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Metapopulation epidemic models describe epidemic dynamics in networks of spatially distant patches
connected via pathways for migration of individuals. In the present study, we deal with a susceptible-infected-
recovered (SIR) metapopulation model where the epidemic process in each patch is represented by an SIR model
and the mobility of individuals is assumed to be a homogeneous diffusion. We consider two types of patches
including high-risk and low-risk ones under the assumption that a local patch is changed from a high-risk one to
a low-risk one by an intervention. We theoretically analyze the intervention threshold which indicates the critical
fraction of low-risk patches for preventing a global epidemic outbreak. We show that an intervention targeted to
high-degree patches is more effective for epidemic control than a random intervention. The theoretical results
are validated by Monte Carlo simulations for synthetic and realistic scale-free patch networks. The theoretical
results also reveal that the intervention threshold depends on the human mobility network and the mobility rate.
Our approach is useful for exploring better local interventions aimed at containment of epidemics.
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I. INTRODUCTION

In the modern age of expanding globalization, epidemic
spreading is a serious matter of global public health. Coun-
termeasures, such as vaccinations, antiviral medications, and
social distancing, have been practiced for controlling past in-
fectious diseases. However, emerging and re-emerging infec-
tious diseases pose perpetual challenges for controlling them
due to environmental changes and diversification of human
behavior [1,2]. Therefore, it is significant to continuously
explore systematic methods for planning effective epidemic
control strategies. Mathematical models are powerful tools
for understanding epidemic spreading processes which are
complex phenomena involved in the type of disease, host
immunity, environmental conditions, and human mobility pat-
terns [3]. Mathematical methods have been widely used to
estimate epidemic outcomes and evaluate the effectiveness of
preventive measures.

There are a variety of mathematical models for epidemic
spreading, from simple to complex ones. Compartment epi-
demic models assuming homogeneous mixing of individuals
are classical and simple [4]. These models have been extended
to more complex and realistic ones by incorporating addi-
tional factors, such as social structures [5], spatial structures
[6], seasonal forcing [7-9], and human mobility patterns
[10-15]. Metapopulation epidemic models are a class of
models that describe epidemic spreading processes in a group
of spatially separated patches connected via migration path-
ways. This framework has been intensively studied to develop
analytical methods for global epidemic thresholds [16-29]
and widely applied to understanding actual epidemic out-
breaks [30-34]. In a metapopulation model, infection and
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recovery events occur in each patch and migration of individ-
uals potentially causes global epidemic spreading. Metapop-
ulation models have often been employed to consider inho-
mogeneous mixing of individuals. The SIR metapopulation
model with fully connected patches was analyzed to examine
the properties of the global basic reproduction number (which
is differentiated from the local basic reproduction number in
an isolated patch) governing the global epidemic threshold
[35,36]. The global reproduction number can be numerically
estimated using the next-generation matrix approach, but a
theoretical issue is to derive its explicit expression as a func-
tion of system parameters, including local epidemiological
parameters and human mobility patterns [37].

Colizza and Vespignani [18,19] derived an analytical ex-
pression of the global invasion threshold (i.e., the global
reproduction number) for an SIR metapopulation model with
complex patch connectivity under several assumptions. They
clarified the effect of heterogeneous network connectivity on
the global epidemic threshold. The analysis was conducted
under the assumption that the local reproduction number is
the same for all the patches. However, the conditions of
patches are thought to be heterogeneous in reality. In fact, it
was reported that the local reproduction numbers estimated
from real data for seasonal influenza are different between
local areas [38]. The heterogeneity of local reproduction
numbers can be partially attributed to the difference in the
immunization coverage rates in local areas. Under the patch
heterogeneity, the effectiveness of strategic interventions for
epidemic control has been evaluated using a susceptible-
infected-susceptible (SIS) metapopulation model in our pre-
vious study [39]. The result shows that targeted interven-
tions for high-degree patches are more effective than random
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FIG. 1. Schematic illustration describing the SIR metapopula-
tion model with high-risk patches (red thick circles) and low-risk
ones (blue thin circles).

interventions. However, it is still unclear whether this result
holds for other types of metapopulation models. For instance,
the SIR epidemic process representing an epidemic outbreak
as a transient state is qualitatively different from the SIS
epidemic process representing an endemic state as a sta-
tionary state. In fact, theoretical approaches are completely
different between them; the global epidemic threshold of an
SIR metapopulation model is analyzed based on a branching
process method [18,19], while that of an SIS metapopulation
model is analyzed based on local stability of the disease-free
equilibrium state [39,40]. Thus, the impact of local interven-
tion in SIR metapopulation models with patch heterogeneity
still remains to be studied.

