ranges. These identifiability issues can be resolved by directly measuring 

several additional human and mosquito life-cycle parameters both experimentally and in the field. 

While we only consider the simplest case for the model, we show that a commonly used model of 

vector-borne disease is unidentifiable from human and mosquito incidence data, making it difficult 

or impossible to estimate parameters or assess intervention strategies. This work illustrates the 

importance of examining identifiability when linking models with data to make predictions and 

inferences, and particularly highlights the importance of combining laboratory, field, and case data 

if we are to successfully estimate epidemiological and ecological parameters using models.
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1. Introduction

Arboviral diseases are a global threat of increasing importance. Particularly for diseases 

propagated by Aedes mosquitoes, such as dengue, chikungunya, and Zika (Musso et al., 

2015; Benelli and Mehlhorn, 2016), incidences have been increasing at alarming rates 

worldwide, with over 3.9 billion individuals believed to be at risk for dengue infection alone 

(Brady et al., 2012; Bhatt et al., 2013; World Health Organization, 2017). These increases 

are primarily attributed to the habitat expansion of Aedes spp. caused by changes in 

anthropogenic land use and human movement (Wilder-Smith and Gubler, 2008; Guzman et 

al., 2010; Gubler, 2011; Weaver, 2013; Wilder-Smith, 2012; Powell and Tabachnick, 2013). 

Given the ecology and life-cycle of Aedes mosquitoes, the transmission dynamics of these 

mosquito-borne diseases are heavily driven by complicated interactions between 

environmental factors (Hales et al., 2002, 2003; Scott and Morrison, 2003; Chen and Hsieh, 

2012; Brady et al., 2014; Kraemer et al., 2015). These factors, combined with human 

behavior and transmission dynamics, make vector-borne diseases highly complex—

presenting both challenges and opportunities for mathematical modeling (World Health 

Organization, 2011, 2012; Smith et al., 2012). Modeling has increasingly been viewed as a 

useful tool to quantify these complex transmission systems by integrating various data 

sources and specifying nonlinear mechanistic relationships and feedbacks. Numerous recent 

efforts at combating mosquito-borne diseases have directly incorporated the use of 

mathematical models, such as in planning for Zika and chikungunya response (Moulay et 

al., 2011, 2012a; Christofferson et al., 2016; Alex Perkins et al., 2016; Kucharski et al., 

2016; Ferguson et al., 2016a), and evaluation of potential vaccine candidates (Chao et al., 

2012; WHO-VMI, 2012; Aguiar et al., 2016; Ferguson et al., 2016b).

Indeed, mathematical modeling has a long history in vector-borne diseases, beginning with 

the original development of the Ross-Macdonald or so-called Susceptible-Infectious-

Recovered (SIR) model to examine malaria (Kermack and McKendrick, 1927), and 

expanding to account for an enormous range of factors affecting both human and vector 

population dynamics (Andraud et al., 2012; Reiner et al., 2013). A wide range of modeling 

approaches, including ordinary and partial differential equations (ODE and PDE) (Enduri 

and Jolad, 2014; Aldila et al., 2013) as well as agent/individual-based models have also been 

applied to these questions (Li and Zou, 2009; Isidoro et al., 2011; Chao et al., 2012; 

Dommar et al., 2014; Manore et al., 2015). Common goals for many of these modeling 

efforts have been to make quantitative predictions of disease dynamics and to estimate the 

underlying mechanistic parameters (Chowell et al., 2007; Khan et al., 2014; Ferguson et al., 

2016a; Perkins et al., 2016; Johnson et al., 2015).

To do so often requires using parameter estimation to connect these models with disease 

data, mainly using incidence or prevalence over time in humans. An important step in this 

process is examining parameter identifiability, the study of whether a set of parameters can 

be uniquely estimated and what parameter information may be gleaned from a given model 

and data set. Unfortunately, under many circumstances, the underlying model parameters are 

unidentifiable (also denoted non-identifiable), so that many different sets of parameter 

values produce the same model fit. The unidentifiability (non-identifiability) may be due to 
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the model and measurement structure (i.e. structural non-identifiability) or the constraints of 

a specific dataset (i.e. practical unidentifiability). In either case, the data does not provide 

sufficient information for unique parameter estimation. Incorrect parameter estimates and 

ignorance of the uncertainty in prediction from an unidentifiable model can result in 

misleading epidemiological inferences, which could further lead to failures of public health 

interventions.

There are numerous transmission models in mosquito-borne diseases, which frequently use 

parameter estimation in fitting these models to data, and broader issues of parameter 

uncertainty and sensitivity have often been raised and explored (Johnson et al., 2015; 

Manore et al., 2014; Prosper et al., 2012; Reich et al., 2013; Mendes Luz et al., 2003; Laneri 

et al., 2010; Pandey et al., 2013; Shutt et al., 2017). However, relatively few efforts have 

been made to formally examine questions of parameter identifiability in these models 

(Mendes Luz et al., 2003; Laneri et al., 2010; Bhadra et al., 2011; Moulay et al., 2012b; 

Pandey et al., 2013; Reiner et al., 2014; Zhu et al., 2015; Tuncer et al., 2016; Shutt et al., 

2017). Two studies that directly evaluated identifiability issues include: Denis-Vidal, 

