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Metabolic reprogramming is one of the crucial hallmarks of cancer. Hepatocellular carcinoma (HCC) resulting from hepatitis B has
various altered metabolic features. However, the impact of such alterations on the tumor microenvironment (TME) and immu-
notherapy efficacy is still unclear. Here, a prognostic signature of metabolism-related gene (MRG) composition was constructed, and
the immune profile of different subgroups and potential response to immunotherapy were described. Based on the HCC gene dataset,
we used weighted gene coexpression network analysis for identifying MRGs linked to hepatitis B. An MRG prognostic index
(MRGPI) with two genes, ATIC and KIF2C, was constructed using Cox regression analysis, an independent prognostic factor. In
addition, the model was validated using the GEO dataset. The immune profile and prediction of HCC response to immunotherapy in
different subgroups were analyzed using CIBERSORT and TIDE. Based on the outcomes, the distributions of memory B cells,
monocytes, resting mast cells, and M0 macrophages in TME were different with a greater benefit of immunotherapy in the low
MRGPI risk group. In addition, the MRGPI risk groups showed substantial differences in sensitivity to conventional drug therapy.
This study concludes that MRGPI is an effective biomarker for predicting the prognoses of patients with HCC resulting from hepatitis
B virus infections and determining the efficacy of immunotherapy and conventional medical therapy.

1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most widely known
malignancy, with 8.2% of deaths globally. With over 800,000
new cases and fatalities each year, it is only second to lung cancer
[1]. The 5-year survival rate for HCC is 18%, next to pancreatic
cancer [2]. Infection by the hepatitis B virus (HBV) is the
primary cause of HCC, among others. It is responsible for >80%
of all HCC incidences in China and other developing countries
[3]. Despite the increasing diversity of treatment for early-stage
HCC, most patients relapse [4]. In addition, hepatitis B is a risk
factor for metastasis or HCC recurrence [5].

Recently, metabolic reprogramming in tumor devel-
opment has increasingly gained attention. The liver is vital

for the metabolism of sugars, lipids, and amino acids.
Hence, HCC is a classic metabolism-related tumor, unlike
others [6]. Tumor cell metabolism affects the progression of
the tumor as well as the fate of other immune cells sur-
rounding the area [7]. Several experiments have reported
that tumor metabolites reduce the activation of dendritic
cells and T cells and the transformation of monocyte mi-
gration and macrophage status [8-11], suggesting the
enormous impact of metabolism on the tumor microen-
vironment (TME), immune response, and tumor
development [12].

In recent years, immunotherapy played a pivotal role in
the treatment of advanced HCC [13]. In the treatment of
various malignancies, immune checkpoint inhibitor (ICI)
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therapy, either alone or in combination with other agents,
has shown remarkable outcomes [14]. To minimize im-
munological tolerance and tumor cell growth, ICIs in-
terfere with the programmed cell death-1 (PD-1)/
programmed cell death-ligand 1 (PD-L1) signaling path-
way and inhibit the cytotoxic T lymphocyte-associated
antigen-4 [15]. However, the objective response rate of
approximately 15%-20% for monotherapy of HCC is
a significant limitation of these drugs [16]. Therefore,
potential prognostic markers associated with therapeutic
benefits and substantial implications for improving the
therapeutic efficacy of patients with HBV-infected HCC
require urgent identification.

Recently, a discovery investigated the role of
metabolism-related genes (MRGs) in head and neck squa-
mous cell carcinoma [17]. In this study, a prognostic sig-
nature consisting of MRGs was constructed for predicting
the prognosis of HBV-infected HCC patients on immu-
notherapy and conventional drug therapy. The study focused
on all MRGs in HCC transcriptional data, and the weighted
gene coexpression network analysis (WGCNA) was
employed for screening the central MRGs linked to HBV
hepatitis along with patient prognosis. Based on this, an
MRG prognostic index (MRGPI) was developed, and we
studied its relationship with a tumor immune cell profile. Its
prognostic ability on immunotherapy and other drug
treatments in patients with HCC was examined and com-
pared with microsatellite instability (MSI) and tumor im-
mune dysfunction and exclusion (TIDE). The results suggest
that the MRGPI is a potential prognostic biomarker that can
help in predicting the prognosis of HBV-infected HCC
patients as well as those receiving pharmacological and
immunotherapeutic treatments.