In the present study, we aim to analyze the intervention
threshold in SIR metapopulation models consisting of high-
risk and low-risk patches as shown in Fig. 1. This model
framework is similar to that considered in Ref. [39], but
the epidemic process is qualitatively different. We introduce
an intervention rate u representing the fraction of low-risk
patches that have received intervention. When u =0, all
the patches are high-risk and a global epidemic outbreak
inevitably occurs. In the other extreme case with u = 1, all
the patches are low-risk and a global epidemic outbreak is
prevented. Therefore, we can expect that there is a certain crit-
ical value u = u. € (0, 1) (called an intervention threshold),
separating the outbreak and nonoutbreak regimes. We use
this threshold as a measure to compare different intervention
strategies. The smaller the intervention threshold is, the more
effective the intervention strategy is. The main novelty of
this study is to theoretically derive the intervention threshold
u, for random and targeted interventions. Furthermore, our
theoretical results are validated by numerical simulations. The
comparison of the intervention thresholds shows that targeted
intervention for high-degree patches is more effective than
random intervention. Our result indicating the effectiveness
of targeted intervention in metapopulations reminds us of

the effectiveness of targeted immunization in complex con-
tact networks of individuals [41,42]. However, these model
frameworks are largely different because dynamical processes
within network nodes are considered in metapopulation mod-
els but not in contact network models.

In Sec. II, we first introduce the analysis framework pro-
posed in the previous study [18,19] and then describe our
approach. In Sec. III, we show theoretical and numerical
results. In Sec. IV, we conclude this study.

II. METHODS
A. SIR metapopulation model with identical patches

We first introduce a method for analyzing a global epi-
demic threshold in an SIR metapopuation model with iden-
tical patches, following Refs. [18,19]. We will extend this
method to the case with nonidentical patches in the subsequent
section.

An SIR metapopulation model describes epidemic spread-
ing in a network of spatially separated patches, interconnected
with migration pathways. The number of patches is denoted
by V. The patches are assumed to totally contain a sufficiently
large number N of individuals, who are susceptible (S), in-
fected (I), or recovered (R). Epidemic dynamics in each patch
follows an SIR process [43]: a susceptible individual changes
to an infected one with transmission rate 8 when contacting
with an infected individual (S + I — 2I); an infected individ-
ual changes to a recovered one with recovery rate u (I — R).
We assume homogeneous mixing of individuals in each patch
where the local reproduction number is given by Ry = B8/u.
To allow global epidemic spreading, the local reproduction
number Ry needs to be larger than unity. Individuals can
migrate from one patch to a neighboring one through the
pathway. This is regarded as a diffusion process [40] and
the diffusion rate from a patch is denoted by p. Under a
homogeneous diffusion process, the diffusion rate from a
patch with degree k to one of the neighboring patches (with
any degree k') is given by

p

due = T (1)

In a stationary state, the number of individuals in a patch with
degree k is obtained as follows [18,19]:

Ne = —N, )

where N = N/V is the average population size per patch and
(k) is the mean degree.

