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Glucose is the brain’s principal source of ATP, but the extent to which cerebral glucose

consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear.

Measurements of the brain’s oxygen-glucose index OGI= CMRO2/CMRglc suggest that

its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during

functional activation and in some disease states, brain tissue seemingly produces

lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic

glycolysis. OGI measurements, in turn, are method-dependent in that estimates based

on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at

CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during

functional activation and in some disease states, affects the extraction efficacy of oxygen

from blood. We developed a three-compartment model of glucose extraction to examine

whether CTH also affects glucose extraction into brain tissue. We then combined this

model with our previous model of oxygen extraction to examine whether differential

glucose and oxygen extraction might favor non-oxidative glucose metabolism under

certain conditions. Our model predicts that glucose uptake is largely unaffected by

changes in its plasma concentration, while changes in CBF and CTH affect glucose and

oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose

uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy

demands. Applying our model to glucose analogs, we observe that LC depends on

physiological state, with a risk of overestimating relative increases in CMRglc during

functional activation by as much as 50%.

Keywords: aerobic glycolysis, capillary transit time heterogeneity, glucose, fluorodeoxyglucose, lumped constant

Abbreviations: ANLS, astrocyte-neuron lactate shuttle; BBB, blood brain barrier; CBF, cerebral blood flow; CMRglc, cerebral

metabolic rate of glucose; CMRO2, cerebral metabolic rate of oxygen; CTH, capillary transit time heterogeneity; GEF, glucose

extraction fraction; LC, lumped constant; MTT, mean transit time; NMRS, nuclear magnetic resonance spectroscopy; OEF,
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INTRODUCTION

Normal brain function depends critically on a constant energy
supply, and therefore on moment-to-moment regulation of
oxygen and glucose availability in brain tissue. In mammals,
under normal physiologic conditions, glucose is the major
metabolic fuel in the brain (Berg et al., 2012). Glucose can
be metabolized through different metabolic pathways: through
glycolysis, each glucose molecule is first metabolized into two
molecules of pyruvate, with the concomitant production of two
molecules of ATP. Then, in the brain, pyruvate can be converted
to lactate in the absence of oxygen (anaerobic glycolysis),
or completely oxidized to CO2 under aerobic conditions,
so-called oxidative phosphorylation, generating much more
ATP (30 molecules per glucose molecule). In the normal
adult brain, studies in many laboratories have established the
overall stoichiometry of oxygen and glucose utilization. OGI
is approximately equal to 5.5 and is therefore close to the
theoretical maximum of 6 which corresponds to the complete
oxidation of glucose (Edvinsson and Krause, 2002). This has
led to the long held thesis that brain glucose metabolism is
mainly oxidative. However, this idea appears to be contradicted
by a phenomenon called ‘aerobic glycolysis’ which is the
disproportionately higher utilization of glucose than O2 in
the normoxic working brain. This phenomenon suggests that
lactate is produced although oxygen level are seemingly sufficient
to support oxidative phosphorylation (Edvinsson and Krause,
2002). Some studies indicate that aerobic glycolysis is linked to
functional activation. For example, during sensory stimulation
or mental tasks in human, subjects have been reported to evoke
30–50% increases in blood flow and CMRglc with little or no
change in CMRO2 when measured by PET (Fox et al., 1988)
or from arterio-venous metabolite differences (Madsen et al.,
1995). Traditionally, lactic acid production is believed to be
related to a lack of oxygen. Indeed, it takes place in particular
in skeletal muscles when energy needs outpace the ability to
transport oxygen and in solid cancer tumors, which are known
to grow more rapidly than the blood vessels nourish them,
and therefore to experience hypoxia. Under these conditions,
glycolysis and subsequent lactic acid fermentation becomes the
primary source of ATP (Berg et al., 2012). In the brain, it is
unclear whether lactate production occurs in conjunction with
local hypoxia. Hypotheses have been formulated to provide a
deeper understanding of aerobic glycolysis. For example, the
astrocyte-neuron lactate shuttle (ANLS) hypothesis (Pellerin and
Magistretti, 2003) proposes that an enhancement of aerobic
glycolysis occurs in astrocytes in response to neuronal activation.
The ANLS hypothesis predicts a reduction in the molar ratio
of oxygen to glucose consumption during activation, but the
proposed compartmentalization of glucose metabolism among
cell types remains controversial (Chih and Roberts, 2003; Hertz,
2004). Moreover, many aspects of aerobic glycolysis remain
poorly understood, including its dependency on stimulus type,
duration, and magnitude (Edvinsson and Krause, 2002).

Biophysical models of oxygen delivery (Jespersen and
Østergaard, 2012; Angleys et al., 2015; Rasmussen et al.,
2015) suggest that the redistribution of blood flow across the

capillary bed, as indexed by the extent of capillary transit time
heterogeneity (CTH), affects the effective permeability surface
area of the capillary bed, and hence the extraction efficacy of
freely diffusible molecules. Unlike oxygen, however, glucose does
not diffuse freely across the capillarymembrane, and the extent to
which CTH affects glucose delivery is therefore less clear. Glucose
extraction is instead mediated by glucose transporters, namely
the glucose transporter GLUT-1 at the blood brain barrier (BBB).
GLUT-1 transporters have a maximal rate of operation, and
facilitated diffusion of glucose can therefore become saturated
in capillaries which support a sufficiently high rate of glucose
delivery.

To examine whether the biophysical properties of oxygen
and glucose extraction, respectively, introduces a need for
brain parenchyma to utilize aerobic glycolysis under certain
conditions, we set out to develop a model that infers glucose
extraction and consumption from cerebral blood flow (CBF) as
well as CTH.We then combine our predictions with those yielded
by a comprehensive model of oxygen extraction (Angleys et al.,
2015). Using data from in vivo rat studies, we predict the extent to
which oxygen extraction capacity varies relative to that of glucose,
especially among physiological conditions, as characterized by
their capillary mean transit time (MTT) and CTH.

To compare our model prediction to in vivo measurements,
we partly rely on measurements of glucose analogs uptake
rather than native glucose. We therefore extend the model
to predict FDG uptake, as well as the lumped constant (LC),
which, in steady state, equals the ratio of glucose tracer
to native glucose extraction and hence allows to relate the
concentration of glucose trapped in the tissue to CMRglc.
Our calculation to determine LC is analog to, but differs
from Holden and colleagues’ (Holden et al., 1991) in that
the effects of CTH are taken into account and glucose
transport across the BBB is described differently (see Section
Methods). After quantifying the extent to which LC changes
between physiological states, we examine whether this re-
evaluation of LC can explain the apparent discrepancy between
PET and NMRS measurement of CMRglc in the literature.
Finally, we discuss possible clinical applications of our model
findings.

METHODS

Assumptions to Describe Glucose
Transport across the BBB
In this study, we employ reversible, symmetricMichaelis-Menten
kinetics to describe the transport of glucose across the capillary
membrane. We treat the endothelium as a single membrane
and thus neglect the endothelial compartment. In fact, when
employing Michaelis-Menten kinetics, it is possible to show that
treating the double membrane as a whole is mathematically
almost equivalent to considering two identical membranes,
each with identical Michaelis-Menten parameter KT and twice
the maximum transport capacity vmax_t (exact equivalence is
obtained when considering non-reversible Michaelis-Menten).
Treating the two membranes as a single barrier is also supported
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FIGURE 1 | Schematic illustrating the procedure for computing GEF and CMRglc, given MTT, CTH and a (target) mean glucose concentration in the

tissue C
t

t. In the first step, the true value of the effective maximum rate vmax_m is not known. Assuming a value for vmax_m, the mean concentration in the tissue Ct is

compared to C
t
t. After each iteration, vmax_m is adjusted in a direction until convergence of Ct to C

t
t. To achieve this in practice, to reduce the computation time, the

mean glucose concentration Ct is first computed over a grid of values vmax_m. This function is then interpolated to get Ct as a function of vmax_m. In the second step,

the objective function
∣

∣

∣
Ct

(

vmax_m
)

− C
t
t

∣

∣

∣
is minimized until its value is lower than 10−9. Having determined the specific value of vmax_m, we use the previously

interpolated Ct
(

τ, vmax_m
)

and Q
(

τ,Ct
(

τ, vmax_m
))

to determine Ct (τ) and Q (τ) for any transit time τ. GEF, glucose extraction fraction; MTT, mean transit time;

CTH, capillary transit time heterogeneity.

experimentally, for example by the reexamination of non-
reversible Michaelis-Menten kinetics across a double-membrane
system carried out by Gjedde and Christensen (1984).We discuss
the appropriateness of reversible Michaelis-Menten kinetics
further below.

Aim of the Model and General Procedure
Figure 1 outlines our procedure for computing glucose
extraction fraction (GEF) and CMRglc. Table 1 summarizes
the different scientific questions asked in this study and the
conditions under which the model is applied to answer each
question. Note that the model is fully specified once the different
input parameters in Table 1 are known. Table 2 summarizes the
variables and quantities used in this computation.

Our model aims to determine CMRglc in steady state
from MTT, CTH, and the mean glucose concentration in the

tissue C
t
t, where the superscript t stands for “target value.”

CMRglc is derived directly from GEF using the formula
CMRglc = CA · CBF · GEF (Fick’s principle) where CA is
the arterial glucose concentration, and from the central volume
theorem which relates CBF to the MTT and the capillary volume
Vcap through the relation CBF = Vcap/MTT.

To compute the mean value of any function over
the capillary network, we sum the contribution of the
function for every capillary, weighted by the transit time
distribution h(τ). In particular, GEF corresponds simply
to the mean of the single capillary glucose extraction
fraction Q:

GEF (MTT,CTH) = Q =

∫ +∞

0
dτ ·Q (τ) · h (τ,MTT,CTH)

(1)

Frontiers in Computational Neuroscience | www.frontiersin.org 3 October 2016 | Volume 10 | Article 103

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Angleys et al. CTH and Cerebral Glucose Uptake

T
A
B
L
E
1
|
S
c
ie
n
ti
fi
c
q
u
e
s
ti
o
n
s
ra
is
e
d
in

th
is

s
tu
d
y
a
n
d
c
o
rr
e
s
p
o
n
d
in
g
c
o
n
d
it
io
n
s
u
n
d
e
r
w
h
ic
h
th
e
m
o
d
e
l
is

a
p
p
li
e
d
.

Q
u
e
s
ti
o
n

P
a
ra
m
e
te
r
s
e
ts

u
s
e
d

C
p

C
t

M
T
T
/C

T
H

C
o
rr
e
s
p
o
n
d
in
g

fi
g
u
re
/l
o
c
a
ti
o
n
in

th
e
te
x
t

S
u
p
p
le
m
e
n
ta
ry

in
fo
rm

a
ti
o
n

Q
1
:
D
o
e
s
o
u
r
m
o
d
e
lp

re
d
ic
t

a
lin
e
a
r
re
la
tio

n
b
e
tw

e
e
n

C
B
F
a
n
d
C
M
R
g
lc
a
n
d

b
e
tw

e
e
n
C
B
F
a
n
d
th
e
tr
a
c
e
r

u
p
ta
ke

,
a
s
it
h
a
s
b
e
e
n

re
p
o
rt
e
d
in
th
e
lit
e
ra
tu
re
?

