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Abstract

De novo experimental drug discovery is an expensive and time-consuming task. It requires

the identification of drug-target interactions (DTIs) towards targets of biological interest,

either to inhibit or enhance a specific molecular function. Dedicated computational models

for protein simulation and DTI prediction are crucial for speed and to reduce the costs asso-

ciated with DTI identification. In this paper we present a computational pipeline that enables

the discovery of putative leads for drug repositioning that can be applied to any microbial

proteome, as long as the interactome of interest is at least partially known. Network metrics

calculated for the interactome of the bacterial organism of interest were used to identify

putative drug-targets. Then, a random forest classification model for DTI prediction was con-

structed using known DTI data from publicly available databases, resulting in an area under

the ROC curve of 0.91 for classification of out-of-sampling data. A drug-target network was

created by combining 3,081 unique ligands and the expected ten best drug targets. This net-

work was used to predict new DTIs and to calculate the probability of the positive class,

allowing the scoring of the predicted instances. Molecular docking experiments were per-

formed on the best scoring DTI pairs and the results were compared with those of the same

ligands with their original targets. The results obtained suggest that the proposed pipeline

can be used in the identification of new leads for drug repositioning. The proposed classifica-

tion model is available at http://bioinformatics.ua.pt/software/dtipred/.

Author Summary

The emergence of multi-resistant bacterial strains and the existing void in the discovery

and development of new classes of antibiotics is a growing concern. Indeed, some bacte-

rial strains are now resistant to last-line antibiotics and considered untreatable. Drug

repositioning has been suggested as a strategy to minimize time and cost expenses until

the drug reaches the market, compared to traditional drug design. Drug-target
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interactions (DTIs) are the basis of rational drug design and thus, we proposed a compu-

tational approach to predict DTIs solely based on the primary sequence of the protein and

the simplified molecular-input line-entry system of the ligand. In addition, network met-

rics are used to identify vital putative drug-targets in bacteria. Molecular docking experi-

ments were performed to compare the binding affinities between a given ligand and a

putative drug-target, as well as with their original targets. According to the docking

results, the predicted DTIs have better or similar binding activities than the ligand and

their real target, indicating the validity of the proposed model.

Introduction

Antibacterial resistance is becoming more frequent and is a growing concern, as bacterial

resistance to last-line antibiotics has been steadily increasing and is already high globally [1,2].

Development of antibacterial resistance is the result of a cascade of events triggered by contin-

ued selective pressure of routinely used antibiotics, constituting a major medical and pharma-

ceutical challenge. In response to continued selective pressure the bacterial genome undergoes

rapid evolution, which in turn is accelerated by the heavy focus on the same microbial path-

ways (protein synthesis, nucleic acid synthesis, cell wall synthesis and folate synthesis) [3,4].

Today, more than ever, new antibiotics or prodrugs able to neutralize antimicrobial resistant

pathogens are necessary.

A growing strategy in drug screening for the past decade is drug repositioning, or repurpos-

ing. By focusing on one of the undesired effects of an already commercialized drug in an

attempt to make it the main effect, it is possible to reposition that drug for new uses [5]. This

strategy can greatly reduce the cost of lead screening and the time required for a drug to reach

the market [6,7]. Some examples of successfully repositioned drugs for uses different from

their original indications include bupropion, fluoxetine, thalidomide and sildenafil [8,9]. Sil-

denafil is probably the most popular example, which was initially used to treat hypertension,

then angina, and currently for erectile dysfunction [10]. However, the repurposing of thalido-

mide should not be taken lightly, as it is an example of a withdrawn drug that could be reintro-

duced in the market [11]. From another perspective, neglected and rare diseases are also

becoming increasingly attractive for pharmaceutical companies, which can be partially attrib-

uted to the smaller initial investment necessary to repurpose drugs for such diseases [9].

This was on the basis of the proposed works by Cheng et al. [12] and Yang et al. [13]. Yang

et al. [13] developed the conditional random field (CRF) method, which integrates genomic,

chemical, functional and pharmacological data, in addition to the topology of DTI networks.

The CRF is a probabilistic graph model able to encode the drug-target network for DTI predic-

tion. They apply a stochastic gradient ascent approach and the contrastive divergence algo-

rithm to train their model and to identify the hidden associations between drugs and targets

[13]. While this methodology may have the potential to be applied to reposition certain drugs,

the use of functional similarity dismisses its use for the drug repositioning in infectious dis-

eases. The most likely result of using functional similarity for this purpose would be the predic-

tion of an antibacterial drug that would continue the selective pressure in the target

microorganism, perpetuating antibacterial resistance.

