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A multi‑method approach 
to modeling COVID‑19 disease 
dynamics in the United States
Amir Mokhtari*, Cameron Mineo, Jeffrey Kriseman, Pedro Kremer, Lauren Neal & 
John Larson

In this paper, we proposed a multi-method modeling approach to community-level spreading of 
COVID-19 disease. Our methodology was composed of interconnected age-stratified system dynamics 
models in an agent-based modeling framework that allowed for a granular examination of the scale 
and severity of disease spread, including metrics such as infection cases, deaths, hospitalizations, 
and ICU usage. Model parameters were calibrated using an optimization technique with an objective 
function to minimize error associated with the cumulative cases of COVID-19 during a training period 
between March 15 and October 31, 2020. We outlined several case studies to demonstrate the model’s 
state- and local-level projection capabilities. We further demonstrated how model outcomes could 
be used to evaluate perceived levels of COVID-19 risk across different localities using a multi-criteria 
decision analysis framework. The model’s two, three, and four week out-of-sample projection errors 
varied on a state-by-state basis, and generally increased as the out-of-sample projection period was 
extended. Additionally, the prediction error in the state-level projections was generally due to an 
underestimation of cases and an overestimation of deaths. The proposed modeling approach can be 
used as a virtual laboratory to investigate a wide range of what-if scenarios and easily adapted to 
future high-consequence public health threats.

During the current COVID-19 pandemic, global efforts have taken place to contain the spread of the virus and 
develop effective non-therapeutic (e.g., social distancing, partial and full lockdowns) and therapeutic treatments 
(e.g., vaccination). As the COVID-19 pandemic has spread across the globe since early 2020, researchers have 
identified gaps in data and our understanding of ways in which the disease spreads within and between com-
munities including its potential impacts on general and at-risk populations1,2.

Computational modeling has been long employed to further increase our understanding of complex infec-
tious diseases as well as their development, spread dynamics, and potential treatments3. Using computational 
modeling, we have been able to identify common patterns in infectious diseases allowing us to leverage lessons 
learned through investigating past widespread disease events to predict who may get infected, where vaccination 
efforts should be prioritized, and how to limit the spread of infectious diseases in future events4–7.

Two methods, System Dynamics (SD) and Agent-Based Modeling (ABM), have been frequently used in 
recent years to investigate the complex nature of infectious diseases and their potential containment strategies. 
SD has a long history of being applied to the study of infectious disease epidemiology. This method operates 
at a high level of abstraction by compartmentalizing the population into different disease stages such as Sus-
ceptible (S), Infected (I), and Recovered (R), among others while assuming population homogeneity within 
each compartment8,9. Previous studies have identified limitations of SD in modeling infectious diseases such 
as inability to model multi-strain infections, deterministic nature, inability to model time-varying infectivity, 
and assumptions regarding population homogeneity, among others10. With the boom in computer processing 
capability in the twenty-first century, ABM has been recently used in modeling infectious disease dynamics11,12. 
ABM uses a bottom-up approach, where a complex dynamic system is described as interacting objects with 
their own behaviors such that systemic behavior can potentially emerge as a summary of the individual actions 
of agents13,14. ABM for infectious diseases focuses on incorporating individual information such as personal 
interactions, movements, and health information in an attempt to provide a more granular profile of disease 
spread as compared to the homogenous population of SD models. However, ABM is not without its limitations: 
(1) model parameters (e.g., reproduction number for infectious diseases) are often difficult to quantify; (2) model 
validation can be difficult to assess, particularly when modeling unobserved associations15; (3) ABM can become 
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exceedingly computationally intensive when applied to large populations16; and (4) lack of individualized data 
may result in increased model assumptions and uncertainty17.

In this paper, we propose a multi-method, also known as hybrid, modeling approach to community-level 
infectious disease spread. The idea of multi-method modeling is to integrate different methods of computational 
modeling to overcome the limitations of individual methods and get the most from each one18–20. Our Multi-
Method Community Disease Risk Model, hereafter referred to as M2-CDRM, combines the advantages of SD 
and ABM, allowing the simulation of spatially explicit scenarios representing future states of disease transmis-
sion within different communities and testing risk management policies across a wide range of scenarios using 
what-if analysis. The model integrates multiple layers of data including population demographics, observed cases 
of illness and death, and hospital demands at the local county-level within different states to make location-
specific predictions about COVID-19 illness and death. M2-CDRM can be used as a virtual laboratory to: (1) 
identify “hot spots” of potential areas (e.g., counties) with highest levels of infected individuals within the United 
States that can potentially act as infection hubs during the ongoing pandemic; (2) examine population-specific 
characteristics (e.g., gender, age) that can result in disproportionate distribution of mortality and morbidity in 
cases across the United States; (3) prioritize counties based on their perceived disease risks considering multi-
ple decision criteria; and (4) evaluate the effectiveness of candidate mitigation options (e.g., social distancing, 
wide-spread testing) aimed at reducing the likelihood of disease transmission within different communities. 
This paper outlines a case study of our proposed approach focused on modeling COVID-19 at a community 
level in the United States. Additionally, we introduced an example of how this model could be potentially used 
in conjunction with a Multi-Criteria Decision Analysis (MCDA) framework to assess and prioritize different 
communities in terms of their perceived risk of COVID-19.

Methods
Model overview.  We developed M2-CDRM as a highly customizable, evidence-based, and data-driven 
model by integrating an SD modeling approach within an ABM framework to study the COVID-19 transmis-
sion on multiple levels of aggregation in the United States (Fig.  1). The model is implemented in AnyLogic 
(Professional Edition, Version: 8.5.2, Link: https://​www.​anylo​gic.​com), a modeling framework that integrates 
support for SD, ABM, and other dynamic computational methods. M2-CDRM included all 50 states as well as 
their individual counties with a simulation period between March 15 and December 31st, 2020.

