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We investigate a model of electrons with random and all-to-all hopping and spin
exchange interactions, with a constraint of no double occupancy. The model is studied
in a Sachdev–Ye–Kitaev-like large-M limit with SU(M ) spin symmetry. The saddle-
point equations of this model are similar to approximate dynamic mean-field equations
of realistic, nonrandom, t -J models. We use numerical studies on both real and
imaginary frequency axes, along with asymptotic analyses, to establish the existence of a
critical non–Fermi-liquid metallic ground state at large doping, with the spin correlation
exponent varying with doping. This critical solution possesses a time-reparameterization
symmetry, akin to Sachdev–Ye–Kitaev (SYK) models, which contributes a linear-in-
temperature resistivity over the full range of doping where the solution is present. It is
therefore an attractive mean-field description of the overdoped region of cuprates, where
experiments have observed a linear-T resistivity in a broad region. The critical metal
also displays a strong particle–hole asymmetry, which is relevant to Seebeck coefficient
measurements. We show that the critical metal has an instability to a low-doping spin-
glass phase and compute a critical doping value. We also describe the properties of this
metallic spin-glass phase.

non-Fermi liquid | strange metal | cuprates

Recent experimental works have highlighted certain fundamental properties of cuprate
superconductors and their complex and rich phase diagrams. One of the key aspects is
a transformation in the normal state near an optimal doping p = pc (1–4) indicated
most recently by thermal-Hall transport measurements (1, 3) and by photoemission
experiments (4). While much attention has focused on the anomalous properties of the
underdoped regime (p < pc), it is often assumed that the overdoped regime (p > pc)
is a conventional Fermi liquid, and thus the latter has not attracted as much attention.
However, careful experimental studies have reported significant strange-metal anomalies
in transport properties also on the overdoped side (5–7). These observations indicate the
presence of a non–Fermi-liquid metal in an extended doping region above optimal doping.
On the underdoped side, recent experiments have established that there is a spin-glass
phase (8, 9) in the La-based compounds.

Concordant with these observations, we present here a theoretical model with an
extended non–Fermi-liquid phase at large dopings and a spin-glass phase at low doping.

Models with random interactions on a fully connected lattice in the Sachdev–Ye–Kitaev
class (10, 11) yield a systematic route to studying non-Fermi liquids: The exact solutions
of such models serve as dynamic mean-field theories of more realistic microscopic models
(12–14). In this paper we report numerical and analytic solutions of a t-J model (Eq.
1) with random and all-to-all hopping and exchange interactions across a wide range of
doping. The model has a global SU(M ) spin rotation symmetry, and we study a particular
Sachdev–Ye–Kitaev (SYK)-like large-M limit with fermionic spinons. A previous study
(15) found possible critical solutions of non-Fermi liquid metals by an analytic study of the
low-energy limit of the saddle-point equations of this large-M limit. From renormalization
group arguments it appeared that these possible critical solutions described only a critical
point or a small range of intermediate doping and that a Fermi-liquid solution would
appear in the overdoped regime.

The present paper presents a full numerical solution of these large-M saddle-point
equations for a wide range of doping. The solutions are obtained on both the real and
imaginary frequency axes, with mutually consistent results. We also supplement the
numerical results with asymptotic analytic analyses. Our main results are that the Fermi
liquid is never the solution of the large-M saddle-point equations and that one of the
low-energy critical solutions obtained earlier (15) extends to an all-energy solution of the
large-M equations in the entire overdoped regime. We further show that there is a phase
transition to a low-doping spin-glass phase and construct a phase diagram (Fig. 1).

Notable features of the critical non–Fermi-liquid phase in Fig. 1 are as follows:

1) Spin correlations decay with an exponent that varies continuously with doping (unlike
a Fermi liquid);
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Fig. 1. (A) Phase diagram as a function of doping p and temperature T
obtained from numerically solving the fermionic spinon large-M saddle-point
equations of the random t-J model in Eq. 1 for t = J = 1. The red circles are
critical doping value [pc(T)] at a given temperature, obtained by looking at
the spin-glass instability in the non–Fermi-liquid solution. The uncertainty for
each pc is within 0.003. The critical doping at T = 0 is obtained by directly
solving the saddle-point equations on the real-frequency axis. (B) Properties
of the T = 0 states. The low-doping spin-glass phase and large-doping critical-
metal phase are separated by a quantum critical point at pc. The critical metal
has doping-dependent exponents Δf ,b and a linear-T resistivity.