We consider an initial condition that an infected individual
invades a metapopulation system of susceptible individuals.
The total number of infected individuals in a patch is propor-
tional to the stationary population in the patch, described as
aNj, for a patch with degree k, where the coefficient o« depends
on the type of disease and other factors. The average infection
period of an infected individual is given by the inverse of the
recovery rate, 1~ !. Therefore, if an epidemic occurs in a patch
with degree k, then the average number of infected individuals
who move to a neighboring patch with degree k' is represented
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as follows [18,19]:

OlNk
Mkt = digy ——. 3
m

We focus on the time evolution of the number of “infected”
patches which are defined as the patches that undergo an
outbreak. The analysis is based on the basic branching process
[44,45]. We denote by Dg the number of infected patches with
degree k at generation O (i.e., in the beginning of the process).
These patches bring about new infected patches with degree k
in their neighborhood, the number of which is represented as
D,l at generation 1. In this way, we define as D}, the number
of infected patches with degree k at generation n. Assuming
that the number of infected patches is sufficiently small in the
early stage of the process, we can approximately relate D} to
D" as follows [18,19]:

-1

Dn
DZZZszl(k’— 1)P(k|k’)<1— ";k
-

)(1—R0M), 4)

where P(k) denotes the degree distribution of the patch net-
work and V; denotes the number of patches with degree
k. This equation is derived based on the notion that each
infected patch with degree k' at generation (n — 1) will spread
infection in the (k" — 1) neighboring patches except the one
that originally transmitted infection, the probability that a
neighboring patch of a patch with degree k' has degree k is
P(k|k"), and the probability that the disease does not become
extinct when Ay infected individuals invade in a patch with
Ry is given by (1 — Rg'\”) [46,47].

For analytical tractability, we deal with special cases under
the assumptions of homogeneous diffusion in mobility, un-
correlated patch networks (i.e., without degree-degree correla-
tion), and the local reproduction number close to an epidemic
threshold. From Egs. (1)—(3), the number of seeds of infection
is given by

paNy paN
)"k'k = —/ = —_—,
pk wik)

In an uncorrelated patch network, the following equation
holds [48]:

(&)

kP(k
Pl = 29, ©
(k)
When the local reproduction number is close to the epi-
demic threshold, i.e., Ry — 1 < 1, the outbreak probability is
approximated as follows:

1— Ry =~ dyr(Ro — 1) (7)

By substituting Egs. (5)—(7) into Eq. (4), we obtain the
following equation [18,19]:
paN kP(k) 1
Di=————Ry—1)) D/ (k—1). ®)
CT k) (k) kZ ¢
By defining ®" := ), D}, (k" — 1), the above equation can be
rewritten by the following recurrence formula:

_ pal () — (k)

@n
woo (k)?

(Ry — HO" . 9)

The condition that ®" does not increase with n is given by
[18,19]
o PN ) — (k)
o (k2
where R, represents the global reproduction number. If Ry is
close to 1, then o ~ 2(Ry — 1)/(Ry)? according to Ref. [47].
Using this approximation, Eq. (10) is simplified as follows:
_ 2pN(Ry — 1)* (K*) — (k)
[ (Ro)? (k2

(Ro—1) <1, (10)

*

(1)

B. SIR metapopulation model with
high-risk and low-risk patches

Extending the framework in Sec. II A, we analyze an
SIR metapopulation model consisting of high-risk and low-
risk patches for examining epidemic intervention strategies
[39,49]. We assume that only a fraction of patches can
receive intervention and become low-risk due to budgetary
constraints. The local reproduction number in such low-risk
patches is denoted by R and that in the remaining high-risk
patches is by R¥ (>RE).

Let us define D} ,, and Dy, as the numbers of infected
high-risk and low-risk patcheé with degree k at generation
n, respectively. The numbers of individuals who experience
the disease during an outbreak in the high-risk and low-risk
patches are represented as ay N and o Ny, respectively. The
numbers of seeds from high-risk and low-risk patches with
degree k are denoted by A, and AL, , respectively. We define
Q(k) as the probability that a randomly chosen patch with
degree k is a low-risk one. Considering the transmission of
infection from high-risk and low-risk patches separately, the
recurrence formulas for D} ;; and D}, are written as follows
[as in Eq. (4)]:

Dy = S DYk = DPGIO[1 — (RE) 4]
k’

Diu
x (1 - Q(k))<1 v )

+ DI = DPUIK[1 — (RY) ]
k/

Dn—l
x (1 — Q(k))<1 S ) (12)
VieL

D, = Y DA — DPGIK)[1 — (R) ]
k/

D
x Q(k)<1 - )