Disease transmission models.  With COVID-19, different subpopulations have been shown to be more 
or less susceptible, more or less likely to be infectious, and more or less likely to recover from the disease21–23. 
Therefore, treating the entire population with the same static assumptions about these rates can cause decision 
makers to miss key aspects of the disease’s likely trajectory. M2-CDRM addresses this limitation by including 
five separate SD models to simulate COVID-19 disease dynamics in distinct age cohorts within each individual 
county: 0–17, 18–44, 45–64, 65–74, and 75 + years of age. While these cohorts were initially selected to stratify 
the population based on their ages, the model design is flexible and can accommodate any age stratification. 
Each SD model was defined using eight compartments, including Susceptible (S), Exposed (E), Asymptomatic 
Infection (AI), Mild Infection (MI), Severe Infection (SI), Critical Infection (CI), Recovered (R), and Death (D). 
In each model, severe infection and critical infection represented general admission to the hospital as well as 
ICU admission, respectively. During the early stage of the pandemic, the confirmed COVID-19 case counts in 
the U.S. did not capture the total burden of the pandemic. This was primarily because testing was restricted to 

Figure 1.   Overview of the multi-method community disease risk model (M2-CDRM) including key data layers, 
modeling framework, and model outputs.

https://www.anylogic.com
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individuals with moderate to severe symptoms due to limited test availability24. Therefore, in order to correct for 
biased testing and imperfect diagnostic accuracy and provide a more realistic assessment of COVID-19 burden, 
we further adjusted simulated infection cases (I) by an under-reporting factor.

For each state, the spread of COVID-19 in county j and for age cohort i was modeled based on the following 
set of differential equations (Fig. 2):

where Si,j represents susceptible population in age cohort i (i = 1,…,5) in county j, Sj(0) represents initial suscepti-
ble population in county j across all age cohorts, Ei,j represents exposed population in age cohort i in county j, Ii,j 
represents symptomatic infectious population in age cohort i in county, AIi,j represents asymptomatic infectious 
population in age cohort i in county j, Hi,j represents hospitalized population (severe infection) in age cohort i in 
county j, Ci,j represents critically infected population (ICU admission) in age cohort i in county j, Ri,j represents 
recovered (non-infectious) population in age cohort i in county j, Di,j represents deceased population in age 
cohort i in county j, IP represents incubation period (days), FRAI represents fraction of asymptomatic popula-
tion, MIPH represents duration of mild infection prior to hospitalization (days), MIP represents duration of mild 
infection prior to recovery (days), AIP represents duration of asymptomatic infection (days), HRi represents 
hospitalization rate for age cohort i (i = 1,…,5), URF represents under-reporting factor of symptomatic infections, 
SIPICU represents severe infection period prior to transfer to ICU (days), SIP represents severe infection period 
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Figure. 2.   Disease transmission model including Susceptible (S), Exposed (E), Infected (I), Asymptomatic 
Infection (AI), Hospitalization (H), Critical Infection (C), Recovery (R), and Death (D) stages.
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prior to recovery (days), CRi represents critical infection rate in age cohort i (i = 1,…,5), CIPD represents criti-
cal infection period prior to death (days), CIP represents critical infection period prior to recovery (days), FRi 
represents fatality rate in age cohort i (i = 1,…,5), APIi represents average period of infectiousness in age cohort 
i (i = 1,…,5), and REt,j represents effective reproduction number at time t in county j.

ABM framework to connect SD models.  Within each county, we defined population age cohorts (0–17, 
18–44, 45–64, 65–74, 75 +) as individual agents. Each of these individual agents was then coupled with all other 
agents within the same county with explicit interactivity patterns. By focusing on micro-level interactions, this 
framework was able to explain emergent patterns such as transient dynamics on a system level and identify 
important mechanisms, taking into account heterogeneity of entities (e.g., individual age cohorts as agents) and 
spatial and temporal heterogeneity of processes (e.g., variability in disease dynamics across different counties). 
Additionally, the ABM structure allowed for the possibility of advanced data inputs such as age-specific repro-
duction numbers, interaction, and mobility patterns across age cohorts and counties, county- and age-specific 
adherence to social distancing policies, and what-if analysis such as customizable vaccine distribution networks. 
Outputs from our framework were timeseries of system-level variables further stratified by age cohorts, counties 
and states: (1) number of infected; (2) number of hospitalized; (3) number of ICU admissions; (4) number of 
deaths; and (5) hospital utilization considering available general and ICU beds in different counties.

Effective reproduction number.  Since a population will rarely be totally susceptible to an infection in the 
real world, the effective reproduction number, REt, and not the basic reproduction number, R0, should be used as 
a measure of disease transmissibility at time t25. REt represents the expected number of new infections caused by 
an infectious individual in a population where some individuals may no longer be susceptible. Estimates of REt 
are typically used to assess how changes in policy, population immunity, and population behaviors, among other 
factors, have affected transmission at specific points in time26–29.

Using observed number of daily cases of COVID-19 in county j, we calculated timeseries of REt,j based on the 
methodology discussed in Cori et al. and implemented in the R-package EpiEstim30. This package implements a 
Bayesian approach for quantifying transmissibility over time during an epidemic and reports a 95% confidence 
interval for REt. More specifically, it allows estimating the instantaneous and case reproduction numbers dur-
ing an epidemic for which a timeseries of incidence is available and the distribution of the serial interval (time 
between symptoms onset in a primary case and symptoms onset in secondary case) is more or less precisely 
known. To calculate REt,j, we assumed the median, mean, and standard deviation of the serial interval were 4.0, 
4.7, and 2.9 days, respectively31. REt,j was calculated as:

where t0,j represents time associated with the first observed case of illness in county j, tEC,j represents time associ-
ated with the end of model calibration period in county j (i.e., the last date with observed case of illness), and RE∗t,j 
represents output from the EpiEstim package. β0,j and β1,j are coefficients from fitting an exponential regression 
model to the estimated RE∗t,j values in the last two weeks, assuming that RE∗t,j continue the same trend observed 
in the past two weeks. The minimum value of 0.3 represents the estimated reproduction number in the City of 
Wuhan after the lockdown of the region26.