2) The electron correlators have the ∼1/τ decay with imaginary
time (as in a Fermi liquid), but with a pronounced particle–
hole asymmetry (which is weak in a Fermi liquid); and

3) The mechanism of ref. 16 applies across the entire overdoped
critical phase, and the resistivity has a linear-T contribution as
T → 0 at all dopings in this phase (unlike the T 2 resistivity in
a Fermi liquid).

We also note here that there is a distinct large-M limit of the
random t-J model (17) that yields a Fermi-liquid ground state
at all nonzero doping. We discuss the relation to this limit in
Section 4.

The plan of this paper is as follows: In Section 1 we introduce
the model and discuss its general properties. In Section 2 we
consider the critical solutions of the model introduced in Eq. 1
and show that there is a critical solution with doping-dependent
exponents in the overdoped region. We then solve this model
at zero temperature (Section 2.A), as well as finite temperature
(Section 2.B), and show that it has an instability to a spin-glass
phase. The results for spectral functions in the spin-glass phase
are presented in Section 3 using an alternative bosonic spinon
large-M limit. In both phases we report physical observables such
as electron and spin spectral densities at both zero and finite
temperatures. We conclude with a discussion and implication of
our results in Section 4. Technical details and additional results are
presented in SI Appendix.

1. Model

We consider a model of electrons with random and all-to-all
hopping and exchange interaction with double occupancy being
prohibited. This is the random t-J model that considers doping a
random Heisenberg magnet (10). It is in the class of SYK models
(10, 11) and is suitable for studying metallic phases obtained upon
doping a Mott insulator. The Hamiltonian is

H =
1√
N

N∑
i �=j=1

tij c
†
iαcjα+

1√
N

N∑
i<j=1

Jij �Si · �Sj − μ
∑
i

c†iαciα,

[1]
with the constraint,

∑
α c†iαciα ≤ 1, since double occupancy

is not allowed. In the above Hamiltonian, cα is the electron
annihilation operator with α= ↑ ↓, the spin operator is Sa

i =

c†iασ
a
αβciβ/2, and μ is the chemical potential. The complex

hoppings tij and real exchange interactions Jij are independent
random numbers with zero mean and mean-square values t2 and
J 2, respectively.

Note that one could also consider a t-J model with non-
random nearest-neighbor hopping and nearest-neighbor random
exchange interactions on a large-dimensional lattice. The on-site
dynamical mean-field equations for such a model are the same as
those obtained for the model in Eq. 1. It also allows for a definition
of transport quantities such as resistivity.

We consider the problem at finite-hole doping (p). This was re-
cently studied both analytically (15, 18) and numerically (19, 20).
In particular, a deconfined critical-point scenario was proposed in
ref. 15 to describe a quantum phase transition between a spin-
glass phase at low doping with carrier density p and a Fermi-liquid
phase at large doping with carrier density 1 + p. The deconfined
critical point proposed therein had the property that the local
spin susceptibility was marginal as in the SYK models (10, 11).
This was based on renormalization group arguments. However, a
large-M analysis (15) led to two types of critical metallic solutions.
One of the critical solutions corresponds to the deconfined critical
point (although it is a phase in large-M limit), while the other was
believed to be suppressed in favor of a Fermi-liquid phase.

In this work we find that, in fact, the second critical solution
is stable, and a Fermi-liquid phase is never achieved within a
large-M approach at the saddle-point level. This critical phase
has the property that while the exponent of the spin correlation
continuously varies with doping, the linear-T resistivity is present
over the entire overdoped phase. This makes it an attractive
candidate for the overdoped phase of cuprate in the light of recent
experiments (5, 7). In the underdoped region, below a critical
doping pc , we find a spin-glass phase. Thus, the critical metal at
large doping and spin-glass phase at small doping are separated by
a quantum critical point at a finite doping pc , as shown in Fig. 1.

As a result of the double-occupancy constraint each site has
three states, namely empty (|0〉) and singly occupied (|↑〉 and
|↓〉) states. These can be conveniently described using holon and
spinon operators. The electron is thus fractionalized into holon
and spinons. The critical metallic solutions in the overdoped
region have gapless and critical fermionic spinons and bosonic
holons (Section 2), while the underdoped spin-glass phase will be
described by a fermionic holon and bosonic spinons (Section 3).