2. Materials and Methods

2.1. Data Acquisition and Processing. RNA-sequencing
(RNA-seq) data (Level 3) of HCC patients were obtained
from The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/), and 345 HCC samples with complete
clinical information were retained, with overall survival (OS)
>30 days. Clinical information, including OS, age, gender,
grade, TNM, stage, and hepatitis, of HCC patients was
provided by UCSC Xena (https://xena.ucsc.edu/) (Table 1).
MRGs were downloaded from the KEGG (https://www.kegg.
jp/kegg/pathway.html), Reactome (https://reactome.ncpsb.
org/download-data), Human-GEM (https://github.com/
SysBioChalmers/Human-GEM/tree/master/model), and
BRENDA (https://www.brenda-enzymes.org/download_
brenda_without_registration.php) databases, totaling 3937.
The HCC microarray dataset (GSE14520) was provided
by Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.
nih.gov/geo/), and 218 patients with HBV-infected HCC with
OS >30 days were chosen as the validation set for the model.

2.2. WGCNA. WGCNA is a biological method that de-
scribes the patterns of gene linkage between various samples
systematically. WGCNA analysis allows the search for
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TaBLE 1: Clinical information of hepatocellular carcinoma.

Clinical features Patient

Alive 222
0s Dead 123
. <5 years 302

0S time >5 years 43
<60 165
Age >60 180
Female 109
Gender Male 236
T1 170

T2 85

T T3 74
T4 13

Missing value 3
NO 241

N N1 3
Missing value 101
MO 246

M M1 3
Missing value 96
I 163

11 78

Stage 1T 80

v 3

Missing value 21

Gl 53
G2 162
Grade G3 113
G4 12

Missing value 5

HBV 53

Hepatitis HCV 18
Missing value 274
Total 345

coexpressed gene modules and exploration of associations
between gene networks and phenotypes of interest. MRGs
from the KEGG, Reactome, Human-GEM, and BRENDA
databases were analyzed using WGCNA to identify the hub
genes. We developed a similarity matrix by measuring
Pearson’s correlation coefficients between two genes, fol-
lowed by its transformation into a signed adjacency matrix
of a network type using the scale-free topology criterion
R*=0.9 and soft threshold = 12. Afterward, the adjacency
matrix was changed to a topological matrix, and the to-
pological overlap matrix (TOM) was employed for de-
scribing the level of the link between genes. The genes were
clustered at a 1-TOM distance, and a dynamic pruning tree
was developed for identifying the modules. In the end,
module identification was performed with the “cutreeDy-
namic” function using the “tree” method (min-
ModuleSize =50 and cut height=0.25) respectively. In
addition, five modules (blue, brown, green, yellow, and grey)
were identified, with the grey module grouped with non-
coexpressed genes. Furthermore, we assessed the link be-
tween module eigengenes and clinical traits and identified
the modules linked to HBV infection.
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2.3. Construction and Validation of MRGPI. With p values
<0.01 classified as survival-related genes, univariate Cox
regression analysis identified metabolically relevant key
genes in the coexpression module associated with hepatitis
characteristics and survival status in patients with HBV
infection. Genes linked to survival were incorporated into
the multivariate Cox regression analysis, and MRGPI scores
were calculated using a summation of the expression value
products of each prognostic gene and the corresponding
coefficient b of the associated weights. Patients were cate-
gorized into two groups as per their median MRGPI score:
high MRGPI risk and low MRGPI risk. The risk score
formula was as follows: MRGPI Score=EXP of
Genel x b1 + EXP of Gene2x b2 +-+EXP of Genen x bn.
Based on the multifactorial Cox regression analysis, the
identified prognostic genes were constructed individually
into corresponding OS prognostic models. KM survival
curves determined whether the prognostic models differ-
entiated the prognosis of patients. We calculated the area
under the ROC curve for evaluating the prognostic model at
each survival stage. The prognostic power of the MRGPI and
clinical features of HBV patients were assessed using uni-
variate and multivariate Cox regression analyses to check if
the MRGPI could act as an independent prognostic factor.