Calibration of model parameters.  Model calibration is the process of identifying the model parameter 
configurations that best explain the observed real-time values (e.g., observed cases of illness). While simple 
models with fewer parameters can be potentially calibrated by manually adjusting parameter values, calibra-
tion of complex models, such as M2-CDRM, requires extensive computational effort and resources. We used a 
simulation-based “optimization” method to calibrate selected model parameters by estimating their values and 
plausible ranges such that the model outcomes would closely match existing historic data of number of observed 
cases of illness.

The optimization engine in AnyLogic automatically finds the best values for different model parameters 
with respect to certain pre-defined constraints and requirements using the OptQuest Engine that incorporates 
metaheuristics to guide its search algorithm toward better solutions32. Inputs selected for model calibration 
including their ranges of plausible values are listed in Table 1. We performed the model calibration at both state 
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RE∗t,j; t0,j ≤ t ≤ tEC,j
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(

0.3, exp
(

β0,j + β1,j × t
))
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Table 1.   Parameters used in model calibration and their plausible range of values. a Constraints were defined 
for critical infection rates for different age cohorts as: CR0-17 < CR18-44 < CR45-64 < CR65-74 < CR75+.

Model parameter Description Range of values

MIP Mild infection period prior to recovery (days) 2–14

MIPH Mild infection period prior to hospitalization (days) 2–14

IP Incubation period (days) 1–14

CR Critical infection rates for different age cohorts (%)a 1–95

URF Under-reporting factor 1–10
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and individual county levels by matching the number of reported cases of COVID-19 with model predictions, 
while defining constraints with respect to the expected number of deaths in the state (or individual counties). 
Considering October 31st, 2020 as the model training end date, we used a weighted L1 norm equation as:

where Y = {Yi} (i = 1,…,T) is the target timeseries until day T (i.e., October 31st, 2020), X = {Xi} (i = 1,…,T) is the 
model output (i.e., number of cases of illness) and a is the decay factor. We used a = 0.4 in the model optimization 
as reported by Venkatramanan et al.33.

Multi‑criteria framework for prioritizing counties based on the perceived risk of COVID‑19.  We 
used an MCDA framework to generate risk maps for individual states that highlight counties where surveillance 
and disease control measures could be potentially targeted based on the perceived levels of COVID-19 risks. 
The methodological steps required in our MCDA approach encompassed: (i) selection of decision criteria; (ii) 
definition of criterion measures; (iii) definition of scores assigned to each decision criterion representing low 
(1), medium (3), and high (9) perceived levels of risk; (iv) attribution of weights to decision criteria and (v) 
aggregation of risk scores across all selected decision criteria to generate the spatial maps for perceived levels of 
risk in each state.

Decision criteria, measures, and risk scores for ranking individual counties in each state are provided in 
Table 2 and briefly discussed in the following.

•	 New daily cases (NDC) this criterion, comparable to incidence in epidemiology represents the incident 
number of COVID-19 cases in a community. We considered a three-day average of the predicted new cases 
(across all age cohorts) and a cut-off value of less than five new cases per 100,000 residents to score this 
criterion. A risk score of low (1), medium (3), or high (9) was assigned to this criterion in each county if the 
cut-off value was met within 21 days since the training end date (October 31st, 2020), after 21 days since 
the training end date but before the end of the simulation period (December 31st, 2020), or was never met 
during the simulation period, respectively.

•	 Decline in new daily deaths (NDD) we assumed that a county must experience a sustained decline in the three-
day rolling average of predicted daily hospital deaths over the course of a 21-day period to be considered low 
risk. Alternatively, counties that have seen few COVID cases overall would satisfy this metric if the three-
day rolling average of daily new hospital deaths has never exceeded one. We used three-day average of the 
projected number of deaths across all age cohorts in each county and scored the county as low (1), medium 
(3), or high (9) if the cut-off value was met within 21 days since the training end date, after 21 days since the 
training end date but before the end of the simulation period, or was never met during the simulation period, 
respectively.

•	 New hospitalizations (NH) In addition to monitoring the decline in disease trajectory, it is important to 
monitor the absolute level of infection in each county. It is possible for a county that has seen a high level of 
infections to see a sustained decline in hospitalizations and deaths over a 21-day period while still having 
an underlying infection rate that is too high. Using the total number of projected new hospitalization cases 
across all age cohorts, each county needed to have fewer than two new hospitalizations per 100,000 residents 
to be considered low risk. We used three-day average of the projected number of new hospitalizations across 
all age cohorts in each county and scored the county as low (1), medium (3), or high (9) if the cut-off value 
was met within 21 days since the training end date, after 21 days since the training end date but before the 
end of the simulation period, or was never met during the simulation period, respectively.

•	 ICU bed utilization (BU) It is critical that regional healthcare systems have sufficient capacity for ICU beds. 
Taking into account the projected number of critically infected patients in each county across all ages and 
the ICU bed capacity in each county, we scored each county as low (1), medium (3), or high (9) if the cut-off 
value of 50% was met within 21 days since the training end date, after 21 days since the training end date but 
before the end of the simulation period, or was never met during the simulation period, respectively.

(11)d(X ,Y) =

∑

T

i=1 α
T−i|Xi − Yi|

∑

T

i=1 α
T−i × Xi

Table 2.   Decision criteria, measures, and risk scores for ranking individual counties in each state.

Decision criterion Criterion measure

Criterion risk scores

Low (1) Medium (3) High (9)

Three-day rolling average of new 
cases < 5/100K population

Criterion met within 21 days since 
the training end date

Criterion met before the end of the 
simulation

Criterion not met before the end of 
the simulation

Three-day rolling average of new 
deaths < 1

Three-day rolling average of new 
hospitalizations < 2/100K population

ICU bed utilization < 50%
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To simplify the scoring approach, we assigned equal weights to selected decision criteria and calculated 
aggregate risk scores across all decision criteria for different counties (RSi):

Summary of the model inputs.  Data used in M2-CDRM came from a variety of sources, grouped into 
three categories of disease impact, demographic data, and hospital resources. Summary data used in the model, 
including data sources is listed in Table 3.