2. Critical Non–Fermi-Liquid Metal Phase

In this section, we show that our model in Eq. 1 admits a
critical metallic solution. This phase is described by fermionic
spinon (fα) and bosonic holon (b) operators. The electron and
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spin operators can be then written in terms of these fractional
particles as

ciα = b†fiα, Sa
i = f †iα

σa
αβ

2
fiβ , [2]

with the constraint, f †iαfiα + b†i bi = 1. This theory realizes a
SU(1|2) superalgebra. The strategy to solve the model in Eq. 1 is
to generalize to a larger symmetry. The spin index on the spinon
operator (fα) is generalized to α= 1, . . . ,M and there is an
additional orbital index for holon (b�) such that �= 1, . . . ,M ′.
This theory realizes a SU(M ′|M ) superalgebra. In this larger
symmetry the electron and spin operators take the form

c�α = b†� fiα, Sa = f †αT
a
αβfβ , [3]

where the matrices T a obey SU(M ) algebra. The constraint now
takes the general form,

f †α fα + b†� b� = κM . [4]

The idea is to take a large-M ′,M limit such that k =M ′/M
is finite. This large-M limit is taken after we have performed a
disorder average and taken the large-volume limit. Note that this
large-M limit is distinct from the large-M limit in ref. 17, which
hadM ′ = 1; the latter limit leads to a Fermi-liquid phase atT = 0
at all nonzero doping.

A detailed analysis of our large-M limit can be found in refs.
15 and 18 and here we simply recall the saddle-point equations
derived therein, which are

Gb(iωn) =
1

iωn + μb − Σb(iωn)
, [5]

Σb(τ) =−t2Gf (τ)Gf (−τ)Gb(τ), [6]

Gf (iωn) =
1

iωn + μf − Σf (iωn)
, [7]

Σf (τ) =−J 2Gf (τ)
2Gf (−τ) + kt2Gf (τ)Gb(τ)Gb(−τ),

[8]

where Gb and Gf are the boson and fermion Green’s functions,
respectively, while Σb and Σf are the boson and fermion self-
energies, respectively. Here τ is the imaginary time and ωn are
the Matsubara frequencies. The chemical potentials μf and μb

are chosen to satisfy

〈
f †f

〉
= κ− kp,

〈
b†b

〉
= p. [9]

We restrict our attention to the physical case, κ= 1/2 and k =
1/2. In terms of the holon and spinon Green’s functions, the
electron Green’s functions and the spin correlator are

Gc(τ) =−〈Tτcα(τ)c
†(0)〉=−Gf (τ)Gb(−τ), [10]

χ(τ) = 〈�S (τ) · �S (0)〉=−Gf (τ)Gf (−τ). [11]

Similar equations have been obtained by a dynamic mean-field
theory of a nonrandom t-J model on the square lattice, using a
“noncrossing” approximation, and studied numerically (12, 13).

To solve the saddle-point equations on the imaginary-
frequency axis, it is convenient to define

βr =−Gb(iωn = 0). [12]

Then we can eliminate μb and obtain the following set of equa-
tions to solve:

Gb(iωn)=
1

iωn − 1/(βr)− Σb(iωn) + Σb(iωn = 0)
, [13]

Σb(τ) =−t2Gf (τ)Gf (−τ)Gb(τ), [14]

Gf (iωn) =
1

iωn + μf − Σf (iωn)
, [15]

Σf (τ) =−J 2Gf (τ)
2Gf (−τ) + kt2Gf (τ)Gb(τ)Gb(−τ),

[16]

−Gb(τ = 0−) = p, [17]

Gf (τ = 0−) = κ− kp. [18]

Thus, we have six equations to solve for the six variables r , μf ,
Gf , Gb , Σf , and Σb . Note that Eq. 13 holds for all ωn .

A. Real-Frequency Solution at Zero Temperature. In this section
we discuss the solutions of the saddle-point equations on the
real-frequency axis at T = 0. The details of real-frequency
equations corresponding to Eqs. 13–18 can be found in
SI Appendix, section 1. We look for a low-frequency conformal
solution for the fermion and boson Green’s functions with the
following form:

Ga(iωn) =−iCa

(
e−iθa

−eiθa

)
1

|ω|1−2Δa
, [19]

where the subscript a = f , b corresponds to the fermion and
boson Green’s functions, respectively. In the above ansatz, Ca

is a constant, θa is an asymmetry parameter, and Δa is the
exponent determining the critical solution. Below we discuss the
relation between these parameters and different possible solutions.
The vector notation is introduced to denote the positive and
negative frequency parts of the solution. Using this form of Green’s
function, it is then straightforward to write the corresponding
spectral densities,

ρa(ω) =− 1

π
Im[Ga(iωn = ω + i0+)]

=
Ca

π

(
sin(πΔa + θa)
sin(πΔa − θa)

)
1

|ω|1−2Δa
. [20]

The exponents of the fermion and boson Green’s functions satisfy
the constraint Δf +Δb = 1/2. The ansatz considered in Eq. 19
admits three types of solutions (15):

1) Δf =Δb = 1/4: This is the solution that leads to a marginal
spin correlation, i.e., a 1/τ decay as in the SY spin liquid
(10) found in the insulating case. In ref. 18 it was shown
that such a solution exists only in a very small doping range
near p = 0. This is also the solution that corresponds to the
deconfined critical point discussed in ref. 15. We do not discuss
this solution any further here, because we believe the actual
ground state at very low doping is a spin glass.