The work by Cheng et al. [12] consisted in the construction of a bipartite graph of drugs

approved by the United States Food and Drug Administration linked by binary associations to

their respective protein targets to infer drug-target interactions (DTI). Their proposed method,

network-based inference (NBI), uses known drug-target bipartite network topology similarity

to predict unknown DTI. NBI considers transition processes over the bipartite graph, and thus,
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if a drug and a protein target interact, it is possible to compute the predictive score. The predic-

tive score is calculated based on the number of drugs associated with each target, and on the

degree of these drugs. Some of their predictions were validated by in vitro assays, confirming

that five drugs had pharmacological effects on alternative targets [12]. While these results are

very promising for drug repurposing, we believe their proposed methodology could not be used

to solve the problem present here. Considering that Cheng et al. [12] used a DTI network com-

posed of human protein targets and their respective drugs to construct their inference model, if

they used a DTI network of a bacterial species of interest and the drugs targeting it (i.e., antibi-

otic drugs), the selective pressure problem would persist and result in antibacterial resistance.

Drug repositioning is especially challenging in infectious diseases for a number of reasons.

First, most antibiotics were originally isolated by screening soil-derived Actinomycetes between

1940 and 1960 [14]. Shortly after, the productivity of this antibiotic discovery strategy started

decaying rapidly, becoming obsolete. Second, the antibacterial “spectrum expansion” method-

ology, which consists of testing a drug able to suppress one bacterium species against other

species [15], is too expensive and time-consuming. In addition, despite high-throughput

screening against defined targets and rational drug design yielding several compounds, the

compounds identified were not effective at penetrating bacterial cells [14]. Nonetheless, efforts

to reposition drugs for infectious diseases are becoming increasingly attractive, especially

those using computational methodologies [16,17]. Computational methodologies allow rapid

and inexpensive screening of a broad spectrum of drugs and targets, either by screening

ligands for a certain drug-target, or screening potential drug-targets for a specific ligand.

Nzila et al. [15] reviewed several strategies used to reposition drugs for the treatment of

multi- and drug-resistant malaria and tuberculosis. Five strategies for drug repositioning were

presented: 1) assess similarity in cell biology and biological processes, using compounds that

target pathways that also exist in the microorganisms responsible for malaria and tuberculosis;

2) explore the microorganism genome information, aiming to identify putative drug targets

already validated in another organism; 3) revisit data from failed drug reposition attempts, as

inherent variables (e.g., animal model chosen, toxicity) could be poorly chosen or dealt with;

4) observe co-infection drug treatment efficacy thoroughly, as many diseases occur as co-infec-

tions with malaria and tuberculosis, and; 5) screen old and existing drugs. Indeed, in a recent

approach Iwata et al. [16] proposed a statistical model to infer new drug-disease associations

based on known drug-disease interaction knowledge. In their approach, each drug-disease

pair was defined a descriptor based on the phenotypic effects of drugs (e.g., main effect and

side effects) and with various molecular features of diseases (e.g., disease-causing genes, diag-

nostic markers, disease-related pathways, and environmental factors). Berenstein et al. [17]

took advantage of extensively studied organisms to develop an integrative network model for

the identification of bioactive drug-like molecules and candidate drug targets in neglected

pathogen proteomes. More recently, Savoia [18] reviewed several promising experimental

studies on drug repurposing of existing drugs for infectious diseases, most of them identified

serendipitously or by exploring the side-effects of the drugs.

Computational drug repurposing approaches invariably make use of previously known

drug-target associations. Finding alternative targets for known drugs has the added benefit of

advancing into clinical trials sooner, as their pharmacokinetics and safety profiles are known

by the regulatory authorities [19].

In this paper, we propose a methodology for screening putative DTIs for drug reposition-

ing. The proposed pipeline allows the identification of potential drug-targets in any bacterial

species of interest, and the prediction of putative DTIs between the identified drug-targets and

already commercialized drugs. The newly identified DTIs can provide key leads for drug
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repurposing towards problematic pathogens, being a time and cost-effective strategy to sup-

port the development of new antibacterials.

Results and Discussion

Classification model performance assessment and comparison

We constructed our random forest classification model based on the training set, and using the

values found by grid search for n_estimators (number of trees in the forest) and max_features
(number of features to consider when looking for the best split). We performed five-fold cross-val-

idation (internal validation) and tested the classification model against data sets independent of

the training data (external validation) to evaluate classification performance. The AUCs for five-

fold cross-validation and external data set validation were 0.99 and 0.91, respectively. After classify-

ing the external validation data set we computed the confusion matrix for the predicted instances

(Table 1). These results indicate that the presented model is valid and able to classify unseen data.