S
H

C
o
n
st
a
n
t
a
n
d
e
q
u
a
lt
o

5
0
0

µ
m
o
l/
1
0
0
m
L
.

b
l:
C
t
is
e
q
u
a
lt
o

1
2
9

µ
m
o
l/
1
0
0
m
L
.
C
t
is

lin
e
a
rly

re
la
te
d
to

M
T
T
su

c
h

th
a
t
it
d
e
c
re
a
se

s
b
y
3
0
%

b
e
tw

e
e
n
M
T
T
b
l
a
n
d
M
T
T
st

M
T
T
a
n
d
C
T
H
in

th
e
ra
n
g
e

[M
T
T
b
l-
M
T
T
st
]
a
n
d

[C
T
H
b
l-
C
T
H
st
],
re
sp

e
c
tiv
e
ly

F
ig
u
re

2

Q
2
:
To

w
h
a
t
e
xt
e
n
t
is

C
M
R
g
lc
a
ff
e
c
te
d
w
h
e
n
th
e

p
la
sm

a
c
o
n
c
e
n
tr
a
tio

n
va
ry

fr
o
m

h
yp

o
-
to

h
yp

e
rg
ly
c
e
m
ic
le
ve
ls
?

S
H
a
n
d
S
R

In
th
e
ra
n
g
e

0
–3

0
0
0

µ
m
o
l/
1
0
0
m
L

C
t
is
re
la
te
d
to

C
p

a
c
c
o
rd
in
g
to

E
q
u
a
tio

n
s
(1
3
)

a
n
d
(1
4
).

M
T
T
=

M
T
T
b
l;

C
T
H
=

C
T
H
b
l

F
ig
u
re

3

Q
3
:
To

w
h
a
t
e
xt
e
n
t
M
T
T

a
n
d
C
T
H
a
ff
e
c
t
C
M
R
g
lc
?

C
o
m
p
a
ris
o
n
w
ith

C
M
R
O
2
.

S
H

C
o
n
st
a
n
t
a
n
d
e
q
u
a
lt
o

5
0
0

µ
m
o
l/
1
0
0
m
L
.

b
l:
C
t
is
e
q
u
a
lt
o

1
2
9

µ
m
o
l/
1
0
0
m
L
.
C
t
is

lin
e
a
rly

re
la
te
d
to

M
T
T
su

c
h

th
a
t
it
d
e
c
re
a
se

s
b
y
3
0
%

b
e
tw

e
e
n
M
T
T
b
l
a
n
d
M
T
T
st
.

M
T
T
a
n
d
C
T
H
a
re

in
th
e

ra
n
g
e
0
–2

s
F
ig
u
re

4
C
M
R
g
lc
is
m
u
c
h
le
ss

a
ff
e
c
te
d
b
y
c
h
a
n
g
e
s
in

C
T
H

th
a
n
C
M
R
O
2
.
T
h
is
c
a
n
b
e

se
e
n
fr
o
m

is
o
-c
o
n
to
u
rs

w
h
ic
h
a
re

m
u
c
h
m
o
re

ve
rt
ic
a
lf
o
r
C
M
R
g
lc
th
a
n
fo
r

C
M
R
O
2

Q
4
:
B
a
se

d
o
n
th
e
se

p
re
d
ic
tio

n
s
(Q
3
)
fo
r
C
M
R
g
lc

a
n
d
C
M
R
O
2
,
w
h
a
t
is
th
e

re
su

lti
n
g
O
G
I
a
n
d
la
c
ta
te

p
ro
d
u
c
tio

n
?

S
H

C
o
n
st
a
n
t
a
n
d
e
q
u
a
lt
o

5
0
0

µ
m
o
l/
1
0
0
m
L
.

b
l:
C
t
is
e
q
u
a
lt
o

1
2
9

µ
m
o
l/
1
0
0
m
L
(E
q
u
a
tio

n

1
4
).
C
t
is
lin
e
a
rly

re
la
te
d
to

M
T
T
su

c
h
th
a
t
it
d
e
c
re
a
se

s

b
y
3
0
%

b
e
tw

e
e
n
M
T
T
b
l
a
n
d

M
T
T
st
.

Ta
ke

d
is
c
re
te

va
lu
e
s

c
o
rr
e
sp

o
n
d
in
g
to

th
e

sy
m
b
o
ls
(+

)
a
n
d
(×

)
o
n

F
ig
u
re

4
.

F
ig
u
re

5
N
o
te

th
a
t
C
t
d
u
rin

g
b
a
se

lin
e

is
c
a
lib
ra
te
d
to

yi
e
ld

a
n
O
G
I

e
q
u
a
lt
o
5
.5

a
t
b
a
se

lin
e

Q
5
:
A
p
p
ly
in
g
o
u
r
m
o
d
e
lt
o

g
lu
c
o
se

tr
a
c
e
r
(F
D
G
),
h
o
w

is

th
e
L
C
p
re
d
ic
te
d
to

va
ry

a
s

a
fu
n
c
tio

n
o
f
th
e
p
la
sm

a

c
o
n
c
e
n
tr
a
tio

n
a
n
d
b
e
tw

e
e
n

p
h
ys
io
lo
g
ic
a
ls
ta
te
s
?
A
re

th
e
se

p
re
d
ic
tio

n
s
in

a
g
re
e
m
e
n
t
w
ith

th
e

lit
e
ra
tu
re
?

S
H
a
n
d
S
R

In
th
e
ra
n
g
e

0
–3

0
0
0

µ
m
o
l/
1
0
0
m
L

b
l:
C
t
is
re
la
te
d
to

C
p

a
c
c
o
rd
in
g
to

E
q
u
a
tio

n
s
(1
3
)

a
n
d
(1
4
).
st
:
C
t
is
a
ss
u
m
e
d

to
b
e
d
e
c
re
a
se

d
b
y
3
0
%

c
o
m
p
a
re
d
its

va
lu
e
a
t

b
a
se

lin
e

b
l:
M
T
T
=

M
T
T
b
l;

C
T
H
=

C
T
H
b
l

st
:
M
T
T
=

M
T
T
st
;

C
T
H
=

C
T
H
st

F
ig
u
re

6

Q
6
:
H
o
w

m
u
c
h
w
o
u
ld

th
e

o
ve
re
st
im

a
tio

n
in

C
M
R
g
lc

b
e
w
h
e
n
n
e
g
le
c
tin

g
th
e

c
h
a
n
g
e
s
in
L
C
?

S
H

C
o
n
st
a
n
t
a
n
d
e
q
u
a
lt
o

5
0
0

µ
m
o
l/
1
0
0
m
L
.

b
l:
C
t
is
se

t
to

1
3
2

µ
m
o
l/
1
0
0
m
L
(E
q
u
a
tio

n

1
4
)
a
n
d
d
e
c
re
a
se

s
b
y
a

va
lu
e
b
e
tw

e
e
n
0
a
n
d
4
0
%

d
u
rin

g
st
im

u
la
tio

n

b
l:
M
T
T
=

M
T
T
b
l;

C
T
H
=

C
T
H
b
l

st
:
M
T
T
=

M
T
T
st
;

C
T
H
=

C
T
H
st

F
ig
u
re

7
T
h
e
o
ve
re
st
im

a
tio

n
in

C
M
R
g
lc
in
c
re
a
se

is

c
a
lc
u
la
te
d
u
si
n
g
(E
q
u
a
tio

n

2
8
),
w
h
ic
h
re
la
te
s
th
e

re
la
tiv
e
c
h
a
n
g
e
s
in

C
M
R
g
lc
,

in
C
M
R
g
lc

,a
p
p
,
a
n
d
L
C

Q
7
:
W
h
a
t
p
re
d
ic
tio

n
c
a
n
w
e

m
a
ke

fo
r
th
e
m
e
ta
b
o
lis
m

a
n
d
th
e
lu
m
p
e
d
c
o
n
st
a
n
t

w
h
e
n
w
e
a
p
p
ly
th
e
m
o
d
e
lt
o

tu
m
o
r
c
e
lls
?

S
H

C
o
n
st
a
n
t
a
n
d
e
q
u
a
lt
o

5
0
0

µ
m
o
l/
1
0
0
m
L

C
t
d
u
rin

g
b
a
se

lin
e
is
se

t
to

1
3
2

µ
m
o
l/
1
0
0
m
L
in
iti
a
lly

a
n
d
d
e
c
re
a
se

s
a
s
v m

a
x_
m

in
c
re
a
se

s.

M
T
T
=

M
T
T
b
l;

C
T
H
=

C
T
H
b
l

D
is
c
u
ss
io
n
(s
e
e
S
e
c
tio

n

A
p
p
ly
in
g
O
u
r
M
o
d
e
lt
o

D
is
e
a
se

C
o
n
d
iti
o
n
s)

S
H
:
p
a
ra
m
e
te
r
s
e
t
w
h
e
n
th
e
m
o
d
e
l
is
a
p
p
lie
d
to

h
u
m
a
n
s
:
v m

a
x
_
t
=

6
8

µ
m
o
l/
1
0
0
m
L
_
b
ra
in
/m

in
a
n
d
K
T
=

5
0

µ
m
o
l/
1
0
0
m
L
_
b
ra
in
.
S
R
:
p
a
ra
m
e
te
r
s
e
t
w
h
e
n
th
e
m
o
d
e
l
is
a
p
p
lie
d
to

ra
ts
:
v m

a
x
_
t
=

1
3
6

µ
m
o
l/
1
0
0
m
L
_
b
ra
in
/m

in
a
n
d

K
T
=
1
5
0

µ
m
o
l/
1
0
0
m
L
_
b
ra
in
.
b
l,
b
a
s
e
lin
e
;
s
t,
s
ti
m
u
la
ti
o
n
.
M
T
T
b
l
=
1
.4
s
;
M
T
T
s
t
=
0
.8
1
s
;
C
T
H
b
l
=
1
.3
3
s
;
C
T
H
s
t
=
0
.5
2
s
.

Frontiers in Computational Neuroscience | www.frontiersin.org 4 October 2016 | Volume 10 | Article 103

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Angleys et al. CTH and Cerebral Glucose Uptake

TABLE 2 | Terminology and parameter values for glucose extraction model.

Symbol Name, definition Scale*: single capillary

level/network level

Value Unit

CA Arterial glucose concentration in plasma Network µmol/100 mL_plasma

CA
′ Arterial glucose tracer concentration in plasma Network <0.5 µmol/100 mL_plasma

CMRglc Glucose metabolism Network µmol/100 mL_brain/min

Cp Glucose concentration in plasma Single capillary Varies along the capillary

axis

µmol/100 mL_plasma

Cp
′ Glucose tracer concentration in plasma Single capillary Varies along the capillary

axis

µmol/100 mL_plasma

Ct Glucose concentration in extravascular tissue Single capillary µmol/100 mL_brain

C
t
t Glucose concentration in extravascular tissue.