Verdière, and colleagues assessed the structural (theoretical) identifiability of a chikungunya 

transmission model assuming all the states in human population and mosquito larva are 

observable (Moulay et al., 2012b; Zhu et al., 2015); Tuncer et al. (2016) examined both 

structural and practical identifiability of a within-to-between host model of Rift Valley fever, 

addressing how the multi-scale nature of such immuno-epidemiological problems affects 

model identifiability. Building on these results, we examine the identifiability of a simple 

compartmental model based on the Ross-Macdonald framework with various scenarios of 

measurement assumption (Newton and Reiter, 1992). This model is commonly used for both 

theoretical (Coutinho et al., 2005; Coutinhoa et al., 2006; Garba et al., 2008; Dumont et al., 

2008) and applied epidemiological studies in a wide range of settings (Burattini et al., 2008; 

Yang and Ferreira, 2008; Chiroleu and Dumont, 2010; Pinho et al., 2010; Poletti et al., 2011; 

Sardar et al., 2016), and is often used in an expanded form where temperature or 

environmental dependence is explicitly included (Bartley et al., 2002; Yang et al., 2009a; 

Erickson et al., 2010; McLennan-Smith and Mercer, 2014). We consider the structural and 

practical identifiability of this model in the baseline case without explicit environmental 

drivers, using dengue incidence data in Kaohsiung, Taiwan as a case study. Additionally, the 

inclusion of mosquito population data has been considered helpful for parameter estimation 

in models involving mosquito life cycles (Reiner et al., 2013; Yang et al., 2009a; Morrison et 

al., 2011; Bowman et al., 2014). However, obtaining mosquito population data is difficult in 

practice: it requires substantial time and resources which are often limited; spatial and 

behavioral variability in mosquito populations pose significant logistic challenges as well. 

Therefore, we also evaluate whether and to what degree that alternative mosquito data 

available in the field will reduce parameter uncertainty and improve model inference on 

mosquito control strategies. Finally, we present an example showing the consequences of 

ignoring unidentifiability in model-based intervention design.

Vector-borne disease modeling is often complex, and has been widely used in forecasting 

and the design of interventions (Ferguson et al., 2016a; WHO-VMI, 2012; Yakob and 

Clements, 2013; Patz et al., 1998; Focks and Barrera, 2006; Kearney et al., 2009). Through 
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our simple model, we hope to draw attention to identifiability issues in vector-borne disease 

models and their implications in the application of models with more complexity.

2. Methods

In the following sections, we will describe the model development, identifiability analysis, 

and parameter estimation processes. The flow chart in Fig. 1 summarizes the overall 

analytical process. The model and analyses were implemented in Python 2.7.10, with code 

available at https://github.com/epimath/dengue_model.

2.1. Model

Our SEIR-based model is adapted from (Newton and Reiter, 1992; Yang et al., 2009a, 

2009b), and shown in Fig. 2. We chose this model mainly because of its simplicity as well as 

its potential to be used for intervention design and epidemic prediction accounting for 

environment factors (Yang et al., 2009a, 2009b; Pinho et al., 2010; Poletti et al., 2011; 

Yakob and Clements, 2013; Erickson et al., 2010; McLennan-Smith and Mercer, 2014; 

Sardar et al., 2016). The model includes the disease transmission process between the 

human (h) and mosquito (m) populations. In addition, we specify an aquatic stage of 

mosquitoes combining larvae and pupae (A). These larvae/pupae then grow into adults (Sm) 

and leave the aquatic environment. Since dengue virus is transmitted by the female 

mosquito, we only consider female mosquitoes in the model. The susceptible adult 

mosquitoes become infected and enter compartment Em by having blood meals from 

infectious human beings carrying the dengue virus (Ih). After the extrinsic incubation period 

(8–12 days) (World Health Organization, 2009; Chan and Johansson, 2012; Rudolph et al., 

2014), the infected mosquitoes are capable of transmitting the virus and stay contagious 

during their lifetime (Im). Susceptible human individuals (Sh) can be infected (Eh) through 

bites from the mosquitoes, and then become infectious (Ih) after a 4–10 day intrinsic 

incubation period (World Health Organization, 2009; Chan and Johansson, 2012; Rudolph et 

al., 2014). With proper treatment, individuals in the infectious stage can recover from 

dengue and are considered immune in the model. Note that multiple serotypes are not 

considered in the model, so potential interactions or antibody-dependent enhancement 

between serotypes are not included. We assume there is only mosquito-to-human and 

human-to-mosquito transmission in the model given the relatively low probability of other 

transmission pathways (World Health Organization, 2009).

2.1.1. Model equations—In the model, we assume a constant human population (N = 

Sh + Eh + Ih + Rh). We also consider all variables in units of individuals (i.e. humans, 

mosquitoes, and pupae/larvae).
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dSh
dt = μ N − Sh −

βmhShIm
N

dEh
dt =

βmhShIm
N − αEh − μEh

dIh
dt = αEh − ηIh − μIh
dRh
dt = ηIh − μRh

dA
dt = ξ Sm + Em + Im 1 − A

C − πA − μaA
dSm
dt = πA −

βhmSmIh
N − μmSm

dEm
dt =

βhmsmIh
N − γEm − μmEm

dIm
dt = γEm − μmIm

(1)

It should be noted that βmh and βhm are transmission rates between host and vector 

populations, which are the products of average bites per mosquito and the probability of 

successful transmission per infected mosquito bite. C is the maximal carrying capacity of 

aquatic environment without the additional death term μa and maturation rate π. We also 

include a parameter to account for underreporting in human incidence and prevalence, so 

that the incidence in the model is measured as yh = κhαEh, where κh is the reporting 

fraction. Similarly, for counts and prevalence of mosquitoes, we assume that only a small 

fraction of the total mosquitoes are counted, assumed to be κa and κm for aquatic immature 

and mature mosquitoes, respectively. This yields the (simulated) observed immature 

mosquitoes to be ya = κaA and observed adult mosquitoes to be ym = κm(Sm + Em + Im). 