2) Δb = 0Δf = 1/2: Such a solution would be the analog of the
Fermi-liquid solution found in the large-M limit of ref. 17.
However, it turns out that such a solution is not a valid solution
of the saddle-point equations of the large-M limit considered
here. We provide more details in SI Appendix, section 1.B in
this regard.

3) 1/4<Δf < 1/2: In this solution the J term in the fermion
self-energy in Eq. 16 is subdominant at low energies, although
it does have contributions at higher energies. This solution
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Fig. 2. (A) We plot the doping dependence of the exponent ηs of the spin correlation χ(τ) ∼ 1/|τ |ηs . We compute ηs = 2 − 4Δb in two independent ways,
one by solving the Luttinger relations and the zero-frequency saddle-point equations at T = 0 as explained in the text (black curve) and one by computing ηs
from the value of Δb obtained from the imaginary-frequency numerics (red curve), as discussed in Section 2. We find the two results in good agreement. At
p = 0 we obtain ηs = 4/3, with ηs increasing monotonically with increasing doping such that ηs → 2 as p → 1. (B) We plot the doping dependence of Δb as
obtained independently from the Luttinger relations and T = 0 zero-frequency saddle-point equations and from solving the imaginary-frequency saddle-point
equations. We find at p = 0 Δb = 1/6 and Δb → 0 as p → 1. Consequently, this means Δf = 1/3 at p = 0 and Δf → 1/2 as p → 1.

results in doping-dependent exponents. As we shall see below,
we find this solution to be present for all values of doping,
and it will be a valid solution in the overdoped region. Our
subsequent analyses in this section focus on this solution.

We now briefly discuss our strategy to find solution 3 and more
details can be found in SI Appendix, section 1. The conformal
solution ansatz introduced in Eq. 19 satisfies two Luttinger con-
straints (15, 18),

θf
π

+

(
1

2
−Δf

)
sin(2θf )

sin(2πΔf )
=

1

2
− κ+ kp,

θb
π

+

(
1

2
−Δb

)
sin(2θb)

sin(2πΔb)
=

1

2
+ p. [21]

For solution 3 the constants Cf and Cb cannot be determined
individually but their product is a constant. This leads to another
constraint involving θs and Δs as shown in ref. 15:

k =−Γ(2− 2Δf )Γ(2Δf ) sin(πΔf + θf ) sin(πΔf − θf )

Γ(2− 2Δb)Γ(2Δb) sin(πΔb + θb) sin(πΔb − θb)
,

[22]

where k = 1/2 in our case. Together with the constraint Δf +
Δb = 1/2 and Eqs. 21 and 22, there are four equations to
solve for four variables, namely Δf , Δb , θf , and θb , at a fixed
doping p. Solving these equations gives us these parameters as a
function of doping, as shown in Fig. 2 and SI Appendix, Fig. S3.
Determination of the constants Cf and Cb requires full solution
of the saddle-point equation at all frequencies, and the resulting
values are shown in SI Appendix, Fig. S3. Of particular interest is
the doping dependence of Δb , shown in Fig. 2.

In the large-M limit, from Eq. 11 it is clear that the anomalous
dimension of the electron operator is ηc = 2(Δf +Δb) = 1 and
that of the spin operator is ηS = 4Δf = 2− 4Δb . Therefore,
from Eq. 11, as a function of the imaginary time the electron
Green’s function and the local spin correlation have the form

Gc(τ)∼
1

τ
, χ(τ)∼ 1

τ2−4Δb
. [23]

Thus, we find that although the electron Green’s function is Fermi
liquid-like, the spin correlation is not. Therefore, the solution we

have found is a critical metallic phase with a doping-dependent
exponent of the spin correlation. Only in the limit p → 1 we
have Δb → 0, leading to a Fermi-liquid–like spin correction with
a 1/τ2 decay.