Analysis of the impact of network metrics

The network metrics calculated for the proteins in the methicillin-resistant S. aureus (strain

COL–MRSA COL) interactome were sorted by their betweenness centrality (BC) values in

descending order and filtered for a subgraph centrality (SC) value greater than 1023 as the best

putative drug-targets. Table 2 lists the ten best scoring proteins according to the calculated net-

work metrics. The prokaryotic DNA-directed RNA polymerase is an enzyme with multiple

subunits responsible for transcription in bacteria. It is an appealing drug target due to its

essentiality for bacterial growth and survival and its different features from mammalian coun-

terparts [20,21]. According to DrugBank, Rifabutin targets both the alpha and beta subunits in

Escherichia coli strain K12, while the beta subunit is targeted by Rifapentine (in Mycobacte-
rium tuberculosis), Rifampicin, Rifaximin, and Rifalazil (in E. coli strain K12).

The ribosome is responsible for protein synthesis in the cell and is composed of two sub-

units, the 50S (larger) and 30S (smaller). Drugs that target ribosomal proteins to inhibit bacte-

rial protein synthesis are either 50S inhibitors (chloramphenicol, clindamycin, macrolides,

and pleuromutilins) or 30S inhibitors (tetracycline and aminoglycosides) [22–24].

The movement of tRNA and mRNA through the ribosome at the end of each round of

polypeptide elongation is catalyzed by the prokaryotic elongation factor G (EF-G) [25]. Fusidic

acid inhibits ribosomal peptide elongation (and ribosome recycling) by targeting EF-G, form-

ing a strong complex when EF-G is ribosome-bound [26].

Protein secretion is crucial to export virulence factors and thus, to improve pathogenic sur-

vivability. The accessory Sec system is a specialized export system found in mycobacteria and

some Gram-positive bacteria, where the common element is the accessory SecA protein

SecA2. It was reported that in the specific case of S. aureus the SecA2/SecY2 system is required

for the export of the serine-rich surface protein adhesion (SraP), an important virulence deter-

minant in endovascular infection [27,28]. Inhibition of SecY2 was found to prevent SraP sur-

face expression almost completely [28].

Table 1. Confusion matrix of external validation data set classification.

Predicted positive Predicted negative

Condition positive 2,792 (TP) 542 (FN)

Condition negative 69 (FP) 5,126 (TN)

TN–true negative; FP–false positive; FN–false negative; TP–true positive

doi:10.1371/journal.pcbi.1005219.t001
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These literature findings suggest this heuristic is a good predictor to identify putative drug-

targets in bacterial species of interest. To generate our test data set we combined the best ten

proteins with the 3,081 unique ligands in our training and test data sets in an all-against-all

fashion, resulting in 30,810 DTIs in the test set.

Analysis of predicted putative drug-target interactions

In our model we opted to predict the probability of each DTI pair to interact, i.e., the probabil-

ity of a given DTI pair to be classified as a positive interaction. On a random forest classifier

the predicted class probability is computed as the mean probability of the predicted class from

the trees in the forest, where the single tree class probability is the fraction of samples of the

same class in a leaf. This allowed us to sort DTI pairs by their class probabilities for easier iden-

tification of the most probable putative DTIs. We selected the five most probable DTIs accord-

ing to our classification model for further analysis (Table 3). According to UniProt, the

proteins involved in these DTIs did not have solved tertiary structures at the time of writing.

Thus, we performed ab initio homology modeling following a well-established strategy [29].

First, we used the I-TASSER [30–32] online server to predict the tertiary structure of the pro-

teins with UniProt IDs Q5HIC8, Q5HID3, and Q5HCP4, using the default parameters. The

I-TASSER server uses three metrics to measure the confidence of each generated model: 1) C-

score, which is calculated based on the significance of threading template alignments and the

convergence parameters of the structure assembly simulations; 2) RMSD, which is an average

distance of all residue pairs in two structures, and; 3) TM-score, which weighs the small dis-

tance between all residue pairs stronger than the big distance, making the score insensitive to

the local modeling error (disregarded in RMSD). However, RMSD and TM-score are used

when the native structure is known, meaning their values in I-TASSER are predicted based on

Table 2. Top ten best putative drug-targets.

STRING ID UniProt ID Protein name SC BC

SACOL2213 Q5HDY4 DNA-directed RNA polymerase subunit alpha 1.85E+23 0.0329

SACOL0591 Q5HID0 30S ribosomal protein S12 2.76E+23 0.0198

SACOL0588 Q5HID3 DNA-directed RNA polymerase subunit beta 1.17E+23 0.0178

SACOL2675 Q5HCP4 Accessory Sec system protein translocase subunit SecY2 1.01E+23 0.0128

SACOL1292 Q5HGF8 30S ribosomal protein S15 2.65E+23 0.0112

SACOL0593 Q5HIC8 Elongation factor G 2.82E+23 0.0093

SACOL2234 Q5HDW3 50S ribosomal protein L22 3.29E+23 0.0049

SACOL2233 Q5HDW4 30S ribosomal protein S3 3.11E+23 0.0047

SACOL2207 Q5HDZ0 50S ribosomal protein L13 2.94E+23 0.0046

SACOL0545 Q5HIH4 50S ribosomal protein L25 1.06E+23 0.0045

SC–Subgraph centrality; BC–Betweenness centrality

doi:10.1371/journal.pcbi.1005219.t002

Table 3. Five best scoring putative drug-target interactions.

