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Abstract

Cytogenetic studies show that there is great karyotypic diversity in order Testudines

(2n = 26–68), and that this may be mainly attributed to the presence/absence of micro-

chromosomes. Members of the Podocnemididae family have the smallest diploid num-

bers of this order (2n = 26–28), which may be a derived condition of the group. Diverse

studies suggest that repetitive-DNA-rich sites generally act as hotspots for double-

strand breaks and chromosomal reorganization. In this context, we used fluorescent in

situ hybridization (FISH) to map telomeric sequences (TTAGGG)n, 45S rDNA, and the

genes encoding histones H1 and H3 in two species of genus Podocnemis. We also

observed conservation of the 45S rDNA and H1 histone sequences (probable case of

conserved synteny), but multiple conserved and non-conserved clusters of H3 genes,

which colocalized with the interstitial telomeric sequences in the Podocnemis genome.

Our results suggest that fusions have occurred between macro and microchromosomes

or between microchromosomes, leading to the observed reduction in diploid number in

the family Podocnemididae.

Introduction

The members of order Testudines may be subdivided in two suborders (Cryptodira and Pleur-

odira) and comprise one of the oldest lineages of existing vertebrates [1]. Studies have revealed

a high degree of karyotypic variation in this order; the diploid numbers (2n) range from 26 in

Peltocephalus dumerilianus (Pleurodira, Podocnemididae) [2,3] to 68 in Carettochelys insculpta
(Cryptodira, Carettochelyidae) [4,5], with 2n = 52 reported as the most frequent diploid num-

ber [5]. The karyotypic diversity of the Testudines is attributed mainly to the presence/absence

of microchromosomes. In suborder Cryptodira, the 2n ranges from 48 to 68 and numerous

microchromosomes are seen [4–6]. In suborder Pleurodira, representatives of Chelidae have

high diploid numbers and observable microchromosomes, with the 2n ranging from 50 to 58
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[5–7]. Species of superfamily Pelomedusoidea have the smallest diploid numbers: the 2n

ranges from 34 to 36 in Pelomedusidae, which have a few microchromosomes [7], and from

26 to 28 in Podocnemididae, which lack microchromosomes [3,8–10]. Cytogenetic studies of

the Podocnemididae (Erymnochelys, Peltocephalus and Podocnemis) have suggested that their

smaller diploid numbers represent a derived condition (chromosomal reduction) that was

likely caused by multiple chromosomal rearrangements [5,7,9,11].

Chromosome mapping of telomeric sequences has been widely used to identify chro-

mosomal rearrangements between the karyotypes of different vertebrate lineages, includ-

ing various mammals [12–15] amphibians [16,17] and fishes [18,19]. In diverse organisms,

the presence of interstitial telomeric sequences, often in association with heterochromatic

regions, appear to represent remnants of chromosomal rearrangements that have contrib-

uted to reorganizing the genomic architecture and providing new chromosomal forms

during evolution [17,20–24]. In chelonians, interstitial telomeric sequences have been

identified and examined in Podocnemis unifilis; the authors of these studies proposed

that the interstitial telomeric sequences were due to the amplification of telomere-like

sequences [10] or represented remnants of chromosomal fusions that reduced the diploid

number [5,10].

The grouped organization of rDNA and histone genes makes these sequences useful as

chromosomal markers for the study of chromosomal variation and genomic organization in

many groups of eukaryotes [25]. High mutation rates in intergenic regions of multigenic

families represent an important source of genetic variability and can generate sites that are

prone to undergoing double-strand breaks (DSB), which also promotes chromosomal reor-

ganization during karyotypic evolution [19,22,26,27]. In family Podocnemididae, studies

suggest that the 45S rDNA located on the first chromosome pair is conserved [3,5,10]. His-

tone genes have been mapped in diverse organisms [25,28–31], but physical chromosome

mapping of histone genes had not previously been reported in any member of order

Testudines.

It has been suggested that sites rich in repetitive DNA act as hotspots for DSB and chro-

mosomal reorganization [19,32–34]. This proposal has been supported by data from the in
situ mapping of multigenic families, microsatellite expansions and transposable elements in

the regions of syntenic breaks, as well as by studies of the chromosomal organizations of

many groups [19,32–36]. Because repetitive-DNA-rich regions contain many paralogous

genes copies, they facilitate DSB, non-homologous recombination and Robertsonian

fusion-based rearrangements [19,33,37]. These regions also undergo sequence exchanges

and duplications of subtelomeric regions, such as expansions of multigenic families located

near telomeres [38].