Having established the presence of solution 3, we now solve
the saddle-point equations on the real-frequency axis numerically
to obtain the full ω dependence of the boson and fermion
spectral densities. Using these we can also obtain the electron
and spin spectral densities. SI Appendix, Fig. S1 shows the full
ω-dependent solution for the fermion and boson spectral den-
sities, while in Fig. 3 we plot the electron and spin spectral
densities. The boson and fermion spectral densities have the form
ρa(ω)∼ ω2Δa−1 with a = f , b. Since Δa < 1/2, we plot the
rescaled spectral densities in SI Appendix, Fig. S1. Note that the
fermion and boson spectral densities are not observable quantities.
However, the electron and spin spectral densities are observable
in photoemission and neutron scattering experiments. These are
defined as follows:

ρc =− 1

π
Im[Gc(iω → ω + i0+)] [24]

ρs =
1

π
Im[χ(iω → ω + i0+)] =

1

π
χ′′(ω). [25]

In SI Appendix, section 1 we present more details on evaluating
these spectral densities.

As noted above, the most striking feature of our solution is
a continuously varying spin-correlation exponent. This is clearly
seen in Fig. 2A, which shows the exponent of the spin correlator
χ(τ)∼ 1/|τ |ηs where ηs = 4Δf , and in Fig. 3B, where χ′′(ω)∼
sgn(ω)|ω|4Δf −1 at low frequencies. Only in the limit p → 1 do
we see a Fermi-liquid–like behavior, χ′′(ω)∼ ω, as Δf → 1/2.
The electron spectral density is a constant in the low-frequency
limit with different values for ω → 0+ and ω → 0− (Fig. 3A),
thus resulting in a discontinuity at ω = 0. It clearly displays a
particle–hole asymmetry throughout this phase, which is relevant
in the context of understanding the measurement of the Seebeck
coefficient in recent experiments (21, 22).

As for the SYK model (14), the conformal solutions to Eqs. 5–8
have time reparameterization symmetry when the self-energies are
singular so that Gf ,b(iωn)Σf ,b(iωn)≈−1. Ref. 16 discussed a
mechanism relating the time reparameterization symmetry to a
linear-T contribution to the resistivity, and the same mechanism
applies to the cases 2 and 3 above. Briefly, to obtain a model with
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Fig. 3. Plot of the electron spectral density (A) and spin spectral density (B)
obtained at t = J = 1. Shown is the electron spectral density that discontin-
uously approaches two different constants ω = 0, leading to 1/τ decay of
the electron density in imaginary time. The spin spectral density goes as
sgn(ω)|ω|4Δf −1 as ω → 0. Only for large p do we have Δf approach 1/2,
which implies a linear frequency dependence and 1/τ2 decay behavior in
imaginary time characteristic of a Fermi liquid.

spatial structure, we consider the t-J model on a large-dimension
lattice with nonrandom tij but random nearest-neighbor Jij .
In the limit of large dimension, the self-energies become local,
and the Green’s functions and self-energies obey equations closely
related to Eqs. 5–8. The conductivity in this large-dimension
model is given by the Kubo formula applied at one loop to the
electron Green’s function. The identity Δf +Δb = 1/2 implies
that Gc ∼ 1/τ , and inserting this leading scaling behavior into
the Kubo formula leads to a T -independent residual resistivity.
To obtain temperature dependence, we consider the corrections to
scaling from the time reparameterization operator, whose scaling
dimension h = 2 leads to corrections that depend linearly on T
or ω. Applying such a correction to the residual resistivity, we
obtain a linear-in-T resistivity. The critical metal phase found here
is therefore an attractive candidate for the overdoped cuprates. We
also note that our solution is consistent with the findings of recent
numerical work on a similar model (20), as we discuss further in
Section 4.

B. Imaginary-Frequency Solution. We also numerically solve
Eqs. 13–18 on the imaginary-frequency axis at finite temperatures
and for different doping values. A critical metallic solution is
found for all values of doping. We calculate the part on Green’s
functions as well as gauge-invariant observables, namely, electron
Green’s function and spin correlation. These are shown in Fig. 4.
The exponent of the bosonic Green’s function, Δb , introduced in
Eq. 19 can be determined from the temperature dependence of
Gb(iω = 0). In the low-temperature limit, the bosonic Green’s
function of the critical metallic solution has a conformal form at
low frequencies, which follows the relation

Gb(iω = 0) = C0T
−1+2Δb , [26]

where C0 is some constant and T is the temperature. To extract
Δb from the data, we plot log(Gb(iω = 0)) as a function of
log(T ) and perform a linear fit. The slope of this linear fit then
determines Δb . In Fig. 2 we plot Δb determined from this
procedure as a function of doping. It is in good agreement with
the result obtained from analytic solution (shown as black curve
in Fig. 2) discussed in Section 2. The lowest temperature that we
used for the procedure is T = 0.01.