Descriptions of the other parameters are given in Table 1.

2.1.2. Rescaled model—Transmission models such as the one considered here can 

often be rescaled without changing the observed output. For example, in this model we 

could rescale the human variables to be larger (thereby also increasing the population size 

N), but reduce the reporting rate (κh) and adjust the value of βmh to yield the same apparent 

observed number of cases over time from the model. However, because each of these 

parameters (the reporting rate, transmission parameters, and size of the total population at 

risk) are all unknown parameters for our model, there is an inherent (structural) 

unidentifiability of these parameters, so that they cannot all be estimated simultaneously (i.e. 

for any population size, we can set βmh and the reporting rate to yield the same observed 

number of cases). Similar issues can be found in the mosquito equations as well.

One way to correct these types of identifiability problems in the model is to rescale the 

model variables (e.g. Sh, Eh, Ih, Sm, etc.) by model parameters such as the total population 

size (in many cases this is equivalent to nondimensionalizing the system). In this case, we 

re-write the human model variables to be in terms of fraction of the population instead of 

numbers of individuals, e.g. letting the new variable for susceptible humans be: Sh = Sh/N
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(and similarly for Eh, Ih, and Rh). We also normalize the larvae A by their maximal carrying 

capacity C (letting A = A/C) and the remaining variables (Sm, Em, and Im) by both C and π 
(i.e. letting Sm = Sm/ Cπ ) We note that this rescaling of the mosquito variables does not fully 

nondimensionalize them, but groups parameters into fewer terms (which is useful for 

identifiability purposes). Rewriting the equations and omitting the ∼’s yields:

dSh
dt = μ 1 − Sh − βmh* ShIm

dEh
dt = βmh* ShIm − αEh − μEh

dIh
dt = αEh − ηIh − μIh
dRh
dt = ηIh − μRh

dA
dt = ξ* Sm + Em + Im 1 − A − μa*A
dSm
dt = A − βhmSmIh − μmSm

dEm
dt = βhmSmIh − γEm − μmEm

dIm
dt = γEm − μmIm

(1)

where βmh* = βmhCπ /N, ξ* = ξπ, and μa* = π + μa. Similarly, the reporting rate parameters are 

now κh* = κhN, κa* = κaC, and κm* = κmCπ, so that the observed human cases or mosquito 

counts are the same as in the original model. However, we note that this means that the 

reporting rate and population-at-risk can now only be estimated as a combined parameter (as 

is common for infectious disease models both vector borne and otherwise (Shutt et al., 2017; 

Eisenberg et al., 2013; Evans et al., 2005)). Rescaling allows us to reduce the number of 

parameters explicitly included in the model and correct some of the immediately apparent 

identifiability issues. We will show in Section 2.3 below that this also resolves the overall 

structural identifiability of the model

For the mosquito population of the rescaled model, we note that interventions involving 

removal of aquatic phase mosquitoes were conducted once the outbreak began. As a 

simplified way of representing these dynamics, we used the equilibrium assuming only 

logistic growth for the aquatic phase mosquitoes to calculate the initial conditions, and then 

simulated the model assuming an additional death/removal rate μa* (although we note that 

technically, due to the rescaling, μa* also includes the mosquito maturation rate). This yields 

initial conditions of 1 for A and 1/μm for Sm. These initial conditions also gave a simple way 

to ensure the aquatic phase of the mosquitoes exhibited some timevarying behavior, since if 

A was started at the equilibrium using μa* ≠ 0, it would remain at equilibrium throughout the 

simulation (since there is no disease-related death in the mosquito population). We also 

tested the model when we assumed the initial conditions were at equilibrium with μa* ≠ 0 a 
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(yielding steady state values A =
ξ* − μa*μm

ξ*  and Sm =
ξ* − μa*μm

ξ*μm
, but this did not change our 

results (not shown).

2.1.3. Basic reproduction number—The basic reproduction number (ℛ0) is the total 

number of secondary cases generated by introducing a single infected individual into a 

completely susceptible population(vanden Driessche and Watmough, 2002; Heffernan et al., 

2005). Mathematically, ℛ0 is a threshold parameter controlling the stability of the disease-

free equilibrium given by an entirely susceptible human and mosquito population. Using the 

next generation matrix (van den Driessche and Watmough, 2002), we construct ℛ0 as:

ℛ0 =
Smαβhmβmhγ

α + μ η + μ γ + μm μm
. (3)

2.2. Parameter estimation

2.2.1. Data—Weekly incidence of dengue cases since 1998 is available from the Taiwan 

National Infectious Disease Statistics System of Taiwan Centers for Disease Control (CDC) 

(Centers for Disease Control Taiwan, 2018). Confirmed dengue cases are reported from 

local hospitals and are released every week to the CDC online platform. In the study, we 

used 2010 dengue incidence data in Kaohsiung, the main city in southern Taiwan. Dengue 

outbreaks in Taiwan always start from and are often confined to the south because of the 

favorable environment for Aedes spp. Kaohsiung is usually the main epidemic area during 

outbreaks, and also has annual outbreaks regularly (Chang et al., 2012). The 2010 epidemic 

curve of dengue in Kaohsiung is very typical with one main peak. Since our model does not 

handle spatial heterogeneity and multiple strains, we chose to focus only on the 2010 data in 

Kaohsiung for these analyses.