_HL
+ Y D (K — DPKIKH[1 — (RE) 7]
k/
anl
x QU 1 — 2], (13)
ViL
where V; y and V; ; represent the numbers of high-risk and
low-risk patches with degree k, respectively.
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As in Eq. (5), we obtain
pauNy payN

A= , 14

Tk (k) (1
Ny N

AL, = LW PR (15)
uk nik)

Assuming RY ~ 1 and R; >~ 1, we can use the following
approximations [as in Eq. (7)]:

1 — (RE) ™™ =~ e (RE 1), (16)
1 — (RE) ™% = apn(RE = 1). (17)

In the early stage of the propagation, it follows

anl anl
1— 57 )~ 1 and[1 - =£E )~ 1. (18)
Vin Vir

By defining

O =Y Dj ylk—1), (19)

o = Xk:D;L(k — 1), (20)

[k*] = ik“P(k)Q(k), @1)

p
we can rewrite Egs. (12) and (13) as follows:
o, = PN (s ) (K2 = <k>>(k—)2<[k2] ~ kD g
PN ) () <k>)<k—>2([k2] ~ kD g
(22)
of = 2 s — 1)1 gy
4 PNew (R — 1)“‘%{%@;—1. (23)

These recurrence equations are simply written as follows:

o" @I‘L*l
( ”> =J[ 7). (24)
e} o

where
PR (g, — gy)  PNEED (5, — g)
Ii= pNoy (RE—1) pNay (R5—1) > (29
T‘ﬁ T@
b1 := ((K*) — (k)/(k)?, (26)
¢ := ([K*] — [k))/ (k)*. 27)

The eigenvalues of J are given by 0 and
pN H L
7{0617 (RY —1)(¢1 — ¢2) +ar(RG — 1)}, (28)

The condition that ®%, and ©} do not diverge in the limit of
n — oo is equivalent to the condition that the absolute values

of all the eigenvalues of J are smaller than 1. Hence, the
condition that a global outbreak does not occur is given by

N
R. = pj{aa(Ré’ — 1)(@1 = ¢2) + o (R — 1)} < 1,

(29)

where R, represents the global reproduction number in the
case that high-risk and low-risk patches coexist. When Ry
is close to unity, o = 2(Ry — 1)/R(%. Therefore, the global
reproduction number is rewritten as follows:

N
R. = %{w(R{f)(qsl — o)+ U (R}, (30)

where ¥ (x) := 2(x — 1)>/x%. Based on this formula, we can
evaluate the intervention threshold for different strategies as
described in Sec. IIT A.

C. Numerical simulation methods

We describe numerical methods for simulating epidemic
propagation processes in SIR metapopulation models, which
are used to validate our theoretical results. The state of each
individual is susceptible (S), infected (I), or recovered (R).
Initially the population in patch j is set at N; = k;N/(k)
for j =1,...,V. The numbers of susceptible, infected, and
recovered individuals in patch j are denoted by S;, /;, and
R;, respectively. A patch whose degree is close to (k) is
chosen to have ten initial infected individuals. The remain-
ing individuals are susceptible. We consider discrete-time
dynamical processes and denote the unitary time step by t.
At each time step, the state of each individual in patch j is
probabilistically updated. The update process consists of two
stages: epidemic and mobility stages. In the epidemic stage,
each susceptible individual turns into an infected one with
probability 1 — (1 — B;t/N, j)’f' and each infected individual
turns into a recovered one with probability ut. After all
individuals have been updated in the epidemic stage, the
mobility stage starts. In the mobility stage, each individual
moves to one of the neighboring patches with probability pr.
The above procedure is repeated for all the individuals at each
time step and continued for finite time steps until infected
individuals disappear.

We set N = 1000, T = 0.1, and p = 1 for all the patches,
Bj =2 for high-risk patches, and B; = 1.01 for low-risk
patches, unless otherwise noted. To focus on epidemic spread-
ing in heterogeneous patch networks, we employed synthetic
scale-free networks with V = 200 patches having degree dis-
tribution P(k) ~ k=7 with y = 2.1 generated by the uncor-
related configuration model [50] and the real U.S. airport
network having a scale-free property, containing V = 500
patches [40]. We performed 50 simulations with different
network realizations for each parameter condition.