2.4. Identification of Molecular Features between MRGPI Risk
Groups. We employed the R package “edgeR” for comparing
the high (n =26) and low (n =26) MRGPI risk groups to find
differentially expressed genes using the criteria of |log2 (fold
change)| >1 and adj.p values <0.05 (corrected by the FDR
method). Moreover, we carried out gene set enrichment
analysis (GSEA) using the R package “ClusterProfiler” for
identifying the signaling pathways involved in the differen-
tially expressed genes in the two groups (p values <0.05).

2.5. Assessment of the Immune Cell Infiltration Level between
MRGPI Risk Groups. The tool CIBERSORT is used for the
deconvolution of expression matrices in the subtypes of
human immune cells according to the principle of the linear
support vector regression [18]. This approach is based on its
default provision of gene expression signature sets for 22
immune cell subtypes. The mRNA expression matrix was
imported into CIBERSORT (https://cibersort.stanford.edu/)
and iterated 1000 times to assess the proportion of immune
cell subtypes in each cancer sample of patients with HBV
infection. Variations in the level of immune cell infiltration
in the two MRGPI risk groups were measured with the help
of the Wilcoxon rank-sum test (p values <0.05), and the
correlations between the immune cells were calculated using
the Spearman correlation (p values <0.05).

2.6. Prediction of the Effect of Immunotherapy between
MRGPI Risk Groups. A computational method called TIDE
(https://tide.dfci.harvard.edu/) model tumor immune eva-
sion by combining expression signals of T cell malfunction

and T cell exclusion [19, 20]. TIDE was used to determine the
degree of an individual’s response to immunotherapy, and
the difference in TIDE scores in the two MRGPI risk groups
was measured using the Wilcoxon rank-sum test (p values
<0.05).

2.7. Prediction of the Effect of Drug Treatment between
MRGPI Risk Groups. The Genomics of Drug Sensitivity in
Cancer (https://www.cancerrxgene.org/) (GDSC) database
was utilized for predicting how samples would respond to
drug therapy [21]. The procedure was performed with the
help of the R package “pRRophetic,” which used ridge re-
gression to estimate the samples’ IC50 values and 10-fold
cross-validation of the GDSC training set for the purpose of
assessing the prediction accuracy. All parameters were set by
the default values, and the tissue type is “allSoldTumours.”
The IC50 values of samples from the two MRGPI risk groups
were predicted with the help of four medications: sorafenib,
AZD6244, ABT.263, and A.443654. Furthermore, the Wil-
coxon rank-sum test was employed for calculating the
difference in response to the aforementioned drugs between
the two MRGPI risk groups (p values <0.05).

2.8. Analysis of Functional Enrichment. The “ClusterProfiler”
R package was utilized for conducting functional enrichment
analysis of differentially expressed genes (DEGs). Through
enrichment analysis (adj. p values <0.05, corrected for
Benjamini & Hochberg technique), significantly enriched
gene ontology (GO) items were found. KEGG pathway
enrichment analysis (adjusted p value <s 0.05, corrected for
Benjamini & Hochberg technique) was utilized for finding
significantly enriched pathways.

3. Results

3.1. Hepatitis B-Related Coexpressed Metabolic Modules.
WGCNA analysis was performed on MRGs from the KEGG,
Reactome, Human-GEM, and BRENDA databases to obtain
metabolically relevant coexpressed genes. The optimal soft
threshold power of the scale-free network was 12 based on
the logarithm log (k) of the node, and connectivity K was
negatively linked to the logarithm log (P (k)) of the prob-
ability of that node, with a correlation coefficient >0.90
(Supplementary Figure 1(a)). We found five modules as per
the mean linkage hierarchical clustering and optimal soft
threshold power (Supplementary Figure 1(b)). We assigned
a total of 3937 genes to the five modules (blue: 1010, brown:
188, green: 109, yellow: 181, and grey: 2449) (Supplementary
Table 1), and the association between the modules and six
clinical traits, including age, gender, grade, TNM, stage, and
hepatitis, was analyzed. The results revealed the remarkable
link of the blue module with HBV infection (Cor=0.18, p
value=9¢-04), T (Cor=0.24, p value=1le—05), N
(Cor=0.21, p value=8e-05), stage (Cor=0