In SI Appendix, section 2 we present additional results ob-
tained from solving the saddle-point equations on the imaginary-
frequency axis. In particular, we calculate the electron Green’s
function and the spin correlation, which are physical observables.
We find that the spin correlation χ(τ) fits the conformal form to a
very high accuracy and this allows us to extract the corresponding
exponent. Moreover, using Pade approximation, we also perform
a numerical analytic continuation to the real-frequency axis to
obtain the electron and spin spectral densities. These are discussed
in SI Appendix, section 2.C, and are in remarkable agreement with
those obtained from real-frequency analysis at zero temperature.

C. Instability to Spin-Glass Phase/Quantum Critical Point. The
critical metallic solution discussed above is expected to be stable
at large doping values. In the low-doping region we expect a spin-
glass phase, which is connected to the spin-glass phase found in the
insulating case (23). The critical metallic phase and the spin-glass
phase are separated by a quantum critical point at a finite doping.
The critical value of doping can be estimated using a Ginzburg–
Landau-type free energy considered in ref. 23. It was derived by
considering fluctuations over the saddle point leading to a 1/M
correction and it has a form,

F =

[
1− J 2

M
χ2(iω = 0)

]
Ψ2 + . . . , [27]

where χ(iω = 0) =
∫ β

0
χ(τ)dτ is the local spin susceptibility

and Ψ is the spin-glass order parameter. In the insulating p = 0
phase studied in ref. 23, it was found that χ(iω = 0) diverged
logarithmically at T = 0 because the spin exponent has the
“marginal” value ηs = 1. Consequently, the coefficient of Ψ2
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Fig. 4. (A) Imaginary part of the electron Green’s function on the Matsubara-
frequency axis at T = 0.01 for different dopings. (B) Real part of the spin
correlation on the Matsubara-frequency axis at T = 0.01 for different dopings.
We have used t = J = 1.
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Fig. 5. Plots of the coefficient of the quadratic term in the free energy in Eq. 27 as a function of doping for (A) different values of J with t = 1 and M = 2 and (B)
different values of M with t = J = 1. In both plots, T = 0.

is always negative as T → 0, and spin-glass order is present
at T = 0. In our non–Fermi-liquid solution, ηs < 1, and so
χ(iω = 0) is finite at T = 0: This allows the possibility of Ψ= 0
and no spin-glass order at T = 0. We find in the overdoped
region the coefficient of the quadratic term is positive and the
free energy is thus minimized by Ψ= 0. On the other hand,
in the underdoped region this coefficient is negative, leading to
a nonzero spin-glass order parameter. A change in the sign of
the coefficient of Ψ2 at T = 0 thus indicates a quantum phase
transition to a spin-glass phase and can be used to estimate
the critical value of doping. We plot this coefficient at zero
temperature in Fig. 5A as a function of doping for different values
of J at M = 2. We clearly see that for larger values of J there
is a quantum phase transition at a finite doping. In particular,
for J = 1 we find pc ≈ 0.33 and for J = 0.5 we get pc ≈ 0.25.
Similarly, in Fig. 5B we plot the coefficient in Eq. 27 as a function
of doping for different values of M at a fixed J = 1 at zero
temperature. It is clear that for large values of M there is no phase
transition. We also plot the critical value of M as a function of
doping in Fig. 6 at zero temperature. We perform a similar analysis
at finite temperature to obtain the critical doping as a function of
temperature (SI Appendix, Fig. S8). The resulting phase diagram
is shown in Fig. 1A. The spin-glass susceptibility increases with
decreasing temperature and thus the spin-glass phase is found
upon cooling the non-Fermi liquid at low doping. However, note
that unlike in the case of the random Heisenberg model (10, 24)
(where solution 1 with Δf =Δb = 1/4 is present) the spin-glass
susceptibility does not diverge at low temperature in the present
case. This is one of the important reasons for a stable critical
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Fig. 6. Plot showing critical value of M for which the coefficient of the
quadratic term in free energy Eq. 27 changes sign at zero temperature.

solution at zero temperature in a broad doping region. We also
note that while 1/M corrections are used in deriving the form of
Eq. 27, we have used the M →∞ solution for the critical metal
to compute χ′(0) as it appears in Eq. 27. While a more accurate
estimate of pc may be obtained by adding 1/M corrections to the
critical metal solution, we emphasize that the M →∞ solution is
sufficient to capture existence of a finite-doping phase transition
between the spin glass and critical metal.