Target value (input)

Network µmol/100 mL_brain

Ct Glucose concentration in extravascular tissue Network Ct = C
t
t µmol/100 mL_brain

CTH Capillary transit time heterogeneity Network Second

GEF Glucose extraction fraction Network

h Capillary transit time distribution Network 1/s

h̃ Capillary transit time distribution Network 1/s

KM Michaelis-Menten parameter for glucose

metabolism

Network 5 µmol/100 mL_brain

KM’ Michaelis-Menten parameter for glucose tracer

phosphorylation

Network 5 µmol/100 mL_brain

KT Michaelis-Menten parameter for glucose

transport across the capillary membrane

Network Parameter set SH: 50

Parameter set SR:150

µmol/100 mL_brain

KT’ Michaelis-Menten parameter for glucose tracer

transport across the capillary membrane

Network KT’ = KT µmol/100 mL_brain

LC Lumped constant (GEF/GEF’ in steady state) Network No unit

M Glucose metabolism Single capillary µmol/100 mL_brain/min

M’ Glucose tracer metabolism phosphorylation

rate

Single capillary µmol/100 mL_brain/min

MTT Mean transit time Network Second

Q Glucose extraction fraction Single capillary No unit

Q’ Glucose tracer extraction fraction Single capillary No unit

Vcap Cerebral capillary volume Network 1.4 mL/100 mL_brain

Vd Physical distribution space of glucose in the

brain

Network 0.77 mL_accessible_extra-

vascular_tissue/mL_brain

Vd’ Physical distribution space of glucose tracer in

the brain

Network 0.77 mL_accessible_extra-

vascular_tissue/mL_brain

vmax_m Effective maximum rate at which glucose is

phosphorylated by hexokinase

Network 30 in the resting state with

parameter set SH

µmol/100 mL_brain/min

vmax_m’ Effective maximum rate at which glucose tracer

is phosphorylated by hexokinase

Network 0.3 · vmax_m µmol/100 mL_brain/min

vmax_t Maximum rate at which glucose is transported

across the capillary membrane

Network Parameter set SH: 68

Parameter set SR: 136

µmol/100 mL_brain/min

vmax_t’ Maximum rate at which glucose tracer is

transported across the capillary membrane

Network 1.4 · vmax_t µmol/100 mL_brain/min

τ Transit time Single capillary Second

*Network level refers to parameters with same value for each capillary of the network, or to quantities than can only be defined at this level. Single capillary level refers to parameters

which can take different values between capillaries.

The transit time distribution h(τ) is assumed to be a gamma
distribution. This choice has been discussed extensively in
Angleys et al. (2015). The gamma distribution is a two parameter
distribution and is therefore fully and uniquely specified through
the dependence on its mean (MTT) and standard deviation
(CTH).

The individual steps to determine Q as a function
of τ in order to determine GEF with Equation (1) are
explained in details below. To simplify the notation, we
will not indicate the dependence of the different parameters
on MTT and CTH, which are fixed during the entire
procedure.
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Derivation of the System Equations
Network Level
At the capillary network level, the mean glucose concentration

in the tissue is given and equal to C
t
t. In this model, we assume

that glucose transfer among capillaries is negligible. As a result, at
the capillary level, glucose concentrations Ct are not necessarily
identical around the capillaries in our tissue compartment,
and glucose concentration in tissue may therefore vary at the
intercapillary distance scale.

Tissue concentrations in each compartment Ct must fulfill the
equation:

C
t
t −

+∞
∫

0

dτ · h̃ (τ) · Ct

(

τ, vmax _m

)

= 0 (2)

where vmax _m is a constant which will be determined later. h̃ is
derived from h, according to the relation:

h̃ (τ) = h (τ) ·
τ

MTT
(3)

Here, h̃ (τ) dτ represents a volume fraction of capillaries, as
opposed to a fraction of the flow (implicit for h). Please see
the Supplementary Material for more details concerning the
derivation of this distribution.

Capillary Scale

Equilibrium concentration in the tissue compartment
At the capillary scale, in steady state, there is no glucose
accumulation in the tissue compartment and the net rate of
glucose uptake from the plasma equals the rate M at which
glucose is phosphorylated by hexokinase:

CA ·Q (τ,Ct)

τ
· Vcap −M

(

τ,Ct, vmax _m

)

= 0 (4)

where CA ·Q (τ,Ct) · Vcap/τ represents the net flux of glucose
across a single capillary membrane, with CA being the arterial
glucose concentration in plasma, Q the extraction fraction for a
single capillary and the capillary transit time. Vcap is assumed to
be constant and equal to 1.4%.

We assume that M is governed by Michaelis-Menten kinetics
(Michaelis and Menten, 1913):

M
(

τ,Ct, vmax _m

)

= vmax _m ·

Ct(τ,vmax _m)
Vd

KM +
Ct(τ,vmax _m)

Vd

(5)

where KM is a parameter such that Vd · KM is the concentration
at which metabolism equals vmax _m/2 . vmax _m is the effective
maximum rate at which hexokinase can metabolize glucose to
glucose-6-phosphate.

Hence, Equation (4) can be rewritten:

CA ·Q (τ,Ct)

τ
· Vcap − vmax _m ·

Ct(τ,vmax _m)
Vd

KM +
Ct(τ,vmax _m)

Vd

= 0 (6)

Glucose extraction fraction from the plasma
In this section, we detail how we derive the equations to express
the glucose extraction fraction for a single capillary as a function
of the transit time and of the concentration gradient. Glucose
is considered in two compartments: plasma and extravascular
tissue. Glucose is transported across the capillary membrane by
facilitated diffusion via the glucose transporter GLUT-1, and the
unidirectional flux of glucose across the BBB is assumed to be
governed by reversibleMichaelis-Menten kinetics (Cunningham,
1986). We assume that within the capillary, axial diffusion can
be neglected compared to advective transport. Considering only
steady-state conditions and choosing the z-axis to be oriented
along the capillary, we let Cp(z) and Ct denote plasma and tissue
glucose concentration, respectively. The system is then described
by the following differential equation:

∂Cp (x, τ,Ct)

∂x
= −

τ

Vcap
·vmax _t.

Cp (x, τ,Ct) −
Ct(τ,vmax _m)

Vd

KT + Cp (x, τ,Ct) +
Ct(τ,vmax _m)

Vd

(7)

Here,

−
τ

Vcap
· vmax _t.

Cp (x, τ,Ct)

KT + Cp (x, τ,Ct) +
Ct(τ,vmax _m)

Vd

corresponds to glucose efflux from the plasma to the tissue, while:

τ

Vcap
· vmax _t.

Ct(τ,vmax _m)
Vd

KT + Cp (x, τ,Ct) +
Ct(τ,vmax _m)

Vd

corresponds to glucose influx, back from the tissue to the plasma.
In equation (7), x ∈ [0; 1] is a normalized axial coordinate,

i.e., x = z/L , with L being the capillary length; Vd is the
physical distribution space of glucose in the brain, equal to
0.77 (Lund-Andersen, 1979). Throughout this study, the two
Michaelis-Menten parameters, namely vmax_t, which corresponds
to the maximum rate at which glucose can be transported
unidirectionally across the BBB, and KT, have been assigned
values as explained in the Section Calibration of the Model
Parameters. The plasma glucose concentration at the point x= 0
is assumed to be equal to glucose arterial plasma concentration
CA. The glucose extraction fraction for a single capillary is
defined by the ratio

Q (τ,Ct) =
Cp (0, τ,Ct) − Cp (1, τ,Ct)

Cp (0, τ,Ct)
(8)

and depends on the transit time τ.
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Summarizing, we must solve the following system of coupled
equations:































































































































(a) C
t
t −

+∞
∫

0

h̃ (τ) · Ct

(

τ, vmax _m

)

· dτ = 0

(b)
−vmax _m ·

Ct(τ,vmax _m)
Vd

KM +
Ct(τ,vmax _m)

Vd

+
CA · Q

(

τ,Ct

(

τ, vmax _m

))

τ
·

Vcap = 0,

withQ
(

τ,Ct

(

τ, vmax _m

))

= 1−
Cp

(

1, τ,Ct

(

τ, vmax _m

))

Cp

(

0, τ,Ct

(

τ, vmax _m

))

(c)
∂Cp

(

x, τ,Ct

(

τ, vmax _m

))

∂x
= −

τ

Vcap
·

vmax _t.
Cp

(

x, τ,Ct

(

τ, vmax _m

))

−
Ct(τ,vmax _m)

Vd

KT + Cp

(

x, τ,Ct

(

τ, vmax _m

))

+
Ct(τ,vmax _m)

Vd

,

with Cp

(

0, τ,Ct

(

τ, vmax _m

))

= CA

(9)
for Cp, Ct and vmax_m, for any value of the transit time τ and

relevant values of C
t
t. The computation is performed numerically

in several steps, as no analytical solution exists for this system.

Solving the Equation System
In this section, we detail the steps to solve system (9). Briefly, in
the first step, we will use Equation (9)c to express Q as a function
of τ and Ct. In the second step, we will use Equation (9)b to
express Ct as a function of τ and vmax _m. Finally, we use Equation
(9)a to determine the value of vmax _m to get explicitly Q as a
function of τ.

In the first step, we solve Equation (9)c independently over a
grid of values (τ,Ct). We compute the corresponding Q function
on the same grid:

Q (τ,Ct) = 1−
Cp (1, τ,Ct)

Cp (0, τ,Ct)
(10)

This function is then appropriately interpolated to get sufficiently
high resolution of Q (τ,Ct) while minimizing the amount of
numerical computation.

In the second step, we numerically solve the equation:

− vmax _m ·

Ct(τ,vmax _m)
Vd

KM +
Ct(τ,vmax _m)

Vd

+
CA ·Q

(

τ,Ct

(

τ, vmax _m

))

τ
·Vcap = 0

(11)

for Ct

(

τ, vmax _m

)

over an array of values vmax _m, and for
relevant values of τ, to obtain Ct

(

τ, vmax _m

)

in steady-state on
the same grid

(

τ, vmax _m

)

. This function is then appropriately
interpolated.

The last step consists in solving numerically the equation:

C
t
t −

+∞
∫

0

dτ · h̃ (τ) · Ct

(

τ, vmax _m

)

= 0 (12)

in order to determine the vmax _m which fulfills this relation.
Having determined vmax _m, we use the previously

interpolated Ct

(

τ, vmax _m

)

and Q
(

τ,Ct

(

τ, vmax _m

))

to
determine Ct (τ) and Q (τ) for any transit time.

Predicted Changes in OGI during
Functional Activation Based on
Experimental Data from the Literature
We combine CMRglc values with CMRO2 values obtained with
our previous model of oxygen extraction (Angleys et al., 2015)
to predict the extent to which the OGI changes as a function of
MTT, CTH and physiological state. Transit time characteristics
in baseline and during activation are obtained from in vivo rat
studies by Schulte et al. (2003) and Stefanovic et al. (2008).
They appear as symbols on CMRglc and CMRO2 maps of
Figure 4 and are listed in Table 2 in Angleys et al. (2015).
We predict and compare CMRO2 and CMRglc in the different
physiological states, and evaluate their dependence on the transit
time distribution. The model of oxygen extraction is used under
the assumption that the maximummetabolic rate of oxygen vmax

increases by 10% from baseline condition to stimulation. See
discussion in Angleys et al. (2015). Note, however, that in this
latter model, CMRO2 itself is predicted to increase by about 20%
between baseline and stimulation.