UniProt ID Protein Name ZINC ID Ligand name Class probability

Q5HIC8 Elongation factor G ZINC85537089 Proglumetacin maleate 0.93

Q5HID3 DNA-directed RNA polymerase subunit beta ZINC01550477 Lapatinib 0.93

Q5HID3 DNA-directed RNA polymerase subunit beta ZINC85537027 Tacrolimus 0.92

Q5HCP4 Accessory Sec system protein translocase subunit SecY2 ZINC19418959 Trifluoperazine dihydrochloride 0.92

Q5HIC8 Elongation factor G ZINC01535101 Rosuvastatin calcium 0.91

doi:10.1371/journal.pcbi.1005219.t003
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the C-score. The C-score, RMSD and TM-score values for Q5HIC8 are 1.53, 4.8±3.1Å, and

0.93±0.06, respectively. For Q5HID3 these values are 0.19, 8.8±4.6Å, and 0.74±0.11. Lastly, for

Q5HCP4, the C-score is 1.20, RMSD is 4.3±2.9Å, and TM-score is 0.88±0.07. In general, C-

score values are comprised between -5 and 2, with 2 being a good indicator of model confi-

dence. Since the C-score of Q5HID3 fell short of those of Q5HIC8 and Q5HCP4 we decided to

discard the modeled tertiary structure.

The accuracy of the generated models was estimated using ProSA-web [33], an established

tool used for the refinement and validation of experimental protein structures and in structure

prediction and modeling.

This tool parses the coordinates of the structure and evaluates its energy using a distance-

based pair potential and a potential capable of detecting solvent exposed residues. The Z-score,

an indicator of overall model quality, is calculated using these energies. Specifically, it mea-

sures the deviation of the total energy of the model’s structure, considering an energy distribu-

tion derived from random conformations [33]. All possible conformations of a given protein

have associated energy values. The number of conformations per energy interval, that is, the

energy density N(E), characterizes the energy distribution of said protein. By the law of large

numbers one can assume that the energy density follows a Gaussian distribution, defined by

the average energy Ē, and standard deviation σ. Since every distribution has an average and a

standard deviation, it is possible to normalize energy values, even without knowing the shape

of this distribution. Thus,

E!
ðE � ĒÞ

s
� z ð1Þ

These normalized values are called z-scores [34]. Lower z-score values are correlated with

typical native structures of similar size, while z-scores outside the characteristic range of the

native proteins indicate erroneous structures [33]. Z-score values for Q5HIC8 and Q5HCP4

were -10.39 and -3.95, respectively, suggesting the quality of the modeled tertiary structures

(Fig 1).

Fig 1. ProSA-web overall model quality output for Q5HIC8 (left) and Q5HCP4 (right), respectively. Panels show these proteins

are within the range of scores typically found for proteins of similar size.

doi:10.1371/journal.pcbi.1005219.g001
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Following ab initio structural modeling and validation, we performed docking experiments

between our predicted DTIs to test the theoretical viability of the ligands to actually bind the

modeled proteins. In addition, we also performed docking experiments between these ligands

and their real targets to create a benchmark. All docking experiments were carried out using

the SwissDock web-server [35] and AutoDock4 [36]. Table 4 summarizes the docking experi-

ments and benchmarks performed, as well as their results. The results of SwissDock docking

suggest that the ligands ZINC85537089 and ZINC01535101 have a greater binding affinity to

Q5HIC8 than to the targets they were originally synthesized for. Although not possessing the

lowest full fitness, the Q5HPC4-ZINC19418959 DTI pair still has a higher binding affinity

than the P26447-ZINC19418959 pair. Trifluoperazine dihydrochloride was shown to have

antiplasmid effects on a range of bacterial species [37,38]. Furthermore, it was reported that

Prochlorperazine (ZINC19796018), an antipsychotic drug with MCS Tanimoto similarity of

0.8276 with Trifluoperazine dihydrochloride (ZINC19418959), also possesses antibacterial

activity against several species [39]. Similar studies show evidence that statins, including Rosu-

vastatin calcium (ZINC01535101), also present activity against a range of bacterial species

[40,41]. Proglumetacin maleate (ZINC85537089) belongs to the acetic acid derivatives and

related substances class. While acetic acid has known antibacterial properties [42,43], Proglu-

metacin maleate does not have any antibacterial effects and had been actually labeled as non-

antibacterial [44,45].