The fusion of microchromosomes between themselves and/or with macrochromosomes is

considered to be the main mechanism of diploid number reduction in amniotes and tetrapods

[39]. In scaled reptiles, it is believed that the large numbers of microchromosomes predicted as

the ancestral state were reduced by such fusions [40–42]. In Testudines, some cytogenetic data

strengthen the chromosome evolution hypothesis of the group, as ribosomal DNA and nucleo-

lus organizer region, localized in microchromosomes in testudinatas with high diploid number

(2n = 50–58) [5,43,44], while for the family Podocnemididae the same markers are reported

located on the first chromosome pair [3,5,10].

Here, in an effort to improve our understanding of the chromosomal evolution and geno-

mic dynamics of Podocnemis (Pleurodira, Podocnemidae), we used fluorescent in situ hybrid-

ization (FISH) to probe the telomeric, 45S rDNA and histone H1 and H3 sequences in two

species of the genus (Podocnemis expansa and Podocnemis unifilis).
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Materials and methods

Specimens and approval

We studied two species of genus Podocnemis, Podocnemis expansa and Podocnemis unifilis, uti-

lizing specimens kept in the Zoobotanical Park Adhemar Monteiro, Capitão Poço, Pará, Brazil.

This study was conducted in strict accordance with the ethical recommendations for the use

and management of chelonians in research, under a protocol approved by Ethics Committee

on Experimental Animal Research (license number 68–2015) and Biodiversity Information

and Authorization System (SISBIO; license number 42642–5).

Chromosomal preparation, DNA extraction and probe production

Lymphocyte culture and chromosomal preparation were performed as described by Viana

et al. [45]. Genomic DNA was purified from the muscle tissues and blood specimens using the

conventional proteinase K and phenol/chloroform extraction method [46]. The obtained

DNA was diluted in elution buffer and kept at– 20˚C until use. The genes encoding histones

H1 and H3 were polymerase chain reaction (PCR) amplified using the following primers: 5’-

AGA RGA GCG GCG TGT-3’ and 5’-CYT CTT CRC CTT CYT KG-3’ for histone H1; and 50-

ATG GCT CGT ACC AAG CAG AC(ACG) GC-30 and 50-ATA TCC TT(AG) GGC AT(AG)

AT(AG) GTG AC-30 for histone H3, both designed by Cabral-de-Mello et al. [47]. The amplifi-

cation reaction set up: genomic DNA = 80 ng, forward primer = 0.2 μM, reverse primer =

0.2 μM, dNTPs = 0.16 mM, Taq DNA Polymerase (Invitrogen) = 1 U, MgCl2 = 1.5 mM, reac-

tion buffer 1× (200 mM Tris, pH 8.4, 500 mM KCL). The amplification program set up: 4min–

95˚C/(1min—95˚C / 1min—60˚C / 2min—74˚C) 30 cycles / 5min—74˚C. The general telo-

meric sequence of vertebrates (TTAGGG)n was obtained as described by Ijdo et al. [48]. To

construct the 45S rDNA probe, we used the pTa71 plasmid, which contains the 5.8S, 18S and

28S genes and their respective intergenic spacers from Triticum aestivum [49]. The probes

were nick-translation-labeled with biotin 14-dATP or digoxigenin 16-dUPT using the BioNick

Labeling System (Invitrogen) and a DIG-Nick kit (Roche Applied Science), respectively.

Fluorescence in situ hybridization (FISH)

FISH was performed as described by Pinkel et al. [50], with some modification. The signals

were detected with avidin-CY3 (Sigma) and antidigoxigenin-FITC (Roche). Chromosomes

were counterstained with 4´,6-diamidino-2-phenylindole (DAPI; 0.2 μg mL-1) in Vectashield

H-100 mounting medium (Vector) and analyzed under an epifluorescence microscope (Nikon

H550S). The chromosomes were organized by size and categorized as metacentric (m), sub-

metacentric (sm), subtelocentric (st) or acrocentric (a) as previously described [51]. Approxi-

mately 30 metaphase spreads of each species were analyzed to determine the diploid number,

karyotypic formula and the presence/absence of interstitial telomeric sequences, rDNA and

histones H1 or H3.