3. Spin-Glass Phase

In this section we discuss the spin-glass phase present at lower
dopings. In this case, we use the representation where spinons are
bosonic (b) and the holon is a fermion operator (f). In terms of
these operators,

cα = f†bα, �S = b†α
�σαβ

2
bβ , [28]

and we realize a SU(2|1) superalgebra. Just as before, we
now enlarge the symmetry here to SU(M |M ′), which means
α= 1, . . . ,M and the holon operator acquires an index �=
1, . . . ,M ′. Note that this bosonic spinon large-M limit is distinct
from the fermionic spinon large-M limit followed in Section 2,
and the two models are the same only for M = 2; so there is no
reason to expect quantitative agreement between the results of the
present section and those of Section 2.

The strategy to obtain the saddle-point equations is similar to
that discussed earlier in Section 2. From refs. 15 and 18 we have

Gb(iωn) =
1

iωn + μb − Σb(iωn)
,

Gf(iωn) =
1

iωn + μf − Σf(iωn)
,

Σb(τ) =−kt2Gf(τ)Gf(−τ)Gb(τ) + J 2Gb(τ)
2Gb(−τ),

Σf(τ) = t2Gf(τ)Gb(−τ)Gb(τ),

Gb(τ = 0−) =−κ+ kp,

Gf(τ = 0−) = p.

Physically, the spin-glass phase can be understood as a conden-
sation of bosonic spinons. Contrary to the earlier case, since
we are interested in the spin-glass phase, we need to retain the
replica off-diagonal terms in the action upon disorder averag-
ing. There is, however, some simplification and only replica off-
diagonal components of the bosonic Green’s function at iωn = 0
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Fig. 7. Plot of spin-glass order parameter, q = g2, as a function of doping
obtained by solving the bosonic spinon saddle-point Eqs. 29–34 on the
real-frequency axis at T = 0. The point at p = 0 is obtained by solving
SI Appendix, Eqs. S65–S67 at zero temperature on the real-frequency axis. The
parameters of the model are J = t = 1. The critical doping pc at which the
spin-glass order vanishes in the present bosonic spinon computation need
not be the same as that in the fermionic spinon computation in Section 2.C
because the models are identical only for M = 2.

are relevant. These are captured via the parameter g that is
related to the spin-glass order parameter, as discussed in detail
in SI Appendix, section 3. After incorporating the spin-glass order
in Gb(τ) =Gr (τ)− g , we obtain the following saddle-point
equations:

[Gr (iωn)]
−1

= iωn − Jg

Θ
− [Σr (iωn)− Σr (iωn = 0)] ,

[29]

Gf(iωn) =
1

iωn + μf − Σf(iωn)
, [30]

Σr (τ) = J 2
(
[Gr (τ)]

2
Gr (−τ)− 2gGr (τ)Gr (−τ)

− g [Gr (τ)]
2
+ 2g2Gr (τ) + g2Gr (−τ)

)

− kt2Gf(τ)Gf(−τ)
(
−g +Gr (τ)

)
, [31]

Σf(τ) = t2Gf(τ)
(
g2 − gGr (τ)− gGr (−τ)

+Gr (−τ)Gr (τ)
)
, [32]

g −Gr (τ = 0−) = κ− kp, [33]

Gf(τ = 0−) = p. [34]

The dimensionless parameter Θ= 1/
√
3, as detailed in

SI Appendix, section 3. We solve the above equations on real and
imaginary-frequency axes. The main observable in this phase is the
spin-glass order parameter, which we plot as a function of doping
in Fig. 7 at zero temperature. The spin-glass order parameter is
finite at lower dopings and decreases upon increasing doping. We
show results for the order parameter computed for small but finite
temperature obtained using the imaginary frequency analysis in
SI Appendix, section 4. We also calculate the holon and spinon
Green’s functions as well as the electron Green’s function and spin
correlation at finite temperature. These quantities are detailed in
the same SI Appendix, section 4.

We solve the saddle-point equations Eqs. 29–34 at zero tem-
perature to obtain the fermion and boson spectral functions, as
well as the electron and spin spectral functions for a range of
doping. In terms of the spinon and holon spectral functions the
electron spectral function has the following form:

ρc(ω) =

∫ ω

0

dω1ρr (ω1)ρf(ω1 − ω) + gρf(−ω). [35]

Similarly, we obtain the expression for the spin spectral function,

ρs(ω) = g2βωδ(ω) + g [ρr (ω)− ρr (−ω)]

−
∫ ω

0

dω1 ρr (ω1)ρr (ω − ω1), [36]

as in ref. 24. The spectral functions at zero temperature for
different values of doping are shown in Fig. 8. We note that the
boson spectral function behaves linearly with frequency at small
frequencies. Consequently, the spin spectral function also depends
linearly on ω at small frequencies. We also note the double-peak
structure in the electron spectral function ρc(ω) in Fig. 8B. Recall
that the electron spectral function is a convolution of the spinon
and holon spectral functions, as well as a term proportional to
gρf(−ω). At small dopings the value of g is larger and hence there
is a dominant peak coming from the fermion spectral function.
As g decreases with increasing doping the contribution from the
boson spectral function increases, leading to the second peak at
positive frequencies. All the spectral functions satisfy the respective
sum rules, which are detailed in SI Appendix, section 4.B.