Results
State‑level predictions.  Tables 4 and 5 summarize the model predictions for number of COVID-19 cases 
aggregated across all age cohorts in the 20 most populous states in the United States. We reported a range of val-
ues for two-week (November 14, 2020), three-week (November 21, 2020), and four-week (November 28, 2020) 
out-of-sample model predictions based on the 95% confidence intervals reported for REt. We also reported the 
cumulative observed values for COVID-19 cases by selected dates and % error calculated by comparing the 
observed values with mean predictions. For each of these states, selected model parameters (listed in Table 1) 
were calibrated to replicate the observed cumulative number of cases between March 15 and October 31, 2020 
across the whole state. We further used the state-wide calibrated model parameters for all individual counties 
in the selected state assuming no change in disease epidemiology in different localities (e.g., no change in criti-
cal infection rate for a particular age cohort across different counties in California). Summary results typically 
showed underestimated number of COVID-19 cases with variability in % error across different states. Further-
more, we observed relative decrease in model accuracy when period of out-of-sample predictions was increased 
from two to four weeks. For example, average % error for two-week out-of-sample prediction of cases was − 6.7% 
across all 20 states with a range of values between − 1.1% (California) and -16.9% (Michigan). We observed 
lower accuracy for the four-week out-of-sample case predictions with an average % error value of − 16.2% across 
all 20 states and a range of values between − 7.1 and − 32.4% for California and Michigan, respectively. Model 
results showed similar patterns for predicted number of COVID-19 deaths across these selected states (Table 5); 
however, the prediction accuracies were typically higher for cumulative number of deaths by selected dates. 
For example, average % error for two-week out-of-sample prediction of deaths across selected states was 3.2% 
(compared to − 6.7% error for prediction of cases) with a range of values between 0.1 and 15.2% for Missouri 
and Washington, respectively.

County‑level predictions.  For each of the state-level predictions listed in Tables 4 and 5, our model gener-
ated results for each individual county within a state, allowing for analysis of the heterogenous disease growth 
patterns across localities. Although each county used an independent predicted timeseries for REt based on the 
county-specific observed cases of illness, a simplifying assumption was made that calibrated disease param-
eters (listed in Table 1) were homogenous across all counties in a particular state when model was trained to 
replicate the state-level observed cumulative number of cases and deaths between March 15, 2020–October 31, 
2020. We further investigated the impact of this assumption on the model prediction accuracy by conducting a 
county-level calibration experiment across three localities in Virginia, including Richmond City, Montgomery 
County, and Norfolk City. The experiment included two scenarios to evaluate the out-of-sample model predic-
tion accuracy between November 1 and 28 based on: (1) calibrated model parameters using state-level observed 
data (223,568 and 3973 for observed cumulative cases of illness and deaths in Virginia, respectively); and (2) 

(12)RSi = NDCi + NDDi + NHi + BUi

Table 3.   Data used in M2-CDRM including their sources.

Data element Data application Reference

Disease impact

Number of observed daily cases in different counties Compared to predicted number of cases in different counties 
during the model calibration step USA Facts: https://​usafa​cts.​org

Number of daily deaths in different counties Used as constraints during model calibration based on the 
observed vases of illness in different counties USA Facts: https://​usafa​cts.​org

Demographic data

County-level population density and age distribution Used to initialize the compartmental models for selected age 
cohorts

Census Bureau: https://​www.​census.​gov/​progr​ams-​surve​ys/​
decen​nial- census/data/datasets.2010.html

Hospital resources

Age-specific hospitalization rates Used in the disease transmission model for each age cohort CDC: https://​www.​cdc.​gov/​coron​avirus/​2019-​ncov/​covid-​
data/​covid​view/​index.​html#​hospi​taliz​ations

Number of general and ICU beds

Numbers of general and ICU beds adjusted by the available 
occupancy rates were used to calculate ICU and hospital 
utilization rates in different counties. Once ICU capacity is 
reached in a county, new patients in need of ICU admission 
would be transferred to the deceased population compart-
ment (Di,j)

Centers for Medicare & Medicaid Services’ Healthcare Cost 
Report Information System (HCRIS): https://​www.​cms.​gov/​
Resea​rch-​Stati​stics-​Data-​and-​Syste​ms/​Stati​stics-​Trends-​and-​
Repor​ts/​Medic​are-​Provi​der-​Cost-​Report

Hospital occupancy rates
State-level acute care and critical access hospital occupancy 
rates in urban vs rural areas were used to adjust number of 
available general and ICU beds available in each county

American hospitals directory: https://​www.​ahd.​com/​news/​
HFM_​DataT​rends_​2018_​July.​pdf

https://usafacts.org
https://usafacts.org
https://www.census.gov/programs-surveys/decennial
https://www.census.gov/programs-surveys/decennial
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html#hospitalizations
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html#hospitalizations
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Cost-Report
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Cost-Report
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Cost-Report
https://www.ahd.com/news/HFM_DataTrends_2018_July.pdf
https://www.ahd.com/news/HFM_DataTrends_2018_July.pdf
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county-level calibrated model parameters based on the county-specific observed data (6606, 3884, and 6423 for 
observed cases and 82, 15, and 89 for observed deaths in Richmond City, Montgomery County, and Norfolk 
City, respectively).

Figure 3 shows the resulting timeseries for the out-of-sample model predictions between November 1 and 
28, 2020 for selected localities in Virginia including cumulative number of observed COVID-19 cases during the 
same time period. Each predicted timeseries represents model results for the cumulative COVID-19 cases based 
on the mean REt value as well as range of cases based on the 95% confidence interval associated with REt (shaded 
areas). Results indicated that conducting county-level model calibration led to increase in model accuracy. For 
example, % errors for four-week out-of-sample predictions were − 11.3%, − 15.4%, and − 8.4% for Richmond 
City, Montgomery County, and Norfolk City, respectively, when model parameters were calibrated using state-
level cumulative number of observed cases. When model parameters were calibrated for each individual county, 
% errors reduced to − 6.9%, − 7.8%, and − 4.0% for the selected counties.