Results

The two species presented a diploid number of 28 chromosomes. P. expansa had a fundamen-

tal number (FN) of 54 and a karyotypic formula of 24m/sm + 2st + 2a, while P. unifilis had

FN = 52 and a karyotypic formula of 22m/sm + 2st + 4a (Figs 1–3). The main karyotypic differ-

ence between the two species was in chromosome pair 9, which was submetacentric in P.

expansa and acrocentric in P. unifilis. Both species also showed a size heteromorphism for pair

10. No heteromorphic sex chromosome was found in either species.

Mapping of repetitive DNA suggests 2n reduction in Podocnemis (Testudines: Podocnemididae)
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Telomeric (TTAGGG)n signals were observed in the distal regions of all chromosome pairs

in P. expansa and P. unifilis. In addition, interstitial telomeric sequences signals were detected

on pairs 1–5, 7 and 13 in both species; besides those signals, it was detected interstitial telomeric

sequences in a chromosome of pair 6, in a single homologue, in the two species (Figs 1–3).

The 45S rDNA sites were found in the proximal region of the short arm of submetacentric

pair 1 in both species. Double-FISH showed that the 45S rDNA and the interstitial telomeric

sequences signals in the first chromosome pair are adjacent in P. expansa and P. unifilis (Fig 1).

Similar to the results obtained from FISH with rDNA, the H1 histone sequence was local-

ized in the proximal region of the short arm of the first chromosome pair in both species.

Fig 1. Double FISH with telomeric (TTAGGG)n probes and 45S rDNA. Telomeric (TTAGGG)n probes (in green)

show the interstitial telomeric sequences in the pairs 1–5, 7 and 13, and in a single chromosome of the pair 6, and 45S

rDNA (in red) in the proximal region of the short arm of the pair 1, adjacent to the interstitial telomeric sequences in

(a) P. expansa and (b) P. unifilis. Scale bar = 10μm.

https://doi.org/10.1371/journal.pone.0197536.g001

Mapping of repetitive DNA suggests 2n reduction in Podocnemis (Testudines: Podocnemididae)
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Double-FISH revealed that the signals of the histone H1-encoding genes are adjacent with the

interstitial telomeric sequences in both species (Fig 2).

In situ localization of the histone H3-encoding sequences revealed that clustered in the peri-

centromeric regions of six chromosome pairs (pairs 1–5 and 7) in P. unifilis (Fig 3B). Similar

signals were observed in P. expansa specimens, and also revealing clusters of histone

H3-encoding sequences in an additional chromosome pair (pairs 1–5, 7 and 13) (Fig 3A).

Double-FISH showed that the histone H3 signals consistently colocalized with the interstitial

telomeric sequences of both species, except for the interstitial telomeric sequences present in

the single chromosome from pair 6 in both species and in pair 13 of P. unifilis (Fig 3).

Fig 2. Double FISH with telomeric (TTAGGG)n probes and H1 histone genes. Telomeric (TTAGGG)n probes (in

green) show the interstitial telomeric sequences in the pairs 1–5, 7 and 13, and in a single chromosome of the pair 6,

and H1 histone genes (in red) in the proximal region of the short arm of the pair 1, adjacent to the interstitial telomeric

sequences in (a) P. expansa and (b) P. unifilis. Scale bar = 10μm.

https://doi.org/10.1371/journal.pone.0197536.g002
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Discussion

Podocnemididae have the smallest diploid numbers of the order Testudines, with 2n ranging

from 26 to 28 chromosomes [3,10]. Our results corroborate those previously obtained for P.

expansa and P. unifilis, in that we observed 2n = 28 chromosomes, with no microchromo-

somes [7–11,52]. We also observed evidence of possible chromosome fusions in these species.

Our data support the hypothesis that the diploid number has undergone reduction in Podoc-

nemididae and suggest a few chromosomal sites that may have been involved in these genomic

reorganization events.

Fig 3. Double FISH with telomeric (TTAGGG)n probes and H3 histone genes. Telomeric (TTAGGG)n probes (in

green) show the interstitial telomeric sequences in the pairs 1–5, 7 and 13, and in a single chromosome of the pair 6,

and H3 histone clusters (in red) co-localized with interstitial telomeric sequences and distributed in the

pericentromeric regions of the pairs 1–5, 7 and 13 in (a) P. expansa and the pairs 1–5 and 7 in (b) P. unifilis. Scale

bar = 10μm.

https://doi.org/10.1371/journal.pone.0197536.g003
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Our cytogenetic data revealed the presence of size heteromorphism for pair 10 in the karyo-

types of P. expansa and P. unifilis, which is consistent with the data obtained by Noronha et al.