The results of AutoDock4 docking were not so optimistic, with only ZINC19418959 show-

ing greater binding affinity to the predicted protein Q5HCP4 than to two of its real targets

(P63316 and P14416). Nonetheless, the evidence shown here is highly suggestive that the iden-

tified compounds are able to bind to the predicted drug-targets, attesting the performance of

the proposed methodology. Indeed, we looked further into the antimicrobial activity of acetic

acid and found reports of its ability to directly eradicate mature biofilms [46] and inhibit oral

microorganisms [47].

Experimental testing will be decisive in validating the presented findings. Namely, if these

DTIs actually occur, the identified ligands may not be able to cross the cell wall and cell mem-

brane, which would most likely require lead optimization to improve selectivity to the target

and efficiency of the ligand. Still, the robustness and reliability of the proposed pipeline can be

attested, as it performed well in both internal validation and external validation data sets.

Overall, we show that the combined use of network metrics, namely subgraph centrality

and betweenness centrality, are extremely useful for finding potential drug-targets in MRSA.

Table 4. Results of the molecular docking experiments performed for predicted and real (benchmark) DTIs.

ZINC ID UniProt ID Target type PDB ID SD AD4

85537089 Q5HIC8 Predicted N/A -2.69 -2.03

P23219 Real 1CQE -2.06 -3.93

P35354 Real 5F19 -2.29 -3.98

19418959 Q5HCP4 Predicted N/A -0.89 -5.69

P63316 Real 1J1D -1.50 -5.28

P62158 Real 1CLL -1.29 -7.16

P26447 Real 2Q91 -0.59 -6.83

P14416 Real 5AER -1.04 -5.56

01535101 Q5HIC8 Predicted N/A -2.90 -1.59

P04035 Real 1DQ8 -2.20 -2.63

Values are presented in cal/mol. SD–SwissDock; AD4 –AutoDock4.

doi:10.1371/journal.pcbi.1005219.t004
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Most of the ten best putative drug targets were part of the already heavy focused microbial

pathways (protein synthesis, nucleic acid synthesis and cell wall synthesis), which demon-

strates that this heuristic is able to identify essential proteins. Considering this, identification

of the accessory Sec system protein translocase subunit SecY2 as a putative drug-target seems

especially relevant, as it is part of a pathway that has not received much attention for antibacte-

rial development. Future studies will focus on this and other less explored pathways for antimi-

crobial development.

Even though we used the MRSA interactome as a case-study, this pipeline was developed to

be applied to any pathogen species of interest, as long as their interactome is at least partially

known. By reducing the number of possible drug-targets it is possible to save time and funds

to be directed to investigating the shorter drug-target pool. Moreover, DTI prediction further

narrows the lead screening window, allowing the possibility of drug-repurposing. Finally,

since these drugs are already commercialized there should be no inherent risks in using them

as antibacterials.

Methods

Pipeline overview

The proposed approach is schematized in Fig 2. Known DTI data were collected from publicly

available databases. From the ligand’s simplified molecular-input line-entry system (SMILE)

representation of a ligand the chemical structure data and physicochemical descriptors are

retrieved and encoded. Similarly, from the primary sequence of a protein a variety of physico-

chemical descriptors are retrieved. These descriptors are used to generate the feature vectors

that represent DTI pairs.

The proposed classification model uses random forest (RF) [48], as these run efficiently on

large data sets, provide accurate estimates, are able to estimate the most important features in

the classification task, and are less prone to overfitting. Classifier validation includes internal

Fig 2. Diagram of the proposed pipeline.

doi:10.1371/journal.pcbi.1005219.g002
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(five-fold cross-validation) and external validation on an independent data set. The classifica-

tion model is then used to predict putative DTIs between the estimated crucial drug-targets in

the methicillin-resistant Staphylococcus aureus (strain COL–UniProt taxonomy ID: 93062)

and all the drugs in our training and test data sets. The most essential drug-targets were esti-

mated by a combination of subgraph centrality (SC) and the betweenness centrality (BC) of

each protein in the bacterial interactome, as SC is highly correlated with the lethality of indi-

vidual proteins removed from the proteome, and BC is likely to be associated with protein

essentiality [49,50]. The methicillin-resistant S. aureus COL (MRSA) interactome was used to

test and validate the proposed pipeline. Finally, we use the SwissDock server and AutoDock4

to perform docking simulations for the best scoring predicted DTIs. The docking process for

SwissDock was set to “Accurate” and the region of interest was set to default, as this docking is

flexible. For AutoDock4, the search parameters were set to long (25,000,000 evaluations) and

carried out by a Genetic Algorithm. The docking process was performed using a Lamarckian

Genetic Algorithm. Hydrogen was added to each protein undergoing docking testing and Gas-

teiger charges were assigned. The spacing between grid points used was the default value

(0.375 Å). Additional docking simulations between the same ligands and their original drug-

targets are performed to establish benchmarks for comparison.