Calibration of the Model Parameters
The model parameters KM, vmax _t, KT, vmax _m as well as the

input function C
t
t must be fixed based on literature values and

realistic assumptions. KM was inferred from literature reports,
and we set its value to 5 µmol/100 mL_brain (McIlwain and
Bachelard, 1985). We tested our model using two different sets
of Michaelis-Menten parameters to describe glucose transport.
One parameter set, SR, was obtained by calibrating our model
to two studies conducted in rats. The first (Cunningham et al.,
1986) utilized an intravenous infusion technique in rats and the
second study (Choi et al., 2001) involves NMRS in rats. While
CMRglc is reported in the first study, we assume that it is equal to
45µmol/100mL/min (Choi and Gruetter, 2012) in the second,
where α-chloralose-anesthetized rats were used. We set vmax _t

to 136µmol/100mL/min, the mean of the value reported in the
two studies.

The second parameter set, SH, was obtained by calibrating
our model to two studies involving NMRS in human
(Gruetter et al., 1998; Seaquist et al., 2001). We assumed
CMRglc = 30µmol/100mL/min in these two studies and set
vmax _t to 68µmol/100mL/min.

The values reported for KT vary considerably between studies,
even when identical protocols are used (see for example, Choi
et al., 2001; Seaquist et al., 2001, for reported values). Even
negative values have been reported (Seaquist et al., 2001),
although the physical meaning of such findings remain unclear.
As a result, the calibration of KT is somewhat uncertain.
When predicting CMRglc as a function of plasma concentration
(Figure 3), KT primarily influences the plasma concentration
at which the metabolism reaches its asymptotical value, that
is, the slope of the curve in Figure 3. Several reports suggest
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that CMRglc is relatively independent of plasma concentration
for concentrations ranging between mild hypoglycemic and
hyperglycemic levels (Bryan et al., 1986; Orzi et al., 1988; Suda
et al., 1990; Hasselbalch et al., 2001b). Accordingly, we chose KT

equal to 50 µmol/100 mL and 150µmol/100 mL when the model
was applied to humans and rats, respectively. These values are
of the same order of magnitude as those often reported in the
literature.

Several reports suggest that the phosphorylation catalyzed by
hexokinase is an important control step in the regulation of
glucose metabolism in the brain (Clarke et al., 1989). In resting
conditions, hexokinase is strongly inhibited, in particular by
its product, glucose-6-phosphate, so that its operation rate at
rest is only 3–10% of its maximum value (Clarke et al., 1989),
suggesting that glucosemetabolism can increase to accommodate
higher energy demand. Accordingly, vmax _m is calibrated in this

model to yield the glucose tissue concentration target value C
t
t, as

described in the previous section (Solving the Equation System).
Consequently, vmax _m is the maximum rate at which hexokinase
can metabolize glucose to glucose-6-phosphate when inhibited,
and is therefore the effectivemaximum rate of hexokinase.

In the following, the state (MTTbl = 1.4 s, CTHbl = 1.33
s) is taken as a reference for resting state, while the state
(MTTst = 0.81 s, CTHst = 0.52 s) is taken as a reference
for stimulation, in accordance with an experiment involving
functional activation in rat (Stefanovic et al., 2008), and two
studies modeling cerebral oxygen consumption using these same
states as a reference for resting state and stimulation (Jespersen
and Østergaard, 2012; Angleys et al., 2015). We will refer to these
two states as resting state or baseline condition, and stimulation
or activation, respectively.

C
t

t in Baseline Condition
Part of this study aims to determine the extent to which
CMRglc and LC are predicted to change as a function of the
plasma concentration (see Figures 3, 6). For this part of the

study, we assumed that C
t
t in the baseline condition varies

with plasma concentration according to measurements reported
in two studies, where plasma concentrations ranged from
hypoglycemic to hyperglycemic levels. The first study reported
direct measurements of glucose concentration in cerebral tissue
in conscious rats (Dienel et al., 1991) and the second study was
based on NMRSmeasurements in humans (Gruetter et al., 1998).
Arterial and tissue concentrations were thus assumed to obey
relations:

C
t
t =

{

0.24 · CA − 72 if CA > 400 µmol/100 mL_ plasma

24 ·
exp (CA/102 )−1
exp (400/102 )−1 otherwise

(13)

C
t
t =

{

0.30 · CA − 18 if CA > 250 µmol/100 mL_ plasma

57 ·
exp (CA/434 )−1
exp (250/434 )−1 otherwise

(14)
when the model was applied to rats and humans, respectively.

In Equations (13) and (14), C
t
t is expressed in

µmol/100mL_brain and CA in µmol/100 mL_plasma. Another
part of the study aims to quantify the extent to which CMRglc

and the OGI change between physiological conditions, under
condition of fixed plasma concentration (Figures 4, 5) and

when the model is applied to human. We fixed C
t
t and CA

such that the molar ratio CMRO2:CMRglc in the resting state
(MTT = 1.4 s, CTH = 1.33 s) is equal to 5.5, as reported in
Madsen et al. (1995) and Hasselbalch et al. (1996b). In this state,
we assume CMRO2 to be 3.8µmol/100 mL_brain/min (i.e.,
158µmol/100mL_brain/min), as in Jespersen and Østergaard

(2012) and Angleys et al. (2015). Accordingly, we set C
t
t to

129µmol/100mL_brain and CA = 500µmol/100 mL_plasma,
which yields a corresponding CMRglc in baseline condition equal
to 29µmol/100mL/min.

C
t

t during Stimulation

Based on experimental data, we assume that C
t
t decreases by 30%

from baseline condition to stimulation. For states intermediate
between baseline and stimulation, we assume that C

t
t is a function

of MTT only, and we determine its value by linear interpolation.

We also assume that the linear relation between MTT and C
t
t is

preserved for MTT outside of the interval [MTTbl MTTst]. These
assumptions are discussed further below.

Glucose Tracer Kinetics and the Lumped
Constant
We use our model to predict the value of the LC, which
corresponds to the ratio between glucose analog (tracer) and
native glucose extraction in steady state. In the following,
models were calibrated to predict the LC for FDG, and “glucose
analog” therefore refers to FDG throughout the manuscript
unless otherwise specified. Accordingly, we determine the mean
extraction fraction of glucose tracer (GEF′) over the capillary
network. GEF′ is determined as GEF previously:

GEF′ =

∫ +∞

0
dτ ·Q′ (τ) · h (τ) (15)

where Q′ is the single capillary glucose analog extraction fraction
that we must determine.

In steady state, there is no accumulation of unphosphorylated
glucose analog in the extravascular compartment and the net rate
of glucose analog uptake from the plasma equals the rate at which
glucose is phosphorylated.

Hence, at the single capillary level:

CA
′ ·Q′

(

τ,Ct,Ct
′
)

τ
· Vcap −M′

(

Ct,Ct
′, vmax _m, vmax _m

′
)

= 0

(16)
Where M′ is the rate at which glucose tracer is phosphorylated
and C′

A is the arterial glucose analog concentration.

Single Capillary Scale
The glucose analog is assumed to follow the same kinetics as
native glucose, that is:

M′
(

Ct,Ct
′, vmax _m, vmax _m

′
)

= vmax _m
′ ·

Ct
′
(

τ, vmax _m, vmax _m
′
)

/Vd
′

KM
′ ·

(

1+ Ct/Vd
KM

)

+
Ct

′

Vd
′

(17)
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With vmax_m
′ being the effective maximum rate at which glucose

analog can be phosphorylated, Ct
′ the concentration of glucose

analog in the tissue, Vd
′ the physical distribution space of

glucose analog in the brain, and KM
′ such that Vd · KM

′

is the concentration at which M′ = vmax _m
′/2 under

condition no native glucose in the tissue (Ct = 0). In the
following, we set vmax _m

′ = 0.3 · vmax _m (Kuwabara et al.,
1990; Kuwabara and Gjedde, 1991). Equation (17) can be
simplified to:

M′
(

Ct, vmax _m

)

= vmax _m
′ ·

Ct
′
(

τ, vmax _m

)

/Vd
′

KM + Ct

(

τ, vmax _m

)

/Vd

in the limit where Ct is much greater than C′
t and setting

KM
′ = KM, assuming identical hexokinase affinities for the

two substrates. Note that, because of the concentrations
involved, glucose analog transport is influenced by
native glucose concentration, whereas the contrary is not
true.

Extraction fraction from the plasma
We consider glucose analog in the same two compartments as
native glucose, and we make the same assumptions to determine
its concentration along the capillary axis:

∂Cp
′
(

x, τ,Ct,Ct
′
)

∂x
= −

τ

Vcap
· vmax _t

′·

Cp
′
(

x, τ,Ct,Ct
′
)

−
Ct

′(τ,vmax _m)
Vd

′

KT
′ ·

(

1+
Cp(x,τ,Ct)

KT
+

Ct(τ,vmax _m)
Vd ·KT

)

+ Cp
′
(

x, τ,Ct,Ct
′
)

+
Ct

′(τ,vmax _m)
Vd

′

(18)

Where C′
p denotes the glucose analog concentration in plasma,

vmax _t
′ the maximum rate at which it can be transported

across the capillary membrane, and K′
T the Michaelis-Menten

parameters for glucose tracer transport. The glucose analog
concentration at the point x= 0 is equal to glucose tracer arterial
concentration C′

A, which is assumed to be negligible compared to
CA (tracer concentration).

Hence, Equation (18) can be simplified

∂Cp
′
(

x, τ,Ct,Ct
′
)

∂x
=

−
τ

Vcap
· vmax _t

′.
Cp

′
(

x, τ,Ct,Ct
′
)

−
Ct

′(τ,vmax _m)
Vd

′

KT
′ ·

(

1+
Cp(τ,Ct)

KT
+

Ct(τ,vmax _m)
Vd·KT

) (19)

Where we set vmax _t
′ = 1.4 ·vmax _t (Crane et al., 1983; Kuwabara

et al., 1990; Hasselbalch et al., 1996a), and approximate in the
following KT

′ and Vd
′ to be equal to KT and Vd, respectively.

Hence, for glucose analog, we must solve the following system
of coupled equation:







































(a)− vmax _m
′ ·

Ct
′(τ,vmax _m)/Vd

KM+
Ct(τ,vmax _m)

Vd

+
CA

′·Q′(τ,Ct,Ct
′)

τ
·

Vcap = 0, withQ′
(

τ,Ct,Ct
′
)

= 1−
Cp

′(1;τ)

Cp
′(0;τ)

(b)
∂Cp

′(x,τ,Ct,Ct
′)

∂x = − τ

Vcap
· vmax _t

′.
Cp

′(x,τ,Ct,Ct
′) −

Ct
′(τ,vmax _m)

Vd

KT + Cp(τ,Ct) +
Ct(τ,vmax _m)

Vd

,

withCp
′
(

0, τ,Ct,Ct
′
)

= CA
′

(20)
for Cp

′ and Ct
′, for any value of the transit time τ.