[10] for P. unifilis. The authors of the prior paper suggested that this might reflect a size varia-

tion in the constitutive heterochromatin of one of the homologous chromosomes, which

would have originated through uneven crossover(s), transposition(s), and/or duplication(s) in

cis. However, whereas Noronha et al. [10] did not observe heteromorphism of chromosome

pair 10 in P. expansa, we observed such heteromorphism in the present study. This apparent

discrepancy can be explained by the shortening of the chromosomes that occurs during the

chromosomal preparation method used in the previous paper, complicating the identification

of heteromorphism. Our analysis further showed that this karyotypic variation did not involve

the 45S rDNA, (TTAGGG)n or histone H1 and H3 sequences.

Our identification of interstitial telomeric sequences sites in the pericentromeric regions of

both species corroborates the findings of Montiel et al. [5] and Noronha et al. [10] for speci-

mens of P. unifilis, but contrasts with the lack of such sites reported by Noronha et al. [10] for

P. expansa. We speculate that the interstitial telomeric sequences of the previously studied

examples of P. expansa could have undergone successive losses and/or degenerations, leading

to a gradual shortening of non-functional telomeric matrices [53]. In this context, such inter-

stitial telomeric sequences would be very short and might not be detected by the techniques

previously used for their visualization [54,55]. The shortening of the non-functional telomeric

matrix could be a possible cause for the visualization of the interstitial telomeric sequences in a

single homologue of the chromosome pair 6 in the present study. In addition, not all chromo-

somal fusions retain telomeric DNA repeats at the fusion points. The lack of telomeric hybrid-

ization signals at putative fusion sites may therefore suggest that the chromosome breakage

that preceded the fusion event occurred within the chromatin proximal to the telomeric region

[54].

Our preliminary analysis indicated that the interstitial telomeric sequences in the pericen-

tromeric chromosomal regions of P. expansa and P. unifilis can be can be categorized as het-

erochromatic interstitial telomeric sequences. This suggests that these regions may have been

involved in the diploid number reduction of Podocnemididae, since they are considered to be

unstable regions where chromosomal rearrangements may occur [20,56,57]. The fusion of

microchromosomes between themselves and/or with macrochromosomes is considered to be

the main mechanism of diploid number reduction in amniotes and tetrapods [39]. In scaled

reptiles, it is believed that the large numbers of microchromosomes predicted as the ancestral

state were reduced by such fusions [40–42]. In lizards, few microchromosomes are found, and

some chromosomal pairs are composed of tandem-fused chromosome segments that have

homologies with microchromosomes; this suggests that the karyotypes of lizards probably

arose via the in-tandem fusion of microchromosomes [58]. In this context, our detection of

interstitial telomeric sequences in the pericentromeric region of seven chromosome pairs of P.

expansa and P. unifilis reinforce the hypothesis that these interstitial telomeric sequences rep-

resent telomeric DNA remnants at points where micro- and macrochromosomes, or in tan-

dem between microchromosomes, underwent fusion during evolution. However, it is

important to emphasize that the interstitial repetitions of TTAGGG observed in this manu-

script may also represent effect of telomeric sequence amplification, or like-telomeres regions,

because generally these repetitions are lost, as previously reported in specimens of P. expansa
[10].

Studies have demonstrated that the 45S rDNA is localized in chromosome pair 1 of Podoc-

nemididae [3,5,10]. In P. expansa and P. unifilis the nucleolus organizer region (NOR) is

flanked by regions that display CMA3 signals, indicating that the 45S rDNA region of the first

chromosomal pair in these species is rich in GC base pairs [10]. In this context, we propose

Mapping of repetitive DNA suggests 2n reduction in Podocnemis (Testudines: Podocnemididae)
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that the first chromosome pair can be considered as a marker, with synapomorphic character-

istic to the Podocnemididae family. Or yet, it is possible that genes preserved between repre-

sentatives of the Podocnemididae family to signal a case of conserved synteny, because some

genes tend to stay together throughout evolution and remain as conserved syntenyc blocks in

a wide range of species [59–62]. So we constructed the ideogram that represent the physical

chromosome mapping indicating a probable conserved synteny segment for the family Podoc-

nemididae (Fig 4).