III. RESULTS

First, we theoretically analyze the intervention threshold in
SIR metapopulation models with heterogeneously connected
patches in Sec. III A. We deal with random and targeted inter-
ventions [39]. Then, we numerically validate the theoretical
results in Sec. III B.
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A. Theoretical results

For theoretical analysis, we approximate the degree k as a
continuous variable by representing its expectation value over
many realizations of networks [51]. We consider a probability
density function p(k) for a continuous degree distribution,
instead of the discrete degree distribution P(k). We also
define a probability density function g(k) for a continuous
intervention probability, instead of the discrete intervention
probability Q(k). Accordingly, the summations with respect
to k in the previous section are replaced with integrals over k.
In particular, we redefine the brackets in Eq. (21) as follows:

(k] o= /k K p(k)g(k)dk. 31

The total intervention rate u represents the fraction of low-
risk patches. For a given u, we need to appropriately define
q(k) such that

0<qk) <1, (32)
kaI(k)p(k)dk =u. (33)

1. Threshold for random intervention

First, we deal with random intervention, where the low-risk
patches are chosen at random. Namely, the probability that
a patch is low-risk is constant independently of the patch
degree. From Eq. (33), we obtain the probability density
function g(k) for the random intervention as follows:

(k) = u. (34)

In this case, we have [k] = u(k) from Eq. (31) and ¢, = u¢,
from Eqgs. (26), (27), and (31). Using these equations and
Eq. (29), the global reproduction number R, is described as
follows:

N
R = ”7¢1{aH(R5’ — 1 =) + o (Rs — Du}. (35)

By solving R = 1 with respect to u, we obtain the critical
intervention threshold as follows:

o _ (R 1) — /(N
N O[H(Rg — 1) —OlL(Ré — 1)’

(36)

above which a global epidemic outbreak is prevented.

The global reproduction number R" for random interven-
tion in a scale-free patch network is computed from Eq. (35)
and plotted as a function of the intervention rate u and the
mobility rate p in Fig. 2. The yellow filled circles represent the
critical intervention threshold u!" given by Eq. (36). As seen
from Fig. 2, R" decreases monotonically with the intervention
rate u and increases monotonically with the mobility rate p.
The fact that the value of u," increases with p suggests that
more interventions for epidemic control are required when
spatial movements of individuals are more active.

The theoretical result in Eq. (36) also reveals the influ-
ence of the underlying mobility network on the intervention
threshold. The connectivity of the scale-free patch network is
varied with the degree exponent y, which is typically in the
range 2 < y < 3 [51]. For a scale-free network with a degree

100

FIG. 2. The theoretically derived global reproduction number
R [Eq. (35)] as a function of the intervention rate u and the
mobility rate p for a scale-free network with a degree distribution
p(k) ~ k=7 with y = 2.1, under the random intervention. The level
of the global reproduction number R" is also indicated by gray-scale
color. The value of R" increases monotonically with decreasing
u and increasing p. The yellow filled circles represent the critical
intervention threshold u;" as a function of p, which is theoretically
derived from Eq. (36). The value of " increases with p.

distribution p(k) ~ k77, the maximum degree ky.x and the
minimum one kp;, satisfy the following relationship [51]:

1

kmax = kminV reT, (37)

Therefore, a smaller value of y means a larger difference
between the maximum and minimum degrees. The interven-
tion threshold given by Eq. (36) is plotted as a function of
the degree exponent y and the mobility rate p in Fig. 3.
We can see that, for a fixed value of the mobility rate p,
the intervention threshold u. increases with a decrease in y.
This result shows that more interventions are required for
preventing a global outbreak in scale-free patch networks
having a hub patch with a larger maximum degree. At y ~ 2,
we have kp,x >~ V from Eq. (37) and there exists a hub patch
that connects to almost all other patches. Such a big hub patch
easily causes a global outbreak and leads to a large critical
intervention rate.

0.8
0.6
0.4
0.2

FIG. 3. The theoretically derived intervention threshold u;' as
a function of the degree exponent y and the mobility rate p. The
level of the intervention threshold " is also indicated by color. The
intervention threshold increases with decreasing y and increasing p.