SwissDock is based in the EADock DSS engine [35,51]. In this engine, binding models are

generated and scored using a simple fitness function, minimized, and then clustered and eval-

uated according to their full fitness [51]. The most stable DTI complexes are those with the

lowest docking score values. Since the SwissDock server [35] allows the direct upload of PDB

codes (for target selection) and ZINC database accession identifiers (for ligand selection), pre-

processing of the structures for the docking experiments by us was not required. Instead, this

process is automatically performed in the SwissDock server, where the input molecules are

converted to the CHARMM [52] format. This is the selected format since docking assays are

performed in the CHARMM22/27 all-hydrogen force field. Protein target and ligand setup are

thoroughly described in [35]. The EADock DSS engine generates between 5,000 and 15,000

binding models near the target cavities of the entire protein surface and simultaneously esti-

mates their CHARMM energies on a grid. Binding models with the most favorable energies

are then ranked, considering the solvent effect using the FACTS implicit solvation model [53].

The most favorable binding model clusters are then presented in the results file.

Positive data set construction

In this work we collected positive drug-target interaction (DTI) data from two different

sources: (1) DrugBank [54] and (2) from a previous DTI prediction study by Yamanishi et al.

[55]. The DrugBank database freely provides high-quality curated data regarding drugs and

drug-targets for conducting in silico bio and chemoinformatics studies. DrugBank DTI data

was downloaded on October 4 2015 (version 4.3). All DTIs were conveniently represented as a

list of pairs, along with protein sequence information for each target, and SMILE format for

each drug. Any drug or drug target without a valid SMILE or protein sequence, respectively,

was removed from our data set. The latter comprises DTI data from KEGG BRITE [56,57],

BRENDA [58], SuperTarget [59] and DrugBank [54] from November 2007 and has been used

as a gold standard in several DTI prediction studies [12,60–63]. Since Yamanishi’s data [55]

contains positive instances from DrugBank, all duplicated entries between the two data sets

were removed (Fig 3). In this study we disregarded the specific classes of protein targets (i.e.,

enzymes, G-protein coupled receptors, ion channels, and nuclear receptors) and excluded pro-

teins with unreviewed status in the UniProt Knowledgebase [64] (i.e., proteins automatically

annotated in TrEMBL). The number of unique drugs in our positive data sets is 2,118,
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comprising 1,328 from DrugBank and 790 from Yamanishi’s data [55]. In the same data, the

number of unique drug-targets is 2,077 (706 from DrugBank and 1,371 from Yamanishi [55]).

Finally, the number of known DTIs between the drugs and targets in the positive data is

10,736 (3,530 from DrugBank and 7,206 from Yamanishi [55]).

Negative data set construction

Ideally, the negative data set should also exclusively comprise experimentally determined non-

DTIs. However, very few authors publish non-interacting protein data, as these are generally

associated with failed hypothesis. To collect experimental negative data we screened the Bin-

dingDB [65] and BioLip [66] databases for DTI pairs with experimental bioactivity values

greater than 10 μM (Fig 3). The same strategy was previously applied to compile negative

Fig 3. Data set construction.

doi:10.1371/journal.pcbi.1005219.g003
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examples in another DTI prediction methodology [67], since DTIs with bioactivity values

above this threshold are considered to possess weak binding activity. BindingDB data was

downloaded in December 2015, and BioLip data was downloaded in April 2016. The number

of unique DTIs with experimental bioactivity values greater than 10 μM in BindingDB and

BioLip is 14,985 and 1,223, respectively. In the former, the number of unique drugs and drug-

targets is 12,454 and 404, respectively. The latter comprises 894 unique drugs and 636 unique

drug-targets.

Machine learning data set construction

To ensure the discriminative power of the proposed approach, we used OpenBabel [68] to

extract the molecular fingerprints of the drugs in our data sets and to compare their chemical

similarity. We have found that within each data set (DrugBank, Yamanishi [55], BindingDB

and BioLip) and across all data sets, less than 1% of all possible drug pairs had a sequence simi-

larity score greater than 0.85. Then, we combined the described positive and negative data to

construct the data sets for classification model training and external validation (Fig 3). The

negative data collected from BindingDB and BioLip was merged and duplicated instances

were removed, resulting in 16,209 unique negative DTIs. Each instance of these data was ran-

domly selected and appended to one of the positive data sets (first to the Yamanishi [55] data

set and then to the DrugBank data set) until all instances were exhausted, while maintaining a

similar negative to positive ratio (approximately 1.5). Whenever a negative instance was ran-

domly selected from the negative data to be appended in either positive data set, that instance

was removed from the negative data set to ensure the absence of duplicated entries. This

resulted in 18,118 instances in the training data set, consisting of 7,206 positive instances from

the Yamanishi [55] data and 10,912 randomly selected negative instances. The external valida-

tion data set comprised 3,530 positive examples from DrugBank data and 5,297 randomly

selected negative examples, totaling 8,827 DTIs.