Previous studies found that 45S rDNA sites were localized in microchromosomes of the fol-

lowing: Hydromedusa tectifera (Pleurodira, Chelidae), which has 2n = 58 [43]; members of

genus Trachemys (Cryptodira, Emydidae), which has 2n = 50 [44]; Sternotherus odoratus
(Cryptodira, Kinosternidae), which has 2n = 56; Emydura macquarii (Pleurodira, Chelidae),

which has 2n = 50; and Chelodina oblonga (Pleurodira, Chelidae), which has 2n = 54 [5]. The

microchromosome localizations of 45S rDNA sequences in species with higher diploid num-

bers strongly support the idea that chromosomal fusions took place between rDNA-carrying

microchromosomes and macrochromosomes during the evolution of chromosome pair 1 of

Podocnemididae.

Although the physical mapping of histone genes have been done in some organisms, as

invertebrates [25,28,31] and fishes [29,30], the present work is the first to report the in situ
location of histone gene sequences in members of order Testudines. We found genes encoding

histones H1 and H3 in the proximal region of the short arm of the first chromosome pair, indi-

cating that this site is likely to be the main histone cluster for P. expansa and P. unifilis. This

reinforces the notion that this region houses several repetitive sequences and represents a syna-

pomorphic characteristic of family Podocnemididae, or yet a case of conserved synteny. How-

ever, the most striking case was the location of histone H3. Although the histone genes are

very conserved within species, the organization of their clusters within the genome may be het-

erogeneous [28,30,63]. The difference in the distribution pattern of many H3 sites not corre-

lated with H1 sites suggests an evolutionary dichotomy between those sequences in genome of

Fig 4. Ideogram of the common chromosomal region of the first pair of Podocnemis expansa and Podocnemis
unifilis. Representation of the relationships of the repetitive sequence investigated in this manuscript (telomeric

sequences in green; 45S rDNA and histones H1 and H3 in red) in respect with Nucleolus Organizer Regions (NOR)

and C-bands described in already published paper [5,10], indicating a probable segment conserved synteny for the

family Podocnemididae. The acronyms “PEX” make reference to species P. expansa and “PUN” to P. unifilis.

https://doi.org/10.1371/journal.pone.0197536.g004
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P. expansa and P. unifilis. Some studies have suggested that the H3 sequences may be dispersed

throughout genomes by ectopic recombination, invasion of transposable elements (TE), and/

or circular DNA [30,31]. In fishes, Pucci et al. [64] demonstrated that parts of TE may be

found in the intergenic regions of histone sequences, and suggested that such elements could

help disperse copies of histone genes throughout a genome. Thus, it is likely that the dispersion

of histone H3 in the studied species may be associated with TE insertions and/or genetic

hitchhiking.

Non-reciprocal sequence exchanges and duplications of subtelomeric regions are frequent,

especially when there is expansion of multigenic families close to telomeres [38]. Histone

sequences have features that are common to chromosome breakage regions, in that they are

arranged in tandem repeats, localized at pericentromeric or subtelomeric chromosome

regions, display transposition ability when invaded by TE, and exhibit high intra- and inter-

chromosomal recombination rates. In a similar pathway, interstitial telomeric sequences are

associated with hotspots for chromosomal breakage and are involved in DSB repair; they

appear to represent a favorable substrate for chromosome breakage and may thus promote

genomic instability (for details, see [55]). In the present study, the colocalization of H3 histone

with interstitial telomeric sequences in pericentromeric regions of the two species also suggests

that non-homologous recombination may have acted in the dispersion of these sequences.

Such sequences would logically trigger chromosomal rearrangements [20], since interstitial

telomeric sequences create chromosomal instability and are prone to DSB [65,66]. This would

support mainly end-to-end fusions, which could cause the observed reduction to 2n = 28.

Conclusions

In conclusion, we herein report that the karyotypes of two representative members of Podocne-
mis lack microchromosomes but harbor interstitial telomeric sequences. We provide evidence

that the fusions of macro- and microchromosomes or in tandem between microchromosomes

have occurred during the chromosomal evolution of this group, reducing the diploid number

(2n = 28). Furthermore, the genomic locations of rDNA and genes encoding histone H1 are

conserved on the first chromosome pair of Podocnemis, may represent conserved syntenyc

blocks, whereas the genes encoding histone H3 are distributed in multiple conserved and non-

conserved clusters that colocalized with interstitial telomeric sequences, can indicate non-

homologous recombination or associated with TEs insertions and genetic hitchhiking.