In the following, we will not indicate the dependence of
Cp

′ and Ct
′ on vmax _m and Ct, as these functions have been

determined previously. We follow the same strategy to solve
this system as we did for native glucose. Accordingly, we solve
Equation (20)b independently over a grid of values

(

τ,Ct
′
)

. We
compute the correspondingQ′ function on the same grid

(

τ,Ct
′
)

:

Q′
(

τ,C′
t

)

= 1−
C′
p

(

1; τ,C′
t

)

C′
p

(

0; τ,C′
t

) (21)

In the second step, we numerically solve the equation:

− vmax _m
′ ·

Ct
′(τ)
Vd

KM +
Ct

′(τ)
Vd

+
CA

′ ·Q′
(

τ,Ct
′
)

τ
· Vcap = 0 (22)

for relevant values of τ, to obtain C′
t (τ) in steady-state. Having

determined the specific value of C′
t

(

τ, vmax _m

)

, we use the
previously interpolated Q′ to determine Q′

(

τ,Ct
′
)

for any transit
time τ.

From Equation (15), we can determine the mean glucose
tracer extraction fraction (GEF′). The LC is then simply derived

as the ratio LC = GEF′

GEF .

Lactate Production
We used our model to predict lactate production in different
physiological states. To do so, we decompose CMRglc in two
parts. CMRglc = Ma + Ms, where Ma corresponds to glucose
fully oxidized to CO2, and Ms corresponds to glucose non-
oxidatively metabolized to lactate. As each molecule of glucose
metabolized non-oxidatively produces two molecules of lactate,
the rate at which lactate is produced, Pl, fulfills:

Pl = 2 ·Ms (23)

Let us introduce OGI, the ratio between CMRO2 and CMRglc,
with OGI < 6.

(Ma +Ms) ·OGI = CMRO2 (24)

As Ma corresponds to glucose metabolized oxidatively,
CMRO2/Ma = 6.

We can rewrite Equation (24):

(

CMRO2

6
+Ms

)

·OGI = CMRO2 (25)

That is,

Ms = CMRO2 ·
6−OGI

6 ·OGI
(26)
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Finally,

Pl = CMRO2 ·
6−OGI

3 ·OGI
= CMRglc ·

6−OGI

3
(27)

with Pl being the rate at which lactate is produced, expressed in
the same units as CMRglc.

RESULTS

In this section, we first present results regarding the dependency
of baseline CMRglc on plasma concentration. We then show
how CMRglc is predicted to vary between physiological
conditions and compare these changes to those reported in
the literature. Experimental evidence suggests that CBF and
CMRglc change in proportion (see Paulson et al., 2010, for
references and an in-depth discussion). To examine whether
our model produces predictions that are consistent with these
observations, we determined CMRglc and the phosphorylation
rate of FDG (which we refer to as CMRFDG) as a function of
CBF for (MTT, CTH) states between baseline and activation.
Figure 2 shows that an almost linear relation between CBF and
CMRglc, as well as between CBF and CMRFDG is obtained,
which is consistent with the experimental findings, although
increases in CBF are not a prerequisite in the support of
increase glucose metabolism (Leithner and Royl, 2014). We
also compare changes in CMRglc to that of CMRO2, to
determine the OGI. Finally, we assess the effects of a change
in plasma concentration on the LC and quantify the extent

FIGURE 2 | Relation between CBF and CMRglc (red curve) and

between CBF and the phosphorylation rate of FDG, that is, CMRFDG

(blue curve), for physiological states between baseline

(MTT = 1.4 s, CTH = 1.33 s) and stimulation (MTT = 0.81 s,

CTH = 0.52 s), where CTH is assumed to vary linearly with MTT, using

parameter set SH: vmax_t = 68 µmol/100 mL/min and KT = 50 µmol/100

mL_brain. CBF is related to MTT through the relation CBF = Vcap/MTT .

CMRglc in baseline condition is equal to 29µmol/100mL/min. bl, baseline;

CBF, cerebral blood flow; Vcap, cerebral blood volume.

to which it is predicted to change between physiological
states.

CMRglc in Baseline Condition
Figure 3 shows the relation between glucose concentration
in plasma and CMRglc in the baseline condition. The CMRglc

predicted by our model using parameter set SR (see Methods:
Calibration of the Model Parameters) was 72µmol/100mL/min,
slightly lower than the value reported in conscious rats, see for
example (Choi et al., 2002) for review. This underestimation
could be caused by the fact that we derived our transport
parameters from anesthetized animal data, see discussion in
Section Calibration of the Model Parameters. We used a plasma
glucose concentration of 1000µmol/100mL_plasma in our
calculations, as reported for rats under euglycemic conditions.
The CMRglc predicted by our model using parameter set SH
was 28 µmol/100 mL/min, compared to 30µmol/100mL/min
assumed in human when we derived transport parameters.
In this case, we used a plasma glucose concentration of
500µmol/100mL_plasma, as reported for humans under
euglycemic conditions.

For both set of Michaelis-Menten parameters, our model
shows that CMRglc in baseline conditions does not depend on
arterial glucose concentration until it reaches values as low
as 200–300µmol/100mL_plasma, concentration at which the
mean glucose concentration in the tissue approaches zero.
In particular, CMRglc under condition of mild hypoglycemia
(CA = 300–400 µmol/100mL_plasma) and hyperglycemia
is found to be almost equal to CMRglc under condition of
normoglycemia (relative difference lower than 10%).

FIGURE 3 | Relation between glucose concentration in plasma and

CMRglc in baseline condition. The purple and green solid lines correspond

to the mean glucose concentration in the tissue (input) as a function of arterial

glucose concentration according to relations (13) and (14), based on

experimental studies by Dienel et al. (1991) and Gruetter et al. (1998),

respectively. The blue dotted-dashed line corresponds to predictions obtained

using parameter set SR: vmax_t = 136 µmol/100 mL/min and

KT = 150 µmol/100 mL_brain. The red dotted-dashed line corresponds to

parameter set SH: vmax_t = 68 µmol/100 mL/min and

KT = 50 µmol/100 mL_brain. The gray area corresponds to conditions of

normoglycemia in humans (plasma glucose concentration ranging from 400 to

600 µmol/100 mL).
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FIGURE 4 | (A) CMRglc contour plot, assuming a glucose arterial plasma concentration equal to 500µmol/100mL, a mean glucose concentration in the tissue under

baseline condition equal to 129µmol/100mL, and Michaelis-Menten parameters for transport of glucose vmax_t and KT equal to 68µmol/100mL/min and

50µmol/100mL, respectively. (B) CMRO2 contour plot (Angleys et al., 2015) assuming oxygen metabolism to be governed by Michaelis-Menten kinetics, with

parameters KM = 2.71mmHg (3.5 µmol/L) and vmax = 4.75 mL/100 mL/min. (C) CMRO2 contour plot assuming vmax = 5.23 mL/100 mL/min [i.e., 10% higher than

in (B)] and making otherwise the same assumptions as in (B). The parameter vmax in (B,C) is assumed to be constant. The yellow line separates states where a blood

flow increase (decrease in MTT) given a fixed CTH will lead to an increased (right side of the line) or decreased (left side of the line) glucose (A) or oxygen (B,C)

consumption, respectively. The roman numeral accompanying each symbol corresponds to physiological data. The numeral “0” stands for resting state, whereas

other numerals refer to state of altered basal physiology. Note that the CMRglc and CMRO2 iso-contours do not show the same slope for the experimental data used

in this figure, indicating that a change in MTT (resp. CTH) will have a strong (resp. moderate) influence on CMRglc, and inversely for CMRO2. Symbols: +, functional

activation (Stefanovic et al., 2008); ×, cortical electrical stimulation (Schulte et al., 2003).

FIGURE 5 | OGI (A) and lactate production (B) in different physiological conditions indicated by symbols on Figure 4. We assume a glucose arterial plasma

concentration equal to 500 µmol/100 mL, a mean glucose concentration in the tissue under baseline condition equal to 129 µmol/100 mL, and Michaelis-Menten

parameters for transport of glucose vmax_t and KT equal to 68µmol/100mL/min and 150µmol/100mL (Cunningham et al., 1986), respectively. We furthermore

assume that oxygen metabolism is governed by Michaelis-Menten kinetics, with parameters KM = 2.71 mmHg (3.5µmol/L) and vmax = 4.75mL/100mL/min, and

that vmax increases by 10% from baseline condition to state I (+) or state V (×). In (B) lactate production is derived from CMRglc from the formula

PI = CMRglc ·
(

6−OGI
)

/3 , with PI being lactate production, and OGI being computed in (A). OGI: oxygen-glucose index: CMRO2/CMRglc.

Relative Changes in CMRglc between
Physiological States
Figure 4A shows a contour plot of CMRglc, using parameter set
SH, that is, when the model is applied to human. Figures 4B,C
show CMRO2 contour plots obtained with the model from
Angleys et al. (2015) with a maximum metabolic rate for
oxygen metabolism (vmax) equal to 4.75mL/100mL/min and
5.23mL/100mL/min (that is, 10% higher), respectively. Note
that there is no straightforward way to illustrate CMRglc during
the transition from the baseline condition (bl) characterized by
MTTbl, CTHbl, and vmax, to an activated state (act) characterized
by MTTact, CTHact, and vmax+10% in a single contour plot

without specific knowledge on the relation between MTT,
CTH, and vmax. In Figure 5, vmax is assumed to increase in

proportion to the stimulus intensity, by 10% between baseline

and stimulation, which corresponds to the value that yielded the
most realistic results in Angleys et al. (2015).

One important observation in Figure 4A is that variations

in CMRglc as function of MTT are expected to be higher than

variations in CMRO2. The OGI ratio therefore depends on
the physiological state considered and is expected to decrease

during activation, as illustrated in Figure 5A. When we consider
changes in MTT and CTH derived from Stefanovic et al.
(2008) and Schulte et al. (2003) (Figure 5A), our model predicts
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FIGURE 6 | Relation between glucose concentration in plasma and the

lumped constant (LC) for FDG in baseline condition (dashed-dotted

line) and during stimulation (dotted line). The black and the red lines

correspond to predictions obtained using parameter set SR:

vmax_t = 136µmol/100mL/min and KT = 150µmol/100mL_brain. The

yellow and the blue lines correspond to predictions obtained using parameter

set SH: vmax_t = 68 µmol/100 mL/min and KT = 50 µmol/100 mL_brain. The

purple and green solid lines correspond to the mean glucose concentration in

the tissue (input) as a function of arterial glucose concentration according to

relations (13) and (14), based on experimental studies by Dienel et al. (1991)

and Gruetter et al. (1998), respectively. The gray area corresponds to

conditions of normoglycemia in humans (plasma glucose concentration

ranging from 400 to 600µmol/100mL). bl, baseline condition; st, stimulation.

that CMRglc increases by 31% (43%) from baseline condition
to stimulated state, while CMRO2 is expected to increase by
only 19% (18%) between baseline and stimulation, resulting
in an OGI decreasing by 10–20%, from 5.5 (5.8) to 5.0 (4.7).
As a result, lactate production is expected to increase from
3 to 5µmol/100mL/min to about 15 to 20µmol/100mL/min
(Figure 5B).