2.2.2. Parameter estimation—We neglect population birth/death dynamics in the 

model (μ=0) because the out break only lasts for 32 weeks. We also fix α and γ as 0.14 and 

0.1 respectively based on previous studies (World Health Organization, 2009; Chan and 

Johansson, 2012; Rudolph et al., 2014), and let η be 0.1 since the infection usually lasts for 

about 10 days (World Health Organization, 2009). We estimated the remaining 6 parameters 

using weekly dengue incidence in Kaohsiung with least squares (i.e. maximum likelihood 

assuming normally distributed measurement errors). Nelder-Mead from NumPy in Python 

2.7.10 was used for the estimation process.

2.2.3. Simulated data—As discussed in identifiability analysis below, we also 

simulated noise-free data using the fitted model from previous step. These data were 

generated by simulating the given variables at either daily or weekly frequency. This allowed 

us to examine identifiability of the model in a case where the “true” parameters are known 

(so that errors in estimation can be assessed) and to consider a range of alternative 

measurement scenarios examining how adding different types of mosquito count data might 

improve parameter identifiability. We synthesized the following four alternative simulated 
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data sets corresponding to different surveillance methods available in the field—dengue 

incidence, ovitrap/house index, BG-trap, and Gravid trap, respectively:

• Scenario 1: human incidence data only, given by yh=κhαEh (integrated to a 

weekly cumulative incidence)

• Scenario 2: human incidence data (yh) and daily aquatic (immature) mosquito 

counts, given by ya=κaA

• Scenario 3: human incidence data (yh), aquatic mosquito counts (ya), and daily 

adult mosquito counts, given by ym=κm(Sm+Em+Im)

• Scenario 4: human incidence data (yh),aquatic mosquito counts (ya), and daily 

adult mosquito counts broken down by infection status, allowing us to break ym 

into yms = κmSm and ymei=κm(Em+Im).

We simulated these data in their most optimistic, best-case form—frequent measurements 

without noise. However, to examine how noise might affect the parameter estimation, we 

also generated 300 simulated data sets for Scenario 1 with added measurement error based 

on the residuals from the parameter estimation with the Kaohsiung data (see Supporting 

Information).

2.2.4. Estimation with simulated data—For parameter estimation using the 

simulated data, we fit the model with weighted least squares to account for the different 

scales for mosquito and human data sets. The weights are the same for each point within 

each individual dataset (i.e. weighted by the average data value).

2.3. Identifiability analysis

We evaluated the structural and practical identifiability of the parameters, given the model 

and different possible data sets described above. We will give a brief overview of the 

identifiability definitions and methods used here. For a more complete review, please refer to 

(Cobelli and DiStefano, 1980; Audoly et al., 2001; Raue et al., 2009; Miao et al., 2011).

In general there are two types of identifiability: structural identifiability (sometimes just 

called identifiability), which examines the best-case scenario of perfectly measured, noise-

free data, in order to reveal the inherent, theoretical identifiability derived from the model 

structure itself; and practical identifiability (sometimes called estimability), which examines 

how parameter identifiability fares when real-world data issues such as noise, sampling 

frequency, and bias are considered (Raue et al., 2009). When a model is unidentifiable, 

model parameters usually form identifiable combinations, which are combinations of 

parameters that are identifiable even though the individual parameters in the combinations 

are not.

2.3.1. Structural identifiability analysis—We first examined structural identifiability 

using two approaches: differential algebra (Ollivier, 1990; Audoly et al., 2001; Pia 

Saccomani et al., 2001; Meshkat et al., 2012; Eisenberg et al., 2013) and the Fisher 

information matrix (Rothenberg, 1971; Cobelli and DiStefano, 1980; Cintrón-Arias et al., 
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2009; Eisenberg and Hayashi, 2014). A short overview of both methods, formal definitions, 

and examples are provided in the Supporting Information.

In brief, the differential algebra approach is an analytical method which examines whether it 

is possible, from the model equations and variables measured, to uniquely determine 

(estimate) the parameter values. The approach is based only on the model and data structure

—it assumes perfect, noise-free data, without consideration of real-world issues of noise, 

bias, or sampling. This represents an idealized, best-case scenario; however many biological 

and epidemiological models are structurally unidentifiable, making this a useful first step in 

examining the parameter information available for a given model and data.

The differential algebra approach provides global results of model structural identifiability 

and closed forms of the relationships between parameters, but it is usually very 

computationally expensive. The Fisher information matrix (FIM) can be used as a numerical 

or analytical approximation to examine structural identifiability for a single point in 

parameter space (local results), for example, by using very finely sampled simulated data, as 

discussed in more detail in (Jacquez and Greif, 1985; Eisenberg and Hayashi, 2014). Given 

that the FIM is often used as a numerical rather than analytical method, there can be limited 

generalizability across the parameter space. However, it is significantly faster and less 

computationally intensive than the differential algebra approach.