022302-5



AKARI MATSUKI AND GOUHEI TANAKA

PHYSICAL REVIEW E 100, 022302 (2019)

(a)
quck)

1

\_________
P

8

)

~

k
kmin
(b)
q'(k)
kmax-kmin
<k>-kmin
k

kmin

FIG. 4. (a) The piecewise function g;(k) defined in Eq. (38).
(b) The probability density function g'¢(k) for u < gy, in Eq. (40).

2. Threshold for targeted intervention

Next, we consider targeted intervention, which means that
important patches are preferentially selected to be low-risk.
Here we measure the importance of a patch using the degree
centrality [52]; the more connections a patch has, the more
likely it is chosen as a low-risk patch. In this case, g(k) should
be a monotonically increasing function of k.

As a candidate of such a function, we define a piecewise
function g; (k) as shown in Fig. 4(a), represented as follows:
K= Knin for kmin < k <,

I — kmin (38)
1 for | <k < kpax,

qi(k) ==

where [ is a real value ranging between kpi, and kmax. We
define the expectation value of g;(k) with respect to k as
follows:

e
Qi I=/ qi(k)p(k)dk. (39)

Kkmin

For scale-free networks with p(k) ~ k=7, we can show that
g; is monotonically decreasing with increasing /. In the limit
of | — kmin, §; approaches the maximum value 1. When [ =
kmax, §i takes the minimum value g, .

We define the probability density function g(k) separately
for the two cases of u > gi,, and u < gi,,.. If u> gy,
then we can find k* € [kpin, kmax ] Such that gy« = u, satisfying
Eq. (33). Therefore, we use g+ as g(k). Otherwise, the piece-
wise function with any / does not satisfy Eq. (33). In this case,
we use a nonpiecewise function as shown in Fig. 4(b). The
probability density function g(k) for the targeted intervention
is defined as follows:

t G- (k) (W 2 G )
7K =1 oy, A (40)
Wt (U< Gy )-

100

u

FIG. 5. The theoretically derived global reproduction number R'¢
as a function of the intervention rate u# and the mobility rate p for
a scale-free network with a degree distribution p(k) ~ k= with
y = 2.1, under the targeted intervention. The level of the global
reproduction number R is also indicated by gray-scale color. R
increases with decreasing u and increasing p. The yellow filled
circles represent the critical intervention threshold ¥ as a function of
p, which is theoretically derived from Egs. (30) and (40). The value
of u'® increases with p.

We can show that the latter case also satisfies the requirements
for the probability density function, Eqgs. (32) and (33), as
follows:

k— kmin

—u

(k) - kmin

kmax - kmin A

) = ki

qe(k) =

kmax - kmin Ko k - kmin
= k)ydk =1,
(k) - kmin /k‘min kmax - kmin p( )

/kmax tg /kmx k— kmin

q=(k)pk)dk = ——up(k)dk = u.
Kmin Kmin k) — kmin

For the probability density function g(k) = ¢'¢(k), the
global reproduction number R is obtained as Eq. (30) which
depends on ¢, in Eq. (27) where [k2] and [k] are computed
from Eq. (31) with Eq. (40). The global reproduction number
RE for a scale-free patch network is shown as a function of
the intervention rate # and the mobility rate p in Fig. 5. As in
the random intervention case, thg increases with decreasing
u and increasing p. We can obtain the critical intervention
threshold u& by numerically solving RE = 1 with respect to
u. The yellow filled circles represent the values of u which
increase with p. By comparing Fig. 5 with Fig. 2, it can
be visually confirmed that the critical intervention threshold
for targeted intervention (u®) is much smaller than that for
random intervention (u;").

The critical intervention threshold u is obtained by solv-
ing R, = 1 with respect to u using Eqs. (30) and (40). The
threshold is plotted as a function of the degree exponent y
and the mobility rate p in Fig. 6. In contrast to the random
intervention case, there is no remarkable change in u, with
increasing y for a fixed value of p. This result implies that a
very small intervention rate with which a few hub patches are
changed to low-risk ones is sufficient for preventing global
outbreaks.
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5

FIG. 6. The theoretically derived intervention threshold u® as a
function of the degree exponent y and the mobility rate p. The level
of the intervention threshold « is also indicated by color.