Calculation of the bacterial interactome network metrics

The interactome of the methicillin-resistant S. aureus (strain COL–MRSA COL) was down-

loaded from the STRING database [69] in January 2016. The 300,477 protein-protein interac-

tions (PPIs) downloaded included 36,230 unique proteins, comprised of 9,875 active proteins

and 26,355 obsolete in UniProt. From the active proteins, only 1,074 were reviewed and manu-

ally annotated in Swiss-Prot [64]. To avoid the presence of false-positive proteins in our exper-

iments, we only considered reviewed proteins in this study. As a result, the MRSA COL

interactome filtered for reviewed proteins comprised 93,952 PPIs. To calculate the subgraph

centrality (SC) and betweenness centrality (BC) of each protein in the MRSA COL interactome

we used NetworkX (https://networkx.github.io/), a Python software package for the creation

and study of complex networks.

The subgraph centrality (SC) metric can be calculated from the spectra of the adjacency

matrix of the network and was found to be better at discriminating the nodes of a network

than alternative measures (e.g., degree, closeness). In addition, it was shown that SC is more

highly correlated with the lethality of individual proteins removed from the proteome, com-

pared with the number of links per node [49,70]. For a given node u the SC is given by,

SCðuÞ ¼
XN

j¼1
ðvuj Þ

2elj ð2Þ

where vj is an eigenvector of the adjacency matrix A, corresponding to the eigenvalue λj
obtained from the graph.
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Bottlenecks in protein networks can be predicted by calculating the betweenness centrality,

BC, with greater values suggesting a higher “bottleneck-ness”. These are networks nodes that

have many shortest paths passing through them, making them key connector proteins. In

comparison with degree centrality (i.e., “hub-ness”), bottlenecks are significantly better associ-

ated with essentiality [50]. For a node v, the BC is given by,

BC vð Þ ¼
X

s;t2V

sðs; tjvÞ
sðs; tÞ

ð3Þ

where V is the set of nodes, the denominator is the number of shortest paths in the network,

and the numerator the number of those that pass through v.

Computation of drug and protein descriptors

Drug and protein descriptors were computed using PyDPI, a python package for chemoge-

nomics studies [58]. PyDPI calculates the most frequently used structural and physicochemical

properties of a protein given its amino acid sequence, molecular descriptors of a drug from its

smile representation, protein-protein interaction (PPI) descriptors, and DTI descriptors.

Using PyDPI we calculated 755 descriptors for each DTI– 432 protein descriptors and 323

drug descriptors. The 432 protein descriptors are divided as follows: 20 amino acid composi-

tion descriptors; 240 Moran autocorrelation descriptors, and; 147 CTD (21 Composition, 21

Transition, and 105 Distribution) physicochemical descriptors. The amino acid composition

group of descriptors represents the fraction of each amino acid type in the sequence. Autocor-

relation descriptors express the level of correlation between two proteins regarding specific

structural or physicochemical properties. The CTD descriptors group represent the amino

acid distribution pattern of specific structural or physicochemical properties along the primary

structure of a protein, including hydrophobicity, polarity, charge, polarizability, normalized

van der Waals volume, secondary structures and solvent accessibility. Drug features comprise

30 molecular constitutional descriptors, 23 molecular connectivity indices, six molecular prop-

erty descriptors, seven kappa shape descriptors, 12 charge descriptors, 166 Molecular Access

System (MACCS) keys, and 79 E-state fingerprints. Constitutional descriptors characterize the

chemical element and chemical bond type, path length, hydrogen bond and hydrogen accep-

tor, while molecular and valence connectivity are described with the connectivity indices. For

instance, Kappa indices reflect shape attributes of the molecule, and charge descriptors express

electronic features of the whole molecule and of particular regions (atoms, bonds, and molecu-

lar fragments). Molecular fingerprints encode chemical structures which consist of bins, with

each bin being a substructure descriptor associated with a specific molecular feature. A

detailed explanation of these and other descriptor groups is given in the original publication of

the PyDPI package [58].