Apart from the numerical analysis at zero temperature, we
also perform a Pade-approximation–based numerical analytic
continuation of the imaginary-axis solution obtained at finite
temperature. We evaluate the holon, spinon, electron, and spin
spectral densities at finite temperature. These are discussed in
SI Appendix, section 2.C, and are consistent with those obtained
from real-frequency calculation at zero temperature for some
range of doping.

4. Discussion

We have presented a large-M solution for the random t-J
model for the entire doping range. Our main finding is a
critical non–Fermi-liquid metal phase at large dopings. This
phase is characterized by a spin correlation exponent that varies

p =

p =

p =

p =

p =

p =

p =

p =

Fig. 8. Spin spectral function (A) and electron spectral function (B) obtained
at zero temperature via real-frequency analysis for several values of doping.
Note the linear in frequency behavior at small frequencies for ρS(ω). Param-
eters are J = t = 1.
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continuously with doping, a linear in temperature contribution
to the resistivity as T → 0, and an electron spectral function with
a Fermi-liquid–like decay at long time, but with a pronounced
particle–hole asymmetry. This critical phase captures many aspects
of experimental observations in the overdoped cuprates. It has
been observed that in the overdoped region of cuprate materials
there is a broad range of doping where the resistivity displays
a linear-T behavior (5, 7). Our findings propose a possible
mechanism for this observation. Also, recent Seebeck coefficient
measurements (21, 22) hint toward a particle–hole asymmetric
electron spectral density, which our solution also displays. It turns
out that in our solution the electron Green’s function appears
Fermi liquid-like although the spin correlation does not. This may
also explain the fact that experiments on overdoped cuprates prob-
ing electron Green’s function directly, such as photoemission (4),
may observe a Fermi-liquid behavior and cannot access the critical
phase. However, transport measurements obtain properties such
as linear-T resistivity, which is starkly in contrast to a Fermi liquid.

We also show that the overdoped critical phase has an instability
toward a spin-glass phase at lower dopings. The spin-glass phase is
characterized by a spin-glass order parameter, which we calculate
using bosonic spinons. We show that this order parameter de-
creases upon increasing doping. In the context of cuprates, recent
experiments have reported the presence of a spin-glass phase at low
doping (9). Our work therefore presents a comprehensive analysis
of the model in Eq. 1 at variable doping and captures the quantum
phase transition between the spin-glass phase and a critical non–
Fermi-liquid metal. We also note that our results are consistent
with recent numerical work on a related model (20).

A notable feature of our results is that we never find a Fermi-
liquid phase in our large-M limit of the t-J model, as discussed
in SI Appendix, section 1.B. This is in contrast to the distinct
large-M limit of ref. 17, in which the boson b condenses at all

nonzero p, leading to a Fermi-liquid phase at all doping. The
two large-M limits coincide only for the physical value M = 2,
and it is an open question which large-M limit yields the correct
picture at M = 2 for the random t-J model. However, we note
that the numerical study of the M = 2 case in ref. 20 does
show indications of non–Fermi-liquid behavior in the overdoped
regime over the T range studied, as their measured spin exponent
ηs varies with doping in a manner consistent with Fig. 2A. Thus,
although a Fermi-liquid phase may eventually appear at very
low T in the overdoped regime for M = 2, it does appear that
our non–Fermi-liquid solution is an attractive description of the
physics over a wide range of temperatures and dopings accessible
in numerics and experiments.

In conclusion, our work presents a critical metallic phase as
an attractive candidate for the overdoped cuprates that matches
observations over a significant temperature range. This phase is
obtained for a model with random and all-to-all interactions.
Although such a model is far from the microscopic Hamiltonian of
the cuprates, the saddle-point equations solved are closely related
to dynamic mean-field equations of more realistic models in finite
dimensions (12, 13), as has been extensively discussed in a recent
review (14). At very low temperatures, we ultimately expect a
cross-over to behavior characteristic of finite-dimensional systems,
and describing this cross-over remains an important topic for
future research.

Data Availability. All study data are included in this article and/or SI Appendix.
Code is available upon reasonable request.
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