Here, we test the four simulated data scenarios given above, using the differential algebra 

approach when possible (using both Mathematica code as well as the freely available 

packages COMBOS (Meshkat et al., 2014) and Daisy (Bellu et al., 2007)), and the FIM 

when the differential algebra approach was too computationally intensive to converge to a 

solution.

2.3.2. Structural and practical identifiability using the profile likelihood—
Another way to assess identifiability is the profile likelihood (Raue et al., 2009). Taking p = 

{θ1, …, θp} as the parameters to be estimated, we fix a parameter (θi) across a range of 

values, which is denoted as [min(θi), max(θi)], and fit the remaining parameters {θj|j = 1, 

…, p, j ≠ i} using the likelihood function ℒ for each value of θi in [min(θi), max(θi)]. In our 

case, least squares is used to compute the best-fit values of θis, constituting the likelihood 

profile for the fixed parameter. A minimum in the profile likelihood indicates structural 

identifiability (at least locally). A parameter is structurally unidentifiable when its like-

lihood profile is flat and is practically unidentifiable when the curva-ture of its likelihood 

profile is shallow (Eisenberg and Hayashi, 2014; Raue et al., 2009). However, the degree of 

shallowness for a profile is a question of degree, so there is often choice of where to set a 

threshold for practical unidentifiability. In order to decide whether the profile is “flat”, we 

constructed a 95% upper confidence bound for the profile likelihood given by: σ2χ0.95, p
2

where σ = i = 1
n

yi − yi
2

n − p  with n denoting the number of observations, p the number of 

parameters to be estimated, and y and y the observations and model trajectory respectively 

(Raue et al., 2009). Using profile likelihood method, we examine the identifiability of the 
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model with the four simulated data scenarios as well as the real dengue case data from 2010 

in Kaohsiung, Taiwan.

3. Results

3.1. Model fitting and parameter estimation

Using 2010 dengue incidence data in Kaohsiung, the fitted model was able to describe the 

general trend of the dengue epidemic. The left panel in Fig. 3 shows the dengue incidence 

data in 2010 and the fitted epidemic curve (yh). The model captures the overall epidemic 

size and the long tail at the end (though it overshoots for some of the tail). The fitted 

parameter values are given in Table 1. Some of the estimated parameters are on the edge of 

their biologically plausible ranges—for example μm, the adult mosquito death rate, 

corresponds to a mosquito lifespan of approximately three days, which is within the reported 

range in the literature (Newton and Reiter, 1992; Burattini et al., 2008; Oki et al., 2011) 

(particularly with ongoing interventions), but short compared to most estimates. However, 

broadly, the estimated parameter values are difficult to interpret, as the practical 

unidentifiability of the system (discussed below) means that we can shift the parameters 

significantly but still achieve the same fit.

As described in the methods, we also simulated both human and mosquito population data 

which is potentially collectible in the field. The simulated mosquito population data included 

ya (aquatic stage), ym (adult mosquitoes), and yms (susceptible mosquitoes) and ymei 

(infected mosquitoes), shown in Fig. 3 (right panel). The fitted model and these simulated 

data were used for the following identifiability analyses.

3.2. Differential algebra and Fisher information matrix (FIM)

Using the differential algebra approach, we tested the best-case scenario including all the 

possible data sets from the field, i.e. Scenario 4: dengue incidence, aquatic mosquito counts, 

infected mosquitoes, and susceptible mosquitoes. With these four types of data together, we 

proved that the model is structurally identifiable. The detailed proof can be found in the 

Supporting Information section. However, we were not able to apply the differential algebra 

method to the remaining three scenarios, due to computational limitations. Therefore, we 

constructed the FIM to examine the structural identifiability of the model with all scenarios 

(Scenarios 1–4), using simulated, noise-free dengue incidence and mosquito counts. The 

FIMs for all the scenarios were full-rank (rank = 6, the number of parameters to be 

estimated), indicating that the model is locally structurally identifiable at the fitted values in 

Table 1.

3.3. Profile likelihood of estimated parameters

The parameter profile likelihoods for both the dengue incidence data in 2010, Kaohsiung 

and the noise-free, simulated incidence data were very similar, with the Scenario 1 profiles 

shown in Fig. 4 and the Kaohsiung data in Supporting Information Figure S5. Taking βmh in 

Fig. 4 as an example, the star represents the weighted sum of squared error (SSE) of the 

original fitted parameter values, and the dots are the SSE after adjusting the βmh value and 

re-fitting the rest of the parameters. The dashed lines are the thresholds for the approximate 
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95% confidence bound of the profile likelihood. In principle, the profile likelihood curves of 

identifiable parameters should cross the thresholds on either side of the minimum (star), and 

the parameter values where they cross would be the confidence bounds. In this case, all the 

profiles are flat, meaning the fits are very similar regardless of the changing parameter 

values, and the confidence bounds are effectively infinite in one or both directions. This 

result would initially appear at odds with the structural identifiability of the model we 

showed earlier; however, upon zooming in the profiles, we can see there are minima in each 

profile (Supporting Information Figure S6). This suggests that although the model is 

structurally identifiable (consistent with the results from differential algebra and FIM 

approaches), it is not practically identifiable. To investigate the sources of this practical 

unidentifiability, we generated scatter plots of each pair of parameters, to evaluate whether 

any parameters are related to one another and form practically identifiable combinations. We 

were particularly interested in the pair βmh and βhm—since they form a product in ℛ0, they 

could potentially compensate for one another and maintain the same overall magnitude of 

the epidemic. Indeed, these two parameters do appear to follow an approximate product 

relationship in their profiles, as illustrated in Fig. 5. In addition, there was a strong linear 

relationship between ξ and μa, which are the parameters controlling the size of aquatic 

mosquito population. The remaining parameter relationships are shown in Supporting 

Information.