Additional information that can be inferred from Figure 4 is
that, for the considered physiological states, CMRglc is influenced
primarily by changes in MTT, while a change in CTH has
little influence on this variable. This is in contrast to CMRO2,
which is expected to be influenced primarily by CTH and more
moderately by MTT.

Models from Jespersen and Østergaard (2012) and Angleys
et al. (2015) predict that for large CTH values and under a
condition of fixed CTH, a blood flow increase leads to a decrease
in oxygen delivery. This phenomenon which has been referred to
asmalignant CTH is observed in this model with glucose as well.
Accordingly, for states on the left hand side of the yellow line in
Figure 4A, CMRglc decreases if flow increases under condition of
constant CTH.

LC Changes in Response to a Change
in Plasma Concentration and between
Physiological Conditions
Figure 6 shows the relation between plasma glucose
concentration and the expected value for the LC in baseline

FIGURE 7 | Relation between the relative (true) CMRglc increase, and

the apparent relative CMRglc,app increase computed when assuming

that the lumped constant does not vary between physiologic states

(blue line). The relationship between CMRglc,app, CMRglc, and LC is given in

Equation (28). Note that the increase in glucose metabolism is overestimated

by more than 50% for any “true” relative CMRglc increases of 12% or more if

one neglects the state-dependency of LC. In this plot, parameter set SH is

used to describe glucose transport, and we assume that the uptake of

glucose tracer from the blood is measured accurately. The green line shows

the resulting relative overestimation. The black line is the line of equation y = x.

condition and during stimulation, assuming the relations in

Equations (13) and (14) between C
t
t and CA. Accordingly, the LC

was found to be equal to 0.61 and 0.76 with parameter sets SH
and SR, respectively under baseline, normoglycemic conditions
(CA = 500µmol/100 mL and 1000µmol/100 mL, for set SH and
SR, respectively). Our model predicts that LC increases under
conditions of severe hypoglycemia (CA = 210 µmol/100 mL) to
0.68 (1.11), and decreases under conditions of hyperglycemia to
0.58 (0.69) with parameter set SH (SR).

For arterial glucose concentrations ranging from 400 to
3000µmol/100mL, and assuming that changes inMTT andCTH
between baseline condition and stimulation are accompanied
by a 30% decrease in tissue glucose concentration, our model
predicts that LC increases by about 15 and 20% when using
Michaelis-Menten parameter sets SR and SH, respectively.
Figure 7 shows the extent to which these changes in LC would
impact the computation of relative increase in CMRglc in human
when neglected, provided that the uptake of glucose analog from
the blood is measured accurately. In the following, CMRglc,app

denotes the apparent metabolic rate of glucose, when neglecting
changes in LC value between physiological conditions. Relative
change in CMRglc, CMRglc,app, and LC are related according to
the equation:

1CMRglc,app (d)

CMRglc,0,app
=

(

1+
1LC (d)

LC0

)

·
1CMRglc (d)

CMRglc,0
+

1LC (d)

LC0

(28)
It should be noted that Equation (28) predicts CMRglc,app

and CMRglc to be equal only when LC remains constant during
a change in physiological state (1LC = 0). In Equation (28),
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TABLE 3 | Comparison between relative increases in glucose metabolism reported in experiments involving NMRS and PET in human.

References Technique to Type of Baseline Relative Relative increase

measure CMRglc stimulation increase in in CMRglc after

increase CMRglc (%) correction (%)

Chen et al., 1993 NMRS 8 Hz photo stimulation

(red-light-emitting-diodes)

NA 22 22

Frahm et al., 1996 NMRS 10 Hz photo stimulation Darkness 21 21

Fox et al., 1988 PET 18F-DG Checkboard pattern (10 Hz) NA 51 28

Phelps et al., 1981 PET 18F-DG Checkboard pattern (2 Hz) Eyes closed 27 17

Phelps et al., 1981 PET 18F-DG More complex scene Eyes closed 60 32

Vlassenko et al., 2006 PET 18F-DG Checkboard pattern (8 Hz) Eyes closed >50* >28

Villien et al., 2014 PET 18F-DG Checkboard pattern (8 Hz) Gray fixation-cross 25 16

Mean 36.6 NMRS: 21.5 PET: 43 23.3 NMRS: 21.5 PET: 24.0

Std/mean (agreement

between methods)

0.45 0.27

Relative increase in the CMRglc after correction refers to CMRglc increase when accounting for the overestimation predicted by our model (Figure 7).

CMRglc, cerebral metabolic rate of glucose; NMRS, nuclear magnetic resonance spectroscopy; PET, positron emission tomography.

*Estimation based on an experiment where visual stimulation was presented only for the first 5 min of FDG circulation and PET scanning (total duration: 60 min).

LC0 and CMRglc,0 is the LC and CMRglc value, respectively,
in the baseline condition, and 1LC and 1CMRglc the
subsequent increase in LC and CMRglc, respectively. Here, d
denotes the relative decrease in tissue glucose concentration
between conditions. Note that 1CMRglc, 1LC, and therefore
1CMRglc,app depend on d. The blue curve in Figure 7 shows the
relation between CMRglc and CMRglc,app, using parameter set SH,
with d varying from 0 to 40%. This range allows 1CMRglc,app to
vary in the range from 7 to 83%, therefore covering the relative
increase in glucose metabolism reported in the literature (see
Table 3).

The function that associates CMRglc,app to CMRglc shows
a derivative which is increasing with CMRglc. The relative
overestimation (green curve in Figure 7) therefore increases as
a function of CMRglc and takes particularly high values for
high CMRglc relative increases. Because of the non-linearity
between relative increases in CMRglc and LC, Equation (28)
leads to surprisingly large overestimations of the increase in
CMRglc if even small changes in LC are neglected. For example,
considering conservative values for LC and CMRglc increases of
10% (see Dienel et al., 1991, for experimental evidence) and 20%,
respectively, would lead to an apparent 32% increase in CMRglc

(Equation 28), thus overestimating the increase in CMRglc by
60%. Also note that Equation (28) is model-independent and
therefore does not rely on simplifying assumptions used in our
model. Please refer to the Supplementary Material for details
about its derivation.

DISCUSSION

In this study, we developed a model that takes the effects
of tissue glucose concentration and CTH into account when
describing glucose extraction in the brain. We employed

reversible Michaelis-Menten kinetics, which has previously been
shown to support cerebral glucose utilization across a range of
arterial glucose/tissue concentration (Choi et al., 2001; van de
Ven et al., 2012).

The first main finding in our study is that, similar to oxygen
extraction, glucose extraction is not only a function of the CBF
and concentration in plasma and tissue, but also depends on
capillary transit time heterogeneity. However, as glucose and
oxygen transport involve different mechanisms, the changes
in CBF and CTH between physiological states do not affect
the transport of these two substrates to the same extent. In
particular, Figure 4A shows that for physiological CTH/MTT
ratio (typically smaller than 2), CMRglc iso-contours are almost
vertical, meaning that CTH does not influence glucose uptake to
a very large extent. In contrast, for the same CTH/MTT ratio,
CMRO2 iso-contour slopes are lower (Figures 4B,C), although
they would appear to be slightly higher if vmax was not kept
constant in the figures (see Section Relative Changes in CMRglc
between Physiological States for details about this point). Blood
flow increases are therefore expected to be less efficient as a
means of increasing oxygen than glucose consumption for a
given CTH value. As a consequence, glucose delivery can increase
more than that of oxygen during enhanced energy demand,
favoring non-oxidative glucose consumption. To better illustrate
that CTH has a larger influence on oxygen than glucose delivery,
we made a simulation in which we assumed that no change
in CTH occurred between physiological states, keeping other
parameters unchanged. Instead of increasing by 19% (18%) as
reported when CTH decreases in parallel with MTT, our model
predicts that CMRO2 would increase by only 3.6% (7.4%) when
using MTT and CTH derived from Stefanovic et al. (2008)
and Schulte et al. (2003). In contrast, CMRglc would be less
affected, increasing by 23% (38%), compared to 31% (43%)
reported earlier in this manuscript. As a consequence, decreases
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in OGI (16% (22%)) would be larger than predicted when CTH
varies (9% (18%)). In other words, during activation, blood
flow homogenization is expected to increase oxygen extraction
capacity to a greater extent than that of glucose, thus limitingOGI
reduction.

The second main finding is that the ratio of glucose
tracer to native glucose extraction at steady state (LC)
depends on the physiological state we consider, and varies
accordingly between baseline and stimulated conditions.
This finding is in contrast to previous studies, where this
ratio is considered to be constant. We show that neglecting
variations in this ratio could lead to overestimations of
the relative increase in CMRglc (1CMRglc/CMRglc,0)
between different physiological states of 50% or more.
In the following, we discuss how such variations in
the LC could reconcile what previously seemed to be
incompatible measurements obtained with PET and NMRS,
respectively.

Changes in Plasma Concentration
Data from the literature reports that glucose metabolism is
largely insensitive to changes in plasma concentration. It was
therefore important to show that our model is consistent with
this data. Accordingly, we tested our model over a range of
plasma concentrations to simulate conditions of hypoglycemia
and hyperglycemia, keeping the model parameters which
describe glucose transport unchanged. We employed two
sets of parameters to describe glucose transport for rats and
humans, respectively. Our assumption that glucose transport
is described by reversible Michaelis-Menten kinetics requires
also to assume that tissue glucose concentration varies linearly
with plasma concentration in the range from hypoglycemia
to hyperglycemia levels (see Equations (13) and (14)), in
which CMRglc has been reported to remain almost constant.
This linear relation is supported by several experimental
studies (Gruetter et al., 1998; Choi et al., 2001; Seaquist
et al., 2001; van de Ven et al., 2012). When glucose plasma
concentration increases above normoglycemic levels, our
model predicts that CMRglc is essentially unchanged. The
same observation applies under conditions of hypoglycemia,
where the model predicts that CMRglc only decreases slightly
until plasma concentrations reaches concentration as low
as 200–300µmol/100mL_plasma; levels at which glucose
concentration in tissue approaches zero. When plasma
concentration decreases further, CMRglc is expected to decrease
sharply.

Our results are in good agreement with several studies
showing that CMRglc only decreases slightly under conditions
of moderate hypoglycemia in rats (Bryan et al., 1986). Moreover,
several studies report a sharp increase in CBF when glucose
plasma concentration decreases to concentration lower than
200µmol/100mL (Choi et al., 2001), which corresponds
to concentration in the tissue close to zero. It suggests
that glucose metabolism is more severely impaired when
plasma concentration is lower than 200µmol/100mL_plasma
than during mild hypoglycemia, and that CMRglc cannot
be maintained at levels observed during normoglycemia.

Finally, although CMRglc predicted by our model when
applied to rats is slightly lower than reported values (see
Section CMRglc in Baseline Condition for explanation
of this underestimation), predictions for human were
in good agreement with the value we assumed in our
calibration.

In summary, our model captures crucial characteristics of
glucose delivery to the brain, in particular the remarkable ability
of the brain to maintain sufficient glucose metabolism across a
wide range of plasma and tissue glucose concentrations. This is in
contrast to oxygen metabolism, which is much more sensitive to
changes in plasma concentration andCBF. As a result, the brain is
much more vulnerable to change in oxygen than in glucose levels
(Leithner and Royl, 2014).