State‑level risk maps using MCDA.  In addition to out-of-sample case and death predictions across dif-
ferent localities in individual states, we utilized various county-level model outputs, including three-day rolling 
average of new daily cases per 100,000 residents, three-day rolling average of daily new hospital deaths, three-day 
rolling average of new hospitalizations per 100,000 residents, and ICU bed utilization percentages, and time to 
meet their cut-off values (listed in Table 2) to score individual counties with respect to their perceived levels of 
COVID-19 risks. Examples of model outputs for selected decision criteria are shown in Figs. 4,5,6 and 7 for four 
localities in Virginia, including Charlottesville City, Hampton City, Portsmouth City, and Spotsylvania County. 

Table 4.   Model performance for two-, three-, and four-week out-of-sample predictions of the cumulative 
COVID-19 cases in the top 20 populous states.

State

Two-week out-of-sample predictions 
(November 14, 2020)

Three-week out-of-sample predictions 
(November 21, 2020)

Four-week out-of-sample predictions 
(November 28, 2020)

Range of 
predictions Observed % Error

Range of 
predictions Observed % Error

Range of 
predictions Observed % Error

California 964,486–
1,017,792 990,096 − 1.1 991,330–

1,101,984 1,053,945 − 3.3 1,021,323–
1,211,919 1,147,417 − 7.1

Texas 927,085–
1,044,511 984,377 − 3.0 944,996–

1,152,937 1,050,255 − 5.0 963,036–
1,275,089 1,128,131 − 7.6

Florida 819,518–
844,319 852,174 − 2.7 836,321–

882,500 897,322 − 4.9 853,484–
927,956 953,300 − 7.7

New York 515,129–
543,158 536,214 − 2.3 521,856–

573,152 568,847 − 5.6 528,035–
608,774 607,070 − 9.4

Pennsylvania 215,722–
232,495 238,657 − 7.0 223,702–

254,648 275,513 − 14.9 231,659–
281,377 321,070 − 22.7

Illinois 419,938–
459,360 511,169 − 15.2 436,352–

508,202 597,818 − 23.0 452,833–
565,200 674,072 − 27.5

Ohio 221,957–
242,352 261,483 − 12.1 230,590–

267,693 305,365 − 20.1 239,068–
297,812 371,908 − 30.3

Georgia 347,637–
370,294 376,032 − 5.8 351,721–

391,865 391,429 − 7.4 355,332–
416,164 408,643 − 9.3

North Caro-
lina

278,608–
295,263 297,973 − 4.4 284,890–

314,174 316,955 − 6.9 290,521–
334,812 343,408 − 11.0

Michigan 195,442–
218,456 245,252 − 16.9 204,300–

246,177 296,840 − 26.3 213,149–
279,695 347,746 − 32.4

New Jersey 245,806–
255,510 260,430 − 4.1 253,457–

271,881 285,519 − 8.7 261,572–
292,107 313,863 − 13.1

Virginia 184,386–
197,766 194,906 − 3.0 187,695–

210,732 206,751 − 5.5 190,612–
224,668 223,568 − 9.9

Washington 108,774–
115,661 120,011 − 7.5 110,811–

123,182 134,118 − 14.6 112,670–
131,872 151,018 − 21.9

Arizona 249,274–
255,512 263,133 − 4.3 253,739–

265,544 279,896 − 7.8 258,348–
277,724 306,868 − 13.6

Massachusetts 168,537–
179,938 180,753 − 4.9 173,406–

198,166 197,561 − 9.0 178,620–
224,517 214,874 − 11.9

Tennessee 268,495–
293,014 289,749 − 4.2 279,257–

322,714 320,729 − 7.9 289,913–
356,839 345,853 − 9.0

Indiana 186,156–
203,048 222,186 − 13.3 193,852–

224,421 265,099 − 22.6 201,574–
250,066 309,503 − 29.3

Missouri 190,799–
207,726 220,768 − 10.6 198,389–

228,183 253,473 − 17.3 205,381–
250,666 282,792 − 21.6

Maryland 148,742–
159,294 156,709 − 2.9 151,885–

170,824 169,804 − 7.1 154,884–
184,520 185,464 − 11.8

Wisconsin 256,093–
279,759 293,812 − 9.5 275,475–

320,478 342,155 − 14.2 295,568–
369,722 386,441 − 16.1
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Model results typically showed substantial variability in number of days required to achieve the scoring require-
ments for selected decision criteria since the training end date (October 31, 2020). For example, for the counties 
that have not met the criterion requirement before October 31, number of days to achieve a three-day rolling 
average of new cases per 100,000 residents of five or less was 59.7 days on average with a minimum value of only 
two days for Norton City while 85 out of 133 counties (64%) did not satisfy this requirement by the end of the 
model simulation time of December 31, 2020 (data not shown here).

We also calculated the aggregated risk scores across selected decision criteria for all counties in Virginia. The 
risk map based on the aggregated scores is shown in Fig. 8. Aggregated risk scores showed spatial variability 
with an average value of 14.3 across all counties and minimum and maximum values of 4 and 30, respectively. 
The model typically predicted higher aggregated risk scores (15 or higher) in the southwestern localities while 
lower scores (15 or lower) in the northern and eastern localities of the state, primarily due to additional hospital 
resources (e.g., number of general and ICU beds) in those counties.

Discussion
The COVID-19 pandemic has resulted in a global health crisis with unprecedented growing economic, social, and 
health impacts not seen since the 1918 Spanish flu pandemic. Computational models have played an important 
role in the ongoing crisis by providing insights regarding the disease spread dynamics as well as the potential 
impacts of public policies at the local, national, and global levels. Different models with a wide range of under-
lying methodologies have been used by policy makers and public health officials to assess the evolution of the 
COVID-19 pandemic, design and analyze control measures, and study various what-if scenarios. For example, 
the Centers for Disease Control and Prevention (CDC) has been working with different partners to bring together 
weekly COVID-19 forecasts based on statistical and mathematical models aiming to predict national and state 
numbers of new and total COVID-19 deaths as well as cases of infection and hospitalization34. Table 6 provides 
a summary of selected COVID-19 computational models available from the CDC website including their key 
features, geographic scope, methodology, frequency of updates, and ability to conduct what-if scenario analysis. 
The majority of these models have adapted different forms of the SD-based models (e.g., SEIR) with geographical 
scopes typically limited to the national or state level predictions. All models faced challenges due to availability 
of data, rapidly evolving pandemic and unprecedented control measures put in place. Despite these challenges, 
we believe that mathematical models can provide useful and timely information to the policy makers.