3.4. Profile likelihood with simulated mosquito data

To evaluate whether including mosquito data collection could enhance model identifiability, 

we computed profile likelihood of the parameters using simulated mosquito population data 

sets (Scenarios 2, 3 and 4). A zoomed-in comparison between the βmh profiles of Scenario 1 

(only human incidence data), Scenario 2 (adding larva data), Scenario 3 (adding larva and 

adult mosquito data), and Scenario 4 (adding larva, adult mosquito and infected mosquito 

data) is shown in Fig. 6. The profiles were improved after adding mosquito information, as 

the curve slightly tilts up on the right-hand side and becomes higher on the left-hand side. 

However, the profiles including mosquito population data still do not exceed the 95% 

confidence threshold within a very wide range of βmh, implying that in practice there is not 

much obvious improvement on the profile likelihood after including mosquito surveillance 

data (Supporting Information Figure S4). We note that the small deviations from the profile 

curve are due to non-convergence of the estimation algorithm for some runs. The profiles for 

the remaining parameters are similar and are given in (Supporting Information Figure S4). 

The one exception to the overall trend of practical unidentifiability was that the reporting 

fraction parameter for the immature mosquitoes (κa) was identifiable for all scenarios where 

mosquito data is measured (this parameter does not appear when only human data is used). 

The results using simulated noisy data in Scenario 1 (human data only) were very similar to 

those without noisy data, also showing flat profiles that did not reach the threshold for finite 

confidence bounds (see Supplementary Figure S3).

3.5. Profile likelihood with fixed parameters

Another way to resolve practical unidentifability is to decrease the number of parameters to 

be estimated, which can be done in the real world by having more information about specific 

parameters, such as using laboratory data to estimate the death rate for mosquito larvae. We 
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examined this situation by fixing different sets of parameters to their originally fitted values 

(Table 1) and fitting the remaining parameters using synthesized dengue incidence data 

(Scenario 1). We demonstrate the results for the βmh profile likelihood in Fig. 7. Given the 

relationship between βhm and βmh, one might expect fixing βhm could resolve βmh’s 

identifiability; nevertheless, the profiles indicate that fixing only one of the parameters 

appearing in ℛ0 (βhm or μm) is not sufficient to make βmh identifiable. Fixing any of other 

combinations of the parameters not shown in ℛ0 does not improve βmh’s identifiability 

either. However, after fixing βhm as well as either μm or the pair ξ and μa, we obtained 

profile likelihoods with clear minima, crossing the confidence interval threshold, suggesting 

with a better idea or prior knowledge about these parameters, we can make βmh identifiable. 

Unfortunately, as shown in Supporting Information, the whole model does not become 

identifiable until we fix at least four out of six parameters of interest.

The relatively small number of parameters in this model made it possible to near-

exhaustively test a subsets of parameters to determine which ones yielded model 

identifiability. We started here with βmh given the strong and apparent combination structure 

between the two transmission parameters (Fig. 5), and then tested fixing increasing subsets 

of parameters until we found subsets that resulted in finite confidence bounds. However, for 

larger models with more parameters, a more systematic approach would be needed, such as 

those presented in (Cintrón-Arias et al., 2009; Eisenberg and Hayashi, 2014; Balsa-Canto et 

al., 2010; Chis et al., 2011; Brun et al., 2002). A similar idea could also be incorporated in a 

Bayesian framework by adding sufficiently strong priors to some of the unidentifiable 

parameters, which could allow successful estimation of the parameters. Indeed, this may be 

preferable in a real-world setting where parameter priors could be derived from the 

uncertainty in measuring the parameters through experimental/ecological studies. We note 

that due to the model unidentifiability, the estimation would thus rely heavily on the priors.

3.6. Basic reproduction number (ℛ0)

Since ℛ0 is an important index for understanding disease transmission and predicting future 

epidemics, a key question is whether we can still estimate ℛ0 even when the model is 

practically unidentifiable. As an example exploration of this question, we calculate ℛ0 using 

Eq. (3), while profiling parameters βmh and βhm, using Scenario 1 (human incidence data). 

Fig. 8 demonstrates that ℛ0 stays stable across the profile of βmh and βhm (the plots of the 

relationship between ℛ0 and other parameters are shown in Supporting Information Figure 

S7. The result indicates that we can often still obtain sensible ℛ0 estimates from the model 

with human incidence data, even though we cannot properly estimate the individual 

parameters.

3.7. Example intervention simulation

We implement a very naive intervention in the model to demonstrate that ignoring 

unidentifiability can lead to misleading outcomes. We first pick two sets of parameters from 

the profile in Fig. 4 that generate very similar fits (shown in Fig. 9, left panel). We then 

remove 10% of the aquatic (immature) mosquito population each day to simulate the 

population control of mosquito larvae, which is a fairly common countermeasure against 

dengue. With the same implementation, the responses of the two parameter sets differ 
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substantially: one epidemic curve only decreases minimally; however, the other simulation 

decreases significantly and dies out at an early stage of the out-break (Fig. 9, right panel).