Acknowledgments

This study is part of Master dissertation of M.G.C. who was a recipient of a CAPES Scholarship

in Aquatic Ecology and Fishing (PPGEAP), UFPA. This research was supported: project coor-

dinated by J.C.P. CNPq (Universal–Proc. 475013/2012-3) on a Project coordinated by C.Y.N
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17. Suárez P, Cardozo D, Baldo D, Pereyra MO, Faivovich J, Orrico VGD, et al. Chromosome evolution in

Dendropsophini (Amphibia, Anura, Hylinae). Cytogenet Genome Res. 2013; 141:295–308. https://doi.

org/10.1159/000354997 PMID: 24107475

18. Scacchetti PC, Pansonato-Alves JC, Utsunomia R, Oliveira C, Foresti F. Karyotypic diversity in four

species of the genus Gymnotus Linnaeus, 1758 (Teleostei, Gymnotiformes, Gymnotidae): physical

mapping of ribosomal genes and telomeric sequences. Comp Cytogen. 2011; 5(3):223–235.

19. Barros AV, Wolski MAV, Nogaroto V, Almeida MC, Moreira-Filho O, Vicari MR. Fragile sites, dysfunc-

tional telomere and chromosome fusions: What is 5S rDNA role? Gene. 2017; 608: 20–27. https://doi.

org/10.1016/j.gene.2017.01.013 PMID: 28111257

20. Ruiz-Herrera A, Nergadze SG, Santagostino M, Giulotto E. Telomeric repeats far from the ends: mech-

anisms of origin and role in evolution. Cytogenet Genome Res. 2008; 122:219–228. https://doi.org/10.

1159/000167807 PMID: 19188690

21. Rosa KO, Ziemniczak K, Barros AV, Nogaroto V, Almeida MC, Cestari MM, et al. Numeric and struc-

tural chromosome polymorphism in Rineloricaria lima (Siluriformes: Loricariidae): fusion points carrying

5S rDNA or telomere sequence vestiges. Rev Fish Biol Fisheries. 2012; 22:739–749 https://doi.org/10.

1007/s11160-011-9250-6

22. Bruschi DP, Rivera M, Lima AP, Zúñiga AB, Recco-Pimentel SM. Interstitial Telomeric Sequences

(ITS) and major rDNA mapping reveal insights into the karyotypical evolution of Neotropical leaf frogs

species (Phyllomedusa, Hylidae, Anura). Molecular Cytogenetics. 2014; 7:22. https://doi.org/10.1186/

1755-8166-7-22 PMID: 24602295

23. Porto FE, Vieira MM, Barbosa LM, Borin-Carvalho LA, Vicari MR, Portela-Castro AL, Martins-Santos

IC. Chromosomal Polymorphism in Rineloricaria Lanceolata Günther, 1868 (Loricariidae: Loricariinae)

of the Paraguay Basin (Mato Grosso do Sul, Brazil): Evidence of Fusions and Their Consequences in

the Population. Zebrafish. 2014; 11:318–324. https://doi.org/10.1089/zeb.2014.0996 PMID: 25069031

24. Primo CC, Glugoski L, Almeida MC, Zawadzki CH, Moreira-Filho O, Vicari MR, Nogaroto V. Mecha-

nisms of Chromosomal Diversification in Species of Rineloricaria (Actinopterygii: Siluriformes: Loricarii-

dae). ZEBRAFISH. 2017; Volume 14, Number 2, Mary Ann Liebert, Inc. https://doi.org/10.1089/zeb.

2016.1386 PMID: 28027029

25. Cabral-de-Mello DC, Moura RC, Martins C. Cytogenetic Mapping of rRNAs and Histone H3 Genes in

14 Species of Dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae) Beetles. Cytogenet Genome

Res. 2011; 134:127–135 https://doi.org/10.1159/000326803 PMID: 21555878

26. Carvalho A, Guedes-Pinto H, Lima-Brito J. Physical localization of NORs and ITS length variants in old

Portuguese durum wheat cultivars. J Genet. 2011; 90(1):95–101. PMID: 21677393

27. Georgiev O, Karagyozov L. Structure of the intergenic spacer of barley ribosomal DNA repeat units: evi-

dence for concerted evolution. Genetics and Plant Physiology. 2012; 2:145–150.
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