Drug-target interaction classification

The predictive model used in this study was implemented using scikit-learn, a Python package

to perform data mining, data analysis and machine learning tasks [71]. To predict DTIs we

implemented a classification model based on random forests of decision trees (RF) [48], which

has been shown [72–74] as the best approach to solve complex classification problems in large

data sets with a significant number of features. A random forest is an ensemble of many classi-

fiers of the same base type (e.g., decision trees) which returns the class that is the mode of the

classes across the output of the individual trees in the forest [48]. Each tree is fully constructed

from a bootstrap sample drawn from the training set, by recursively splitting an upstream

node. When splitting a node in the tree, the chosen split is only the best split among a random

Computational Prediction of Drug-Target Interactions for Drug Repositioning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005219 November 28, 2016 12 / 17



subset of features to prevent correlation between trees. This results in a split that is not the best

split among all features, adding some randomness to the model and slightly increasing the for-

est bias. However, due to averaging between trees, the variance of the forest will also decrease,

more than compensating the increase in bias and resulting in an overall better model. The

trees are grown until a node cannot be split further. Conversely to the original model [48]

where each tree votes for a single class, prediction of the class of input samples in the scikit-

learn implementation is performed by averaging their probabilistic predictions. The number

of trees (n_estimators) and the number of features to consider when looking for the best split

(max_features) are important parameters when building an RF model. To define these param-

eters we used the grid search method and then adopted the parameters of the model with best

mean accuracy after five-fold cross-validation. Thus, the parameters used were 150 n_estima-
tors and 100 max_features. Since we only consider 100 features at each split, we believe over-

parameterization does not occur.

The pipeline for the construction of our classification model is very straightforward: (1)

train the RF; (2) assess internal classifier performance by five-fold cross-validation; (3) classify

the external validation data set to evaluate classifier performance on out-of-sampling data,

and; (4) classify the test data.

Predictive model validation

While a performance comparison with the method proposed by Cheng et al. [12] would be

ideal to ascertain how our approach compares with the state-of-the-art, the links to their data

sets are unavailable by the time of writing. Thus, to estimate the classification accuracy of the

implemented predictive models we used internal and external validation. Internal validation

was performed using five-fold cross validation, which consists of splitting the training set in

five subsets, using four subsets to train the model, and testing on the remaining subset. This is

done consecutively until every subset is used as the test set. External validation was performed

by using a data set independent from the training data as test set for the classification model.

This strategy is fundamental to better estimate the performance and generalizability of the clas-

sifier, as cross-validation estimates are usually biased towards over-performance [75,76].

Author Contributions

Conceptualization: EDC JPA JLO.

Data curation: EDC.

Formal analysis: EDC JPA JLO.

Funding acquisition: EDC JPA JLO.

Investigation: EDC JPA JLO.

Methodology: EDC JPA JLO.

Project administration: EDC JPA JLO.

Resources: JLO.

Software: EDC.

Supervision: EDC JPA JLO.

Validation: EDC JPA JLO.

Visualization: EDC JPA JLO.

Computational Prediction of Drug-Target Interactions for Drug Repositioning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005219 November 28, 2016 13 / 17



Writing – original draft: EDC JPA JLO.

Writing – review & editing: EDC JPA JLO.

References

1. ECDC (2015) Annual Epidemiological Report 2014—Antimicrobial Resistance and Healthcare-Associ-

ated Infections. Stockholm: European Centre for Disease Prevention and Control.

2. Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, et al. (2015) The global threat of antimicrobial resis-

tance: science for intervention. New Microbes and New Infections 6: 22–29. PMID: 26029375
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38. Spengler G, Miczák A, Hajdú E, Kawase M, Amaral L, et al. (2003) Enhancement of plasmid curing by

9-aminoacridine and two phenothiazines in the presence of proton pump inhibitor 1-(2-benzoxazolyl)-

3,3,3-trifluoro-2-propanone. International Journal of Antimicrobial Agents 22: 223–227. PMID:

13678825

39. Rani Basu L, Mazumdar K, Kumar Dutta N, Karak P, Dastidar SG (2005) Antibacterial property of the

antipsychotic agent prochlorperazine, and its synergism with methdilazine. Microbiological Research

160: 95–100. PMID: 15782943

40. Bergman P, Linde C, Pütsep K, Pohanka A, Normark S, et al. (2011) Studies on the Antibacterial Effects

of Statins—In Vitro and In Vivo. PLoS ONE 6: e24394. doi: 10.1371/journal.pone.0024394 PMID:

21912631

41. Masadeh M, Mhaidat N, Alzoubi K, Al-azzam S, Alnasser Z (2012) Antibacterial activity of statins: a

comparative study of Atorvastatin, Simvastatin, and Rosuvastatin. Annals of Clinical Microbiology and

Antimicrobials 11: 1–5.

42. Ryssel H, Kloeters O, Germann G, Schäfer T, Wiedemann G, et al. The antimicrobial effect of acetic

acid—An alternative to common local antiseptics? Burns 35: 695–700.

43. Halstead FD, Rauf M, Moiemen NS, Bamford A, Wearn CM, et al. (2015) The Antibacterial Activity of

Acetic Acid against Biofilm-Producing Pathogens of Relevance to Burns Patients. PLoS ONE 10:

e0136190. doi: 10.1371/journal.pone.0136190 PMID: 26352256
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