4. Discussion

In this study, we explored both structural and practical identifiability of a commonly used 

SEIR-based model of vector-borne disease. We demonstrated that even when the model is 

structurally identifiable, it is likely to be difficult or impossible to estimate both human and 

mosquito parameters from commonly available human incidence data in a single epidemic. 

In other words, although the likelihood surface of the model has a single optimum, it cannot 

practically be distinguished from a wide range or curve of neighboring points on the 

likelihood surface. Moreover, even in cases when human incidence data is combined with 

the types of mosquito data collected in the field, the practical identifiability of the 

parameters did not significantly improve. We then showed that more in-depth study of 

mosquito ecology and behaviors, which can give us direct information about individual 

parameters, was more efficient in terms of improving model identifiability. Unfortunately, 

obtaining accurate measurements for any of these parameters individually can be very 

difficult in practice, as they often vary depending on environmental and ecological factors 

such as temperature, weather events such as storms, and predation by other species (Kraemer 

et al., 2015; Wu et al., 2013; Morrison et al., 2008; Chang et al., 2011; Benelli et al., 2016) 

We would also need additional information on most of the parameters to make the model 

fully identifiable, which may not always be feasible. Nevertheless, it is still likely possible to 

measure the relative magnitude of some parameter subsets (e.g. identifiable combinations), 

providing constraints that can resolve the identifiability issues. For example, one could 

measure biological factors such as the relative infectivity from mosquitoes to humans and 

vice versa. This parameter, combined with knowledge of the human and mosquito 

population sizes (potentially even if only approximately known) could be used to constrain 

the ratio βmh/βhm and resolve the identifiability of the two β’s.

The parameter analyses shown in Fig. 5 and Supplementary Figure S7 give additional 

guidance on which parameters may resolve the identifiability issues if measured, but more 

broadly, one could test fixing specific parameter sets using profile likelihoods for a wide 

range of models. The parameter sets tested might be based on what data is plausible to 

collect, or one could test parameter sets in a systematic way, e.g. using the identifiable 

combination structure and/or parameter parameter sensitivites (Cintrón-Arias et al., 2009; 

Eisenberg and Hayashi, 2014; Balsa-Canto et al., 2010; Chis et al., 2011; Brun et al., 2002). 

More generally, while we used a maximum likelihood approach here, examining what 

information was available from human and mosquito surveillance data alone, if parameters 

were measured using experimental/ecological studies, this information could be included in 

the model using a Bayesian approach wherein we use the uncertainty in the measured 

parameters to determine their priors. The fixed-parameter analyses given here can provide 

some sense of how a very strong prior for the measured parameters would constrain the 

parameter estimates and reduce uncertainty, but a Bayesian approach with real-world data 

may provide greater flexibility while still improving identifiability of the system.
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In spite of these identifiability problems, the model generates very similar ℛ0 estimates 

across a range of profiled parameter values producing the same fit to the data (shown in Fig. 

5 and Supplementary Figure S7). This means that estimation using the model may still be 

useful in characterizing the disease outbreak and spread, calculating vaccination coverage, 

and assessing the risk of vector-borne disease, even if the individual parameters cannot be 

determined. ℛ0 is an important measure that can be used to evaluate potential interventions 

in public health. For example, we can simulate a model that implements the intervention and 

compare the ℛ0 with and without the intervention to evaluate the potential effectiveness 

(e.g. by examining whether ℛ0 becomes less than one, or the magnitude of the reduction).

Nevertheless, we cannot solely depend on ℛ0 since it is possible to obtain very different 

predicted responses with the same intervention implementation, as shown in (Fig. 9). The 

two alternative parameter sets shown in Fig. 9 both fit the data equally well and have similar 

ℛ0 values (1.30 and 1.33), so that we cannot distinguish which of the predicted intervention 

responses is more likely. The intervention simulation used here is quite simple, but 

represents a commonly used control strategy. The example illustrates how a lack of 

consideration of parameter identifiability can potentially lead to significant errors in 

evaluating or comparing different intervention strategies.

This model is a simplified interpretation of vectorborne disease transmission, and only 

assumes one outbreak and a single viral strain. Despite this simple structure, we still cannot 

properly estimate the parameters from the model. Indeed, similar structural and practical 

identifiability issues have been noted even for simpler transmission models (Eisenberg et al., 

2013; Evans et al., 2005; Cintrón-Arias et al., 2009; Tuncer and Le, 2018). Models with 

more complicated designs are often more likely to be unidentifiable, underscoring the 

importance of taking model identifiability into account before making any inferences from 

the model. Identifiability analysis allows us to understand what a model and data can really 

tell us, and can help with planning before we invest time and resources into a experimental 

or field study. Even if unidentifiability is inevitable, as long as we understand the behavior, 

uncertainty, and the limitations of the model, mathematical models can still be powerful 

tools to study disease transmission.