Like other computational modeling methods, commonly used SD-based models can be especially useful 
when invoked for the right task, however they are not appropriate for all forecasting, prediction, and scenario 
simulations. These models operate at an elevated level of abstraction, assume population homogeneity, and typi-
cally lack the ability to update underlying model parameters once new, real-time data become available. In this 
study, we developed a multi-method modeling approach by using an ABM framework to combine thousands 
of age-stratified and location-specific SEIR models that could potentially capture essential virus transmission 

Table 5.   Model performance for two-, three-, and four-week out-of-sample predictions of the cumulative 
COVID-19 deaths in the top 20 populous states.

State

Two-week out-of-sample predictions 
(November 14, 2020)

Three-week out-of-sample predictions 
(November 21, 2020)

Four-week out-of-sample predictions 
(November 28, 2020)

Range of 
predictions Observed % Error

Range of 
predictions Observed % Error

Range of 
predictions Observed % Error

California 18,684–19,020 18,069 4.0 19,211–20,055 18,356 6.0 19,737–21,493 18,876 6.9

Texas 18,973–19,734 18,850 1.9 19,516–21,245 19,680 1.5 19,959–23,236 20,736 0.3

Florida 16,925–17,049 17,248 − 1.5 17,295–17,586 17,643 − 1.3 17,659–18,202 18,157 − 1.6

New York 32,652–33,326 33,486 − 1.7 33,296–34,747 33,690 0.4 33,867–36,471 33,961 2.2

Pennsylvania 10,176–10,387 9,086 13.0 10,630–11,088 9,355 15.6 11,070–11,919 9,951 14.5

Illinois 10,301–10,613 10,289 1.3 10,824–11,511 10,874 1.9 11,317–12,585 11,677 0.9

Ohio 5,575–5,696 5,547 1.4 5,858–6,117 5,742 3.8 6,142–6,618 6,118 3.3

Georgia 8,276–8,403 8,259 0.8 8,444–8,740 8,481 0.5 8,577–9,129 8,641 1.3

North Caro-
lina 4,202–4,279 4,638 − 8.9 4,368–4,517 4,719 − 6.4 4,516–4,780 5,039 − 8.4

Michigan 8,457–8,765 8,093 6.0 8,950–9,635 8,510 8.1 9,415–10,677 9,094 8.6

New Jersey 17,227–17,434 16,461 5.2 17,713–18,155 16,618 7.7 18,204–19,027 16,819 10.2

Virginia 3,991–4,057 3,717 7.9 4,138–4,305 3,827 9.9 4,276–4,558 3,973 10.1

Washington 2,836–2,888 2,479 15.2 2,925–3,043 2,566 15.8 2,999–3,222 2,680 14.7

Arizona 6,021–6,069 6,192 − 2.4 6,130–6,235 6,312 − 2.2 6,238–6,435 6,513 − 3.1

Massachusetts 11,279–11,526 10,184 11.6 11,588–12,189 10,360 13.7 11,907–13,181 10,551 16.3

Tennessee 3,884–3,975 3,670 6.9 4,080–4,275 3,994 3.8 4,272–4,629 4,372 1.0

Indiana 4,856–4,959 4,731 3.7 5,112–5,329 5,024 3.5 5,356–5,756 5,435 1.5

Missouri 3,287–3,371 3,321 0.1 3,507–3,692 3,474 3.2 3,703–4,059 3,774 1.9

Maryland 4,463–4,551 4,279 5.0 4,593–4,791 4,379 6.5 4,719–5,064 4,519 7.1

Wisconsin 2,223–2,288 2,395 − 6.1 2,442–2,569 2,739 − 8.9 2,646–2,926 3,114 − 11.1
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Figure 3.   COVID-19 case projection comparison between state and county optimization for three localities in 
Virginia: (a) Richmond City; (b) Montgomery County; and (c) Norfolk City.
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dynamics for the purpose of modeling COVID-19 spread over time and in different localities with increased 
model fidelity. The proposed simulation model showed potential for use by decision makers as an effective 
virtual laboratory in performing what-if analysis and quantifying perceived levels of health risks by combining 
forecasted outcomes with user-defined health metrics in a multi-criteria decision framework. While the current 
case study is focused on COVID-19, the modular framework of our solution easily allows future adaptation to 
any high-consequence public health threats.

We have also addressed some of the key limitations of SD-based epidemiological models. First, current SD-
based epidemiological models typically approximate the spread of COVID-19 at the state and national level. 
These models do not account for the effect of mitigation policies, population demographics, or cohort behaviors 
on disease spread dynamics at local levels. Our multi-method approach provided enhanced precision and fidelity 
at the local level. Second, existing SD-based models typically focus on the constant value of the basic reproduction 
number (R0) as a measure of disease transmissibility. We used potential changes in R0 over time, represented by 
RE, which reflected how the disease transmission within the population changed over time. We used this dynamic 
adjustment to assess how changes in mitigation policies, population immunity, and population behaviors, among 
other factors, could potentially affect COVID-19 transmission at specific time and location points. Lastly, most 
SD-based models fail to account for the effect of population demographics (e.g., age), particularly at the county 
and local levels. We believe that characterizing model parameters such as disease transmission, hospitalization, 
critical infection, and fatality rates based on the population demographics potentially mitigates the bias for 
under-represented segments of the population.