3. Comparison of the intervention thresholds

The global reproduction number R, in Eq. (30) is different
between the random and targeted interventions, because ¢,
depends on g(k). A smaller value of R, for the same interven-
tion rate u means a more effective intervention strategy. We
show that the targeted intervention is more effective than the
random one. It is sufficient to prove the following inequality:

Adr(u) = ¢ — ¢F
1
= — | (> = b)(g®k) — g™(k k)ydk > 0,
o [ =0t = )

(41)

where ¢3" and ¢;g denote ¢, [Eq. (27)] for q(k) = ¢"™ (k) and
q(k) = ¢q'¢(k), respectively. We first deal with the case of u >
k..., and then that of u < gy, .

First, we assume u > gy, . We can evaluate A¢,(u) as
follows:

(k)2 Aa(u) = /k K2 = D)[g() — ulpk)dk
_ /k K = Olge () — de 1pk)dk

_ /k (= k) — (K — k))ge K)p(R)dk.

From Eq. (38), the last term is equivalent to

- kmin

— M h(k)dk
- kminp( )

.
/ [ — k) — (k2 — )]

Kmin

kmﬂX
+ / (K — k) — (& — k) Ip(k)dk

K 2 2 k — kmin
= | =k = (k" = k)l ——pk)dk
Kmin — Kmin
&
— | (K —k) — (& — k)]p(k)dk
kmin
k* ) ) k — k*
= | &=k = (k" = k) —pkdk.
Kmin — Rmin
Now we define the following functions:
bk) = [(k* — k) — (K> — k)]p(k), (42

I
B, = / b(k)(k — l)dk, (43)

Kmin

where b(k) is a monotonically increasing function of k for
a scale-free network, satisfying b(kpin) < 0, b(kmax) > O,
and fk b(k)dk = 0. Using these functions, we can represent
A¢,(u) as follows:

By

A0 = 03— k)

(44)

Therefore, the inequality (41) holds if By is nonnegative.
From Eq. (43), we have

dB, (!

=" /k - b(k)dk, (45)
d (dB)\ _

E(W) = —b(l). (46)

From the monotonicity of b(k), dB;/dl in Eq. (45) is a
unimodal function. Therefore, we have

Kmin Kmax
aB > min {—/ b(k), —/ b(k)} =0. @)

dl Knin Kmin

Hence, B; is a monotonically increasing function of /. From
By, = 0, we obtain By« > 0. From Eq. (44), A¢(u) > 0 is
satisfied.

Next, we assume u < gy, . From Eq. (41), it follows

(k)* Ao (u) = /k (k* — b)[q' (k) — ulp(k)dk

/(k2 - k)(mu - u) (k)dk
; (k) — Kemin d

Uk ~kinink®) = ( —kinink))
(k> _kmin

u(k?>— (k)

_ u 3\ 2y 2 2
= (k)—kmm((k) (k™) — (k) (k™) +(k)*).  (48)

From k > kyin > 0, we have k(k — (k))2 > 0, yielding (k(k —
(k))?) > 0. This yields (k*) > 2(k)(k?) — (k)* > 0. From this
property, we can evaluate Eq. (48) as follows:

(k)2 A (u) > m_%((kxk% — (k) = (&%) + (k)%
= o (0 = D) = %)
= (,{)_%«m — D((k = (k))*) > 0. (49)

Therefore, A¢,(u) > 0 holds. From Eq. (48), we find that
A¢,(u) is a monotonically increasing function of u.

B. Numerical validation

We numerically study the effect of the local interventions
on the final epidemic size. The final epidemic size is measured
by the ratio of individuals who have experienced the disease
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FIG. 7. Numerical results for the final epidemic size Ry /N with different values of the intervention rate u. The mobility rate is fixed at
p = 0.05. The crosses and open circles indicate the average values over 50 simulations for the random and targeted interventions, respectively.
The error bar indicates the standard deviation. (a) Scale-free patch networks generated with the configuration model [50]. (b) The U.S. airport

network [40].

during an outbreak period, given by R.,/N where R, equals
to ), R; after the outbreak. Due to the finiteness of the num-
ber of degrees in simulations, we used a discretized version of
Eq. (40) for the targeted intervention.