Changes in CMRglc between Physiological
States
We employed our model to predict CMRglc in different
physiological states. These predictions are based on the
assumption that the mean glucose concentration in the tissue
(i) decreases by 30% between the two physiological states
that we took as reference for baseline and stimulation
(See sections Calibration of the Models Parameters in
Methods and in Discussion for further discussion about
this choice), and (ii) is linearly related to MTT. While the
first assumption is based on experimental data, a precise
relationship between tissue glucose concentration and MTT
has yet to be determined, and future work should therefore
test the validity of the second assumption. With recent
technical developments, tissue glucose concentrations
may indeed be measured (Lugo-Morales et al., 2013),
and this aspect of our models could therefore be tested
experimentally.

Ourmodel predicts that CMRglc increases relativelymore than
CMRO2 between baseline and stimulation. Accordingly, the OGI
is predicted to decrease by about 10–20% and lactate production
to increase, which is in good agreement with literature reports
(Prichard et al., 1991; Madsen et al., 1995, 1998; Frahm et al.,
1996). The reasonable number of parameters employed in our
model may provide insights into the understanding of the
regulation of glucose and oxygen metabolism. Indeed, the strong
inhibition of hexokinase in baseline condition allows glucose
metabolism to increase more than that of oxygen metabolism,
which has been reported to be approximately 80–85% of its
maximum value, already at rest (Gjedde et al., 2005). It is
also worth noting that the transport capacity of glucose across
the BBB varies with the concentration gradient in a non-
linear fashion because of glucose transporters properties. In
particular, if an increase in concentration gradient is caused
by a decrease in tissue glucose levels, as observed during
functional activation, glucose transport capacity will increase
relatively more than does the gradient. In contrast if the increase
in concentration gradient is caused by an increase in arterial
glucose concentrations, as observed during normal physiological
variations or during hyperglycemia, glucose transport capacity
will increase much less than does the gradient. For example,
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with reversible Michaelis-Menten kinetics (e.g., parameter set
SH) and the parameters used in our study, a 30% reduction
in tissue glucose levels from 132 to 92µmol/100mL_brain will
increase the concentration gradient by 11% and the net transport
rate by 25%. If the same increase in concentration gradient
was introduced through an increase in plasma concentration,
then the transport rate would increase by only 6.2%. The
transport capacity of glucose can thus amplify or attenuate
the effect of changes in concentration gradient, and thereby
accommodate both high metabolic demands and changes in
plasma concentration without the risk of a tissue energy crisis.
These uptake properties are reflected by our model response
to a change in concentration gradient introduced through
a change in plasma concentration and a decrease in tissue
concentration, respectively. While a relatively small decrease in
tissue concentration is indeed accompanied by a large increase
in the net transport rate and hence in CMRglc (Figure 4), a
large change in plasma concentration is compensated by a
comparatively reduced change in tissue concentration (Figure 3),
leading to a stable transport rate and CMRglc. These properties
are in contrast to free diffusion, which is characterized by
a transport rate across the BBB that is proportional to the
concentration gradient. These observations further support that
non-oxidative glucose consumptionmay therefore be an inherent
consequence of glucose and oxygen extraction, especially during
functional activation. Needless to say, the way in which the brains
cell types have specialized to utilize the available glucose and
lactate as substrates in their metabolism is beyond the scope of
this paper.

Lumped Constant
With our model, we can compute the ratio of glucose analog
to native glucose extraction (LC). We tested our model over a
large range of glucose concentrations, to quantify the extent to
which this ratio is predicted to change as a function of the plasma
concentration, and to assess whether this is in good agreement
with literature reports.

We observe that LC increases from 0.76 with parameter set SR
to more than one under severely hypoglycemic conditions, and
decreases to 0.68 under hyperglycemic conditions. Variations in
LC with parameter set SH are predicted to show the same pattern
but with smaller amplitude. These LC values under baseline and
normoglycemic conditions are in good agreement with some
experiments obtained for FDG in rats (Tokugawa et al., 2007)
and in humans (Hasselbalch et al., 2001a), but about 50% higher
than others obtained in rats (Huang et al., 1980). See Hasselbalch
et al. (2001a) for in-depth discussions of this variability. The
variation of the LC under hypo- and hyperglycemic conditions
for rats is in line with experimental reports (Suda et al., 1990;
Dienel et al., 1991) and modeling (Pardridge et al., 1982; Holden
et al., 1991). As pointed out by Pardridge et al. (1982), Crane
et al. (1983) and Holden et al. (1991), these variations in LC can
be explained by differences between the rate at which native
glucose and glucose analog are metabolized and transported
across the BBB. Indeed, under hyperglycemia/normoglycemia,
glucose metabolism is not limited by transport across the
capillary membrane. Under severe hypoglycemia, however,

transport capacity limits glucose delivery. As a result, the LC
ranges between two extreme values, namely (i) the ratio between
the maximal operation rate of hexokinase for glucose analog and
native glucose, vmax _m

′/vmax _m , equal to 0.3 in our study, which
is approached under hyperglycemic conditions, and (ii) the ratio
between the maximal rate at which glucose analog and native
glucose are transported across the BBB, that is vmax _t

′/vmax _t ,
equal to 1.4, which is approached under hypoglycemic
conditions.

In summary, both CMRglc and LC values yielded by our
model, as well as their relative changes between two glycemic
conditions are consistent with the literature.

We also quantified the change in the value of LC between
two physiological states (baseline condition and activation).
Our model predicts that, under conditions of normoglycemia
and constant blood glucose concentration, the ratio of glucose
tracer to native glucose extraction (so-called LC) increases by
15–20% from baseline condition to stimulation, which is in
line with earlier predictions by Dienel et al. (1991) based on
typical decrease in tissue glucose concentration during activation.
As explained in the Supplementary Material and established
experimentally (Dienel et al., 1991), we show that this variation
is partly due to changes in glucose concentration in the
tissue, which does vary substantially from baseline condition to
stimulated state (e.g., see Merboldt et al., 1992; Chen et al., 1993;
Adachi et al., 1995; Frahm et al., 1996; Mangia et al., 2006; Lin
et al., 2012). Accordingly, we believe it is crucial to adjust LC
when quantifying the relative increase in CMRglc between two
physiological states. Changes in LC between physiological states
would have to be determined experimentally (e.g., Dienel et al.,
1991), or from model predictions.

Comparison of Relative Increases in
CMRglc Obtained with NMRS and PET
In Table 3, we list several experiments where NMRS and FDG
PET were used to quantify relative increases in CMRglc between
baseline and an activated state. All experiments involved visual
stimulation and all but one (Phelps et al., 1981) used the same
kind of stimulus, that is, a checkboard or red diodes flashing
at 8 or 10 Hz (see Table 3). The table reveals tendency for
PET measurements to yield higher CMRglc increases than those
obtained with NMRS (mean relative increase = 43% with PET,
22% with NMRS). When taking into account the change in LC
between baseline and stimulation by using the relation between
apparent glucose metabolism increase and true glucose increase
illustrated in Figure 7, the mean relative increase in CMRglc is
reduced to 24% when assessed with PET. The relative standard
deviation (standard deviation to mean ratio) is furthermore
decreased by 40% when applying the correction, which reflects
the better agreement betweenmeasures obtained with NMRS and
PET after correction than before. Experiments involving NMRS
use bigger regions of interest (ROIs) and therefore may contain
more white matter than experiments with PET, which might
lead to a slight underestimation of the signal during activation.
However, in these experiments, ROIs are of comparable sizes
and locations, so that signal underestimation with NMRS, if any,

Frontiers in Computational Neuroscience | www.frontiersin.org 15 October 2016 | Volume 10 | Article 103

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Angleys et al. CTH and Cerebral Glucose Uptake

is likely to be small. Although more data would be needed to
calibrate our model more precisely and hence to achieve a more
accurate correction, we believe that such corrections are crucial
when inferring glucose uptake from FDG uptake in different
physiological states, without which CMRglc estimate may be
misleading.

Applying Our Model to Disease Conditions
We applied our model to tumor cells, as an example of
possible clinical application. More specifically, we assessed the
consequences on the glucose uptake and on the LC of an altered
glucose transport or metabolism, such as it has been reported
in the literature on tumors: Tumor cells express an isozyme of
hexokinase, hexokinase II, which is less susceptible to feedback
inhibition by its product, glucose-6-phosphate, than hexokinase
in healthy tissue (Bustamante and Pedersen, 1977; Bustamante
et al., 1981). When applying our model to tumor cells, to take this
reduced inhibition into account, we have increased themaximum
rate at which glucose and FDG can be metabolized (vmax _m

and vmax _m
′). We find that the LC increases by 36 and 66%,

from 0.61 in baseline condition to 0.83 and 1.01, respectively,
under condition of reduced inhibition, while the mean glucose
concentration in the tissue is reduced to one half and one fourth
of healthy tissue values, respectively. This increase in the LC is
accompanied by a 45 and 75% increase in CMRglc compared
to healthy tissue. These results are in line with the literature,
reporting that most tumor tissues are known to be highly
metabolic and depend on aerobic glycolysis (the Warburg effect
Warburg, 1956). Spence and colleagues furthermore showed that
the LC in tumors was higher than in healthy tissue and was
generally found to exceed unity (Spence et al., 1990, 1998).

Our model therefore suggests that smaller inhibition of
hexokinase could be a possible factor leading to both increased
glucose metabolism and LC value. As discussed in previous
sections, underestimation of the LC leads to overestimation of
CMRglc as assessed by FDG PET. When neglecting LC increases,
quantitative CMRglc estimates in tumors therefore contains little
extra information compared to qualitative measures, and could
even turn out to bemisleading. Overestimating CMRglc in tumors
would in turn lead to OGI underestimation and hence to an
overestimation of non-oxidative glucose consumption.

Our model also allows us to understand the biophysical
mechanisms that lead to a higher LC value. Because hexokinase
is less inhibited in tumor than in healthy tissues, glucose
phosphorylation is quicker and the equilibrium concentrations in
tissues are lower. Consequently, once a glucose molecule crosses
the blood-tumor-barrier, its life time in the tissue compartment
is reduced and glucose metabolism is limited to a greater extent
by glucose transport across the BBB than in healthy tissue.
This suggests that glucose transport capacity in tumor cells is
reduced relatively to the phosphorylation rate. The LC value
therefore becomes weighted to a greater extent by the ratio
between native glucose and glucose analog transport rates across
the BBB (vmax _t

′/vmax _t ) than by their phosphorylation rates
(vmax _m

′/vmax _m ), and hence increases essentially for the same
reasons as under conditions of hypoglycemia.

In future work, we could employ our model to better
understand disease states related to aerobic glycolysis. For
example, in Alzheimer disease (AD), several studies show that
areas of the normal human brain with elevated aerobic glycolysis
are nearly identical to those that accumulate amyloid and
exhibit atrophy and disrupted metabolism in AD (Buckner et al.,
2005; Vlassenko et al., 2010). It has therefore been suggested
that there might be a link between dependence on aerobic
glycolysis and AD. It would be interesting to employ our model
to assess the extent to which microvascular dysfunction such
as it has been reported in AD and parameters such as OGI
are related.