We are also aware that computational models are approximations of the real-life scenarios. There are cur-
rently no predictive models that generate a highly accurate picture of the COVID-19 disease spread or its clini-
cal impacts, including ours, as too many factors can potentially affect the spread of the disease. For example, 
our model showed to underestimate cases and overestimate deaths. Modelling exercises tend to carry forward 
certain distortions that are inherent to the complex and dynamic characteristics of real-world reporting systems 

Figure 4.   Three-day rolling average of new COVID-19 cases per 100,000 residents estimated based on 
the mean estimated REt values for four localities in Virginia: (a) Charlottesville City, (b) Hampton City, (c) 
Portsmouth City, and (d) Spotsylvania County.
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when considering rapidly evolving epidemiological scenarios. In the case of COVID-19, factors such as a sub-
optimal standardization in the coding and reporting of potential, suspected, and confirmed cases may have 
introduced information biases in reality that generate mismatches with the model outcomes. A similar phe-
nomenon could have taken place in terms of inaccuracies regarding causes of deaths and the role of COVID-19 
in death certificates.

We also acknowledge that there were multiple sources of uncertainty in our model resulting in prediction 
inaccuracies and errors as reported in Tables 4 and 5. Key sources of uncertainty in our model potentially 
included model structure (e.g., set of differential equations identified for disease dynamics), model detail (e.g., 
simplifying assumptions related to reinfection as well as between-county population movements), model cali-
brations (e.g., state versus county-level parameter calibration), and scenario reasonableness (e.g., assumption of 
homogenous age-stratified reproduction numbers.

There are areas for improvement in our modeling approach that can potentially reduce the above uncertainties 
and enhance the prediction accuracies. For example, alternative sets of scientific or technical assumptions might 
be available for developing the complex dynamics of COVID-19 disease spread. The implications of these alter-
native foundations may be evaluated by constructing alternative models and comparing results across different 
solutions. It may be possible to potentially parameterize alternative model structures into a higher order model, 
and to evaluate the impact of modeling assumptions using sensitivity analysis. Also, while we used the observed 
daily cases of COVID-19 to characterize location-specific timeseries for RE, future values were approximated 
using exponential regression models fitted to the latest two weeks of data. This approximation may potentially 
pose bias and limitations in forecasting the disease dynamics in populous areas where changes in behaviors 
(e.g., lack of social distancing, limited stay-at-home restrictions) can significantly impact the disease spread 

Figure 5.   Three-day rolling average of new COVID-19 deaths based on the mean estimated REt values for 
four localities in Virginia: (a) Charlottesville City, (b) Hampton City, (c) Portsmouth City, and (d) Spotsylvania 
County.
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trajectory. We understand that recent studies have demonstrated promising use of novel forecasting method-
ologies to characterize relationships between human micro-level activities and movements based on telemetry 
data and micro-level RE values35–37. Such methodologies can be potentially coupled with our modeling approach. 
Furthermore, our model relies on the current body of evidence with regards to the chances of reinfection. In this 
sense, recovered patients are considered to be immune to future COVID-19 infections. These assumptions are 
being revised as new viral variants are identified, which might imply the need to redefine the basic assumptions 
of the model. Also, the current approach for calibrating the model parameters is largely an ad-hoc simulation-
based procedure based on the state-level observed cases of infection as well as death. Although computationally 
intensive, we demonstrated that the model accuracy could be substantially improved when calibrations were 
conducted at the local levels (e.g., individual counties). Finally, we did not estimate age-stratified timeseries for RE 
because reported daily cases of COVID-19 currently do not contain demographic data including age. Accounting 
for heterogeneity in transmission due to demographic factors and also estimating age-stratified reproduction 
numbers could provide insight into differences in transmission potential by age and other factors. In addition, 
although the use of age serves as proxy of several risk factors and health conditions, subsequent improvements of 
this modeling approach could account for other epidemiological and demographic population characteristics that 
are highly correlated with COVID-19 transmission and outcomes. This is the case for co-morbidities, mobility 
patterns, population density, and climate, among others.

Figure 6.   Three-day average of new COVID-19 hospitalizations per 100,000 persons projections based on 
the mean estimated REt values for four localities in Virginia: (a) Charlottesville City, (b) Hampton City, (c) 
Portsmouth City, and (d) Spotsylvania County.
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Figure 7.   COVID-19 ICU bed utilization projections based on the mean estimated REt values for four localities 
in Virginia: (a) Charlottesville City, (b) Hampton City, (c) Portsmouth City, and (d) Spotsylvania County.

Figure 8.   Aggregated risk scores for individual counties in Virginia.
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Table 6.   Summary of selected COVID-19 models including underlying methodologies, predicted features, 
spatial resolution, scenario analysis features, and frequency of data updates. a C Case prediction, D death 
prediction, H hospitalization prediction. b G Global-level predictions (i.e., different countries), N national-level 
predictions, S state-level predictions, C county-level predictions.

Model name Institution URL Methodology Predicted featuresa Spatial resolutionb Scenario analysis
Frequency of data 
updates

COVID Forecast 
Hub

University of Mas-
sachusetts-Amherst 
Reich Lab

https://​covid​19for​
ecast​hub.​org/

Ensemble method 
combining results 
from multiple 
models

C, D, H, N, S, C

Selected indi-
vidual models in the 
ensemble method 
include scenario 
analysis

Weekly

Auquan CDC, Auquan Data 
Science

https://​covid​19-​infec​
tion-​model.​auquan.​
com/

Fitted SD model 
(SEIR) C, D G, N, S

Limited to selected 
model param-
eters (e.g., infection 
spread, social 
distancing)

Daily

Columbia
Columbia Mailman 
School of Public 
Health

https://​cuepi.​shiny​
apps.​io/​COVID-​19/ SD model (SEIR) C, H S, C

Limited to adjust-
ments to the R0 
values

Daily

Columbia-UNC
Columbia University 
and UNC Chapel 
Hill

https://​github.​com/​
COVID​19BIO​STAT/​
covid​19_​predi​ction

Survival-convolution 
model C, D N NA NA

IHME
University of Wash-
ington—Institute for 
Health Metrics and 
Evaluation

https://​covid​19.​healt​
hdata.​org/​united-​
states-​of-​ameri​ca?​
view=​total-​death​s&​
tab=​trend