In the analyses presented here, we cover a set of basic and often overly optimistic scenarios, 

simulating data that is noise-free and frequently measured. Given these best-case scenarios, 

it is unlikely that real world data (which is likely less frequent and noisier) will improve the 

identifiability of the model. This is illustrated in Supplementary Figure S3 for human 

surveillance data, and is likely to be similar or worse for mosquito data, which is often noisy, 

difficult to measure at the daily frequency simulated here, and would also include low 

prevalences of infection that are difficult to detect. However, more comprehensive research 

is needed to investigate how issues such as different types of measurement and process 

noise, missing data, and data resolutions can further complicate parameter estimation. In 

many cases, these issues will likely further hinder the model parameter estimation and 

identifiability, but in some cases, more complex dynamics or process noise could potentially 

improve identifiability, making this a natural next direction for investigation. Nonetheless, 

this work shows that parameter estimation from incidence data alone is likely to be difficult 

or impossible, highlighting the importance of integrating parameter information directly 
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from experimental or field data. Given that such experimentally measured parameters 

usually vary as a function of environmental variables such as temperature and rainfall 

(Mordecai et al., 2013, 2017), future work to evaluate how model identifiability changes 

once this dependence is incorporated into the parameters would be a highly useful next step, 

particularly as previous studies have shown that uncertainty may vary over different 

temperature ranges (Johnson et al., 2015).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Summary of the parameter estimation and identifiability analysis process.
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Fig. 2. 
Diagram of the SEIR-based model. Subscript h indicates human, m indicates mosquitoes, 

and S, E, I, R represent susceptible, latent (exposed), infectious, and recovered humans or 

adult mosquitoes. A represents immature mosquitoes (larvae and pupae).
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Fig. 3. 
(A) model (dotted line) fitted to weekly incidence data (black circles) in Kaohsiung, Taiwan 

(2010); (B) simulated mosquito population data corresponding to Scenarios 2–4.
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Fig. 4. 
Profile likelihoods (black circles) assuming simulated, noise-free human incidence data 

(Scenario 1). Stars indicate the minimum sum of squared error (SSE) and dashed lines 

indicate the threshold for 95% confidence bounds. All six fitted model parameters are 

practically unidentifiable, with shallow minima which do not cross the confidence interval 

threshold within realistic biological ranges (zoomed in versions of the profiles showing the 

minima are given in the Supplementary Information).
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Fig. 5. 
Parameter relationship scatter plots derived from the Scenario 1 profiles shown in Fig. 4, 

showing the relationships between βhm and βmh as βmh is profiled and between ξ and μa as ξ 
is profiled. The two parameters in each pair compensate for one another, leading to the flat 

profile observed in Fig. 4.
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Fig. 6. 
Profile likelihoods for βmh with human incidence data only (Scenario 1), human incidence 

and larva count data (Scenario 2), human incidence, larva counts, and adult mosquito counts 

(Scenario 3), and data for human incidence, larva counts, adult mosquito counts, and 

infected adult mosquito counts (Scenario 4).

Kao and Eisenberg Page 26

Epidemics. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Profile likelihoods of βmh when only subsets of μa, ξ, κ, μm and βmh are fitted. The fixed 

subset (in addition to βmh) is shown in parentheses on the x-axis.
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Fig. 8. 
Values for ℛ0 as the two transmission parameters, βmh and βhm are varied in the profile 

likelihoods in Fig. 4. For each value of the profiled parameter, the plotted ℛ0 value uses to 

the best-fit values of the remaining parameters. ℛ0 remains relatively constant over the 

profiled parameter range, in spite of large changes in the parameter values.
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Fig. 9. 
Illustration of the implications of model unidentifiability on intervention prediction. Left: 

two model simulations using different parameter values that give the same fit to data, based 

on the profiles in Fig. 4 (red solid line – original fitted parameter values from Table 1; black 

dashed line – [βmh = 38.10, κh = 1625.42, ξ = 0.13, μa = 0.15, βhm = 0.02, μm = 0.42]). 

Right: Simulated intervention results for both parameter sets, supposing that 10% of the 

aquatic (immature) mosquito population is removed at each time step.

Kao and Eisenberg Page 29

Epidemics. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kao and Eisenberg Page 30

Table 1

Parameter estimates and values. Estimated parameters are marked in bold; confidence bounds and uncertainty 

for the fitted parameters are examined further below.

Parameter Description (units) Value Source

μ Human birth and death rate (day−1) 0 Newton and Reiter 
(1992)

βmh Rescaled mosquito-to-human infection rate (day−2) 14.15 Fitted

α Intrinsic incubation rate (day−1) 0.14 World Health 
Organization 
(2009), Chan and 
Johansson (2012), 
Rudolph et al. 
(2014)

η Recovery rate (day−1) 0.2 World Health 
Organization 
(2009)

ξ Rescaled oviposition-fertilization rate of larvae (day−2) 2.03 Fitted

μa Additionaldeathrateforaquatic(immature)mosquitoesduringtheepidemic,due to interventions
and environmental changes (day−1)

4.18 Fitted

βhm Human-to-mosquito infection rate (day−1) 0.03 Fitted

μm Mosquito death rate (day−1) 0.32 Fitted

γ Extrinsic incubation rate (day−1) 0.1 World Health 
Organization 
(2009), Chan and 
Johansson (2012), 
Rudolph et al. 
(2014)

κh Fraction of cases reported multiplied by total human population at risk (number of individuals) 1546.74 Fitted

κa Maximum possible immature mosquito counts observed in traps: fraction of aquatic 
mosquitoes
observed times total maximal carrying capacity of aquatic mosquitoes (used for simulated data
only) (number of mosquitoes)

93,420 Wu et al. (2013)

κm Maximum possible observed growth rate of new adult mosquitoes: fraction of adults 
mosquitoes
observed times the maximum maturation rate of mosquitoes (used for simulated data only)
(number of mosquitoes/day)

98.71 Wu et al. (2013)
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