Calibration of the Model Parameters
Our model involves several parameters to describe glucose
transport. We calibrated most of the parameters with values
from the literature. However, the parameters derived in different
studies are not easy to compare, because they involve several
kinetic models, such as irreversible and reversible Michaelis-
Menten kinetics. Choi et al. (2001) made a comparison
between parameter values derived when assuming reversible and
irreversible Michaelis-Menten, respectively, in human and in
rats, while Cunningham et al. (1986) made such as comparison
in rats only. Although the parameters of the reversible Michaelis-
Menten model take lower values than the non-reversible version,
there is no general relation between them. Some studies have
included a non-saturable component, often called Kd, making
the comparison between parameters even more difficult. Based
on four studies, we applied our model to rats and to humans,
using reversible Michaelis-Menten kinetics, in particular to
assess how our results depend on a particular choice of
parameters. Anesthetics affect the cerebral metabolic rate of
glucose (see for example Choi and Gruetter, 2012) and therefore
the relationship between glucose concentration in plasma and
tissue. While calibrating SR, we had to rely on previous studies
using reversible Michaelis-Menten kinetics in anesthetized rats
(Cunningham et al., 1986; Choi et al., 2001). Choi et al.
(2001), however, determined vmax _t/CMRglc ratio rather than
vmax _t alone. Provided that anesthesia impacts metabolism rather
than glucose transport across the BBB itself, the parameter
vmax _t is in principle unaffected by the effects of anesthesia.
This is in contrast to the second study (Cunningham et al.,
1986), where vmax _t is determined independently of CMRglc. As
discussed by Cunningham and colleagues’, the value determined
for vmax _t would have been higher if the experiment had
been performed on unanesthetized animals. Our study may
therefore have underestimated vmax _t in parameter set SR,
and thus the CMRglc predicted for rats. Note that parameter
set SH was based on data from unanesthetized volunteers
and the corresponding CMRglc predictions thus apply to
awake humans.

Reported values for the Michaelis-Menten constant KT range
from −98 to 330µmol/100mL in the four studies we used to
calibrate our parameters. Moreover, one study (Cunningham
et al., 1986) involves rats anesthetized with pentobarbital, which
is known to inhibit glucose transport by binding to the glucose
transporter itself (el-Barbary et al., 1996; Haspel et al., 1999).
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The value determined for this parameter (194µmol/100mL) is
therefore likely to be lower in conscious rats. Accordingly, we
chose a slightly lower value for KT, 150µmol/100mL.

While some of our conclusions are found to be largely
insensitive to the choice of parameters, others depend more
on the values assigned to describe glucose transport. For
example, employing different sets of parameters leads to the
same conclusion when one computes CMRglc as a function
of arterial plasma concentration, namely that CMRglc is
essentially independent to the plasma concentration over a large
range of concentration (300–3000µmol/100mL) and decreases
only when the plasma concentration is so low that glucose
concentration in the tissue approaches zero (Figure 3). However,
the predicted CMRglc in baseline condition is more dependent
on Michaelis-Menten parameters. This is reflected by the results
shown in Figure 3, where CMRglc for rats is predicted to be more
than two-fold higher than for humans.

In this study, we use our model to assess the extent to which
CMRglc and OGI vary between physiological states, and we

assume that C
t
t decreases by 30% from baseline condition to

stimulation. The extent to which tissue concentration decreases
during, e.g., photic stimulation has been widely debated and
reported values range between 0 and 50% (Collins et al., 1987;
Merboldt et al., 1992; Chen et al., 1993; Adachi et al., 1995;
Frahm et al., 1996; Mangia et al., 2006; Lin et al., 2012).
These differences may be attributed to differences in stimuli
involved, experimental protocols and measurement techniques.
We estimated our model’s sensitivity to this assumption by

assuming different C
t
t reduction, ranging between 10 and 40%.

CMRglc is predicted to increases by 41% (59%), 31% (43%),

22% (29%), and 14% (16%) when C
t
t is assumed to decrease

by 40, 30, 20, and 10%, and using changes in MTT and
CTH derived from Stefanovic et al. (2008) and Schulte et al.
(2003). While this large range of predicted CMRglc increases
reflects the variability observed in literature reports, it would
be valuable to have additional simultaneous recordings of local
CMRO2, CMRglc, CBF, and CTH to sharpen our predictions.
We also assume in our model that glucose concentration in
plasma and in the tissue are related according to Equations
(13) and (14), when the model is applied to rats and humans,
respectively. For a given plasma concentration, a large range
of tissue concentration have been reported, see for example
(Dienel et al., 1991; Madsen et al., 1999) for measures in rats,
and therefore other relations could equally have been used.
Although our overall conclusions do not depend on these
particular choices, more accurate estimates would improve our
predictions.

Glucose metabolism is commonly assessed by two different
glucose analogs: FDG and 2-DG. FDG is mainly used in humans
with PET, while 2-DG is used in rodents with autoradiographic
methods. In this study, we focused on the LC in human and chose
parameters to describe FDG transport and metabolism rather
than 2-DG. While the use of literature values for 2-DG would
result in different rate constants, we expect that 2-DG and FDG
transport are sufficiently similar for the overall conclusions of
our study to hold for both tracers. As discussed above (please

see Section Lumped constant in the discussion), the LC can
be seen as a weighted average between transport capacity and
phosphorylation rate ratios of glucose analogs to native glucose,
which in our case are equal to 0.3 and 1.4, respectively. The
LC therefore varies between these two values, depending on
the physiological condition, which affects the weight given to
the transport and to the phosphorylation rates. Consequently,
increasing the ratio vmax _t

′/vmax _t to 1.5 as it is sometimes
reported for FDG would make LC vary by 22% between baseline
condition and stimulation, and by 17% if this ratio is equal to
1.1, compared to 21% in our study, using otherwise the same
parameters as in Figure 6, with CA = 500µmol/100mL and
parameter set SH.

Reversible Michaelis-Menten Kinetics
Although modeling of glucose transport across the BBB has
been dominated by non-reversible Michaelis-Menten kinetics,
we chose to employ reversible Michaelis-Menten kinetics in our
study.

Glucose transport across the BBB involves transporters
(essentially GLUT-1), which have been studied extensively, and
several models have been derived to describe their kinetics
(Carruthers and Helgerson, 1991; Baldwin, 1993; Mueckler,
1994; Cloherty et al., 1996). These models are characterized
by a high degree of complexity, and all of them allow glucose
to bind back to the transporter just after its release, which
is supported experimentally (Carruthers and Helgerson, 1991;
Cloherty et al., 1996). Although reversible Michaelis-Menten
is an oversimplification of these models, it includes this latter
possibility, in contrast to non-reversible Michaelis-Menten
kinetics, and seems therefore more suitable to describe glucose
transport.

Although other studies employ reversible Michaelis-Menten
kinetics, only two to our knowledge assessed the relevance
of employing reversible instead of non-reversible Michaelis-
Menten kinetics (Cunningham et al., 1986; Gruetter et al.,
1998). In these studies, it has been shown that employing
reversible Michaelis-Menten generally leads to better agreement
with experimental data (Cunningham et al., 1986; Gruetter et al.,
1998; Seaquist et al., 2001). For example, under constant CMRglc,
non-reversible Michaelis-Menten-kinetics predicts a non-linear
relation between plasma and tissue concentration, the latter being
limited by a saturation value. In contrast, reversible Michaelis-
Menten predicts a linear relation between tissue and plasma
concentration (Gruetter et al., 1998). Experimentally, it has
been shown in several studies that concentrations in the tissue
and plasma are linearly related to one another over a large
range of glucose plasma concentration (250–3000µmol/100mL)
(Gruetter et al., 1998; Choi et al., 2001; Seaquist et al., 2001; van
de Ven et al., 2012), suggesting that reversible Michaelis-Menten
kinetics is more suitable than non-reversible Michaelis-Menten
to describe glucose transport. Finally, reversible Michaelis-
Menten kinetics does not involve the use of non-saturable
component of unidirectional influx as is the case in several
studies employing non-reversible Michaelis-Menten (Cremer
and Cunningham, 1979; Pardridge et al., 1982), and therefore
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better reflects the underlying process involved in facilitated
diffusion.

Neglecting Phosphatase Activity
In our model, we assume that glucose tracer is trapped in
the tissue once it has been phosphorylated, and we therefore
neglect the back reaction which is catalyzed by glucose-6-
phosphatase, allowing glucose tracer to be dephosphorylated.
In studies employing first order rate constants, the constant
for this latter reaction is often designated as k4

∗ and its
value is reported to be equal to approximatively one tenth
of k3

∗, the first order rate constant for the phosphorylation
of glucose by hexokinase. Several studies addressed the effects
of phosphatase activity on the estimation of LC and CMRglc

(Nelson et al., 1986; Dienel et al., 1988; Schmidt et al., 1992;
Gotoh et al., 2000; Hasselbalch et al., 2001b) and suggested
that they are negligible for experimental periods shorter than
45 min, and begin to appear with increasing time. Including
glucose-phosphatase activity in our model would require the
use of additional parameters and to make more assumptions,
including assumptions regarding the setup of the experiment
(tracer concentration, time of the infusion). While we think that
it would be valuable to get quantitatively more precise results, the
overall conclusions of our study are not believed to be sensitive
to this particular choice.

Neglecting Glucose Transfer between
Extravascular Compartments
In our model, we neglect any effects of glucose transfer
between extravascular compartments. In reality, glucose
might diffuse from nearby microvessels to counteract any
effects of CTH, meaning that our model might overestimate
tissue concentration-, and therefore concentration gradient
heterogeneity. On the basis of CMRglc, Ct, and the diffusion
coefficient for glucose in water, the diffusion time of glucose
before glycolysis is estimated to be 5 min corresponding to a
diffusion distance of 400µm, which is approximately 10 times
that of oxygen, and significantly exceeds the intercapillary
distance. This suggests that glucose diffuses not only to the
tissue immediately surrounding the nearest capillary, as
assumed in our model, but also to the tissue further away. To
estimate how this assumption impacts our conclusions, we
tested an alternative version of the model, where we assumed
no tissue concentration heterogeneity by considering only

one extravascular compartment where glucose is well stirred.
The results obtained with these two different assumptions
lead to almost same results (not shown), suggesting that
glucose mixing between extravascular compartments would
not affect our conclusion. We also quantified the extent to
which CTH introduces heterogeneity at the tissue concentration
level, by considering the distribution of extravascular glucose
concentrations in the state (MTTbl, CTHbl) and with the
parameter set SH. We observed that the highest concentration
in the decile (resp. centile) showing the lowest concentration
differs by only 22% (resp. 59%) from the lowest concentration
in the decile (resp. centile) showing the highest concentration.
As a comparison, the transit time of the blood flowing

through these compartments differs by 7 (resp. 43)-fold.
We speculate therefore that tissue glucose concentration
heterogeneity induced by CTH is too small to impact glucose
delivery.
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