SD model (SEIR) 
calibrated using real-
world data

C, D, H G, N, S

Scenario analysis 
based on vac-
cination, mask use, 
and government-
imposed mandates

Frequently

DDS University of Texas at 
Austin UT

https://​dds-​covid​19.​
github.​io/​index.​html

Negative binomial 
linear dynamic 
system

C, D N, S NA NA

Google-HSPH Google Cloud AI

https://​datas​tudio.​
google.​com/c/​repor​
ting/​52f6e​744-​66c6-​
47aa-​83db-​f7420​
1a7c4​df/​page/​EfwUB

Combination of 
SD model (SEIR) 
and covariates 
encoding within a 
computational graph 
framework

C, D, H S, C NA Bi-weekly

ISU Iowa State University https://​covid​19.​stat.​
iasta​te.​edu/

Discrete-time spatial 
epidemic model C, D S, C NA Daily

JHU-APL
John Hopkins 
University Applied 
Physics Laboratory 
LLC

https://​bucky​model.​
com/

Spatially distributed 
SD models (SEIR) 
stratified based 
on age

C, D, H S, C NA NA

MIT-ORC
Massachusetts Insti-
tute of Technology 
Operations Research 
Center

https://​www.​covid​
analy​tics.​io/​proje​
ctions

Adjusted SD model 
(SEIR) C, D, H G, N, S NA NA

Northeastern—
MOBS

Northeastern Uni-
versity

https://​covid​19.​
gleam​proje​ct.​org/

Adjusted SD model 
(SEIR) using a meta-
population approach 
and age-specific 
contact matrix

C, D, H N, S
Scenario analysis 
based on different 
levels of social 
distancing

Weekly

Oliver Wyman Oliver Wyman
https://​pande​micna​
vigat​or.​olive​rwyman.​
com/

Extended SD model 
(SIR) includ-
ing detected and 
undetected infected 
populations

C, D G, N, S, C
Scenario analysis 
based on mobility 
and testing

Daily

UCLA University of Califor-
nia LA

https://​covid​19.​
uclaml.​org/

Adjusted SD model 
(SEIR) account-
ing for unreported 
recovery

C, D G, N, S NA Weekly

UCSB University of Califor-
nia Santa Barbara

https://​github.​com/​
Gando​r26/​covid-​
open/

Attention crossing 
time series C S NA Weekly

UGA—CEID
University of Georgia 
Center for the Ecol-
ogy of Infectious 
Disease

https://​github.​com/​
cdcepi/​COVID-​
19-​Forec​asts/​blob/​
master/​COVID-​19_​
Forec​ast_​Model_​
Descr​iptio​ns.​md#​
Auquan

Statistical Random 
Walk Model C, D N, S, C NA Weekly

UT University of Texas
https://​covid-​19.​tacc.​
utexas.​edu/​proje​
ctions/

Ensemble of curve 
fitting and SD model 
(SEIR)

D S NA Daily

https://covid19forecasthub.org/
https://covid19forecasthub.org/
https://covid19-infection-model.auquan.com/
https://covid19-infection-model.auquan.com/
https://covid19-infection-model.auquan.com/
https://cuepi.shinyapps.io/COVID-19/
https://cuepi.shinyapps.io/COVID-19/
https://github.com/COVID19BIOSTAT/covid19_prediction
https://github.com/COVID19BIOSTAT/covid19_prediction
https://github.com/COVID19BIOSTAT/covid19_prediction
https://covid19.healthdata.org/united-states-of-america?view=total-deaths&tab=trend
https://covid19.healthdata.org/united-states-of-america?view=total-deaths&tab=trend
https://covid19.healthdata.org/united-states-of-america?view=total-deaths&tab=trend
https://covid19.healthdata.org/united-states-of-america?view=total-deaths&tab=trend
https://covid19.healthdata.org/united-states-of-america?view=total-deaths&tab=trend
https://dds-covid19.github.io/index.html
https://dds-covid19.github.io/index.html
https://datastudio.google.com/c/reporting/52f6e744-66c6-47aa-83db-f74201a7c4df/page/EfwUB
https://datastudio.google.com/c/reporting/52f6e744-66c6-47aa-83db-f74201a7c4df/page/EfwUB
https://datastudio.google.com/c/reporting/52f6e744-66c6-47aa-83db-f74201a7c4df/page/EfwUB
https://datastudio.google.com/c/reporting/52f6e744-66c6-47aa-83db-f74201a7c4df/page/EfwUB
https://datastudio.google.com/c/reporting/52f6e744-66c6-47aa-83db-f74201a7c4df/page/EfwUB
https://covid19.stat.iastate.edu/
https://covid19.stat.iastate.edu/
https://buckymodel.com/
https://buckymodel.com/
https://www.covidanalytics.io/projections
https://www.covidanalytics.io/projections
https://www.covidanalytics.io/projections
https://covid19.gleamproject.org/
https://covid19.gleamproject.org/
https://pandemicnavigator.oliverwyman.com/
https://pandemicnavigator.oliverwyman.com/
https://pandemicnavigator.oliverwyman.com/
https://covid19.uclaml.org/
https://covid19.uclaml.org/
https://github.com/Gandor26/covid-open/
https://github.com/Gandor26/covid-open/
https://github.com/Gandor26/covid-open/
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-19_Forecast_Model_Descriptions.md#Auquan
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-19_Forecast_Model_Descriptions.md#Auquan
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-19_Forecast_Model_Descriptions.md#Auquan
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-19_Forecast_Model_Descriptions.md#Auquan
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-19_Forecast_Model_Descriptions.md#Auquan
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-19_Forecast_Model_Descriptions.md#Auquan
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-19_Forecast_Model_Descriptions.md#Auquan
https://covid-19.tacc.utexas.edu/projections/
https://covid-19.tacc.utexas.edu/projections/
https://covid-19.tacc.utexas.edu/projections/
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