The average values of the final epidemic size over 50
simulations are plotted against the intervention rate u in

Fig. 7(a) for synthetic scale-free patch networks generated
with the configuration model [50] and in Fig. 7(b) for the
U.S. airport network representing the connectivity of flight
routes between 500 major airports in United States [40].
We see that, in both networks, the targeted intervention
is much more effective than the random intervention as it

FIG. 8. Numerical results for the final epidemic size R.,/N plotted against the intervention rate u and the mobility rate p. The average
value over 50 simulations is plotted for each parameter condition. The level of the epidemic size Ry /N is also indicated by color. The yellow
filled circles indicate theoretically obtained critical intervention thresholds u, for different values of p. (a) Random intervention in synthetic
scale-free patch networks. (b) The same as (a), but for targeted intervention. (c) Random intervention in the US airport network. (d) The same
as (c) but for targeted intervention. The theoretical values of u. are computed from Eq. (36) for (a) and (c), and from Egs. (30) and (40) for

(b) and (d).
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requires a much lower intervention rate for containment of
epidemics.

In Fig. 8, the numerical results of the final epidemic size
are shown for variation of the intervention rate u and the
mobility rate p. Figures 8(a) and 8(b) correspond to the results
for random and targeted interventions in synthetic scale-free
patch networks, respectively. A comparison between these
two figures obviously shows that the targeted intervention
is more effective than the random intervention for reduc-
ing the epidemic size. The same property is confirmed in
Figs. 8(c) and 8(d), which correspond to random and targeted
interventions in the U.S. airport network, respectively. In all
the cases, the final epidemic size decreases with increasing
u and increases with increasing p. The theoretical values
of the intervention threshold u. are superimposed as yellow
filled circles, indicating that they are in good agreement
with the thresholds which are recognized from the numerical
results.

IV. CONCLUSION AND DISCUSSION

In the present study, we have analyzed the intervention
threshold in SIR metapopulation models with scale-free patch
connectivity, consisting of high-risk and low-risk patches.
Under the assumption that a high-risk patch is changed to
a low-risk patch by reducing the local reproduction number
by an intervention, we have compared the effectiveness of
random and targeted interventions through theoretical and nu-
merical analyses. The theoretical results have shown that the
intervention targeted to high-degree patches is more effective
than the random intervention. They have been validated by the
numerical simulations using the synthetic scale-free networks
and the realistic U.S. airport network. Our result indicating the

effectiveness of the targeted intervention for SIR metapopu-
lation models is consistent with that for SIS metapopulation
models in a similar framework [39]. As the global reproduc-
tion number is expressed as a function of the intervention
rate and the mobility rate, one can calculate the critical in-
tervention threshold for a given mobility rate and estimate the
minimum effort for containment of epidemics. We have found
that a higher human mobility rate leads to a larger intervention
threshold. This finding suggests that travel restrictions are
effective, especially when using targeted intervention. We
have also revealed that the intervention threshold is larger for
a scale-free patch network with a smaller degree exponent.
This result implies that an existence of a very big hub patch
increases the difficulty of preventing global outbreaks.

The framework for examining intervention strategies in
this study has a potential to be extended to more realistic
cases in terms of human mobility patterns and intervention
strategies. There are other types of human mobility patterns,
such as recurrent (commuting) mobility [20,21,27,28,53] and
adaptive mobility [22,54]. Moreover, human mobility net-
works can be better estimated from higher-resolution data
such as real-world traffic network data [11,55], mobile phone
data [14,53,56], and GPS data [57]. It is also intriguing to
test other intervention strategies, such as those based on other
network centralities, because the important patches are not
necessarily high-degree ones. Another strategy is to combine
the intervention to local patches and travel restrictions. It
would be possible that the optimal intervention strategy is
different depending on how to evaluate the epidemic outcome.
Therefore, an appropriate assessment of the social impact of
global epidemics from microscopic and macroscopic levels is
becoming increasingly important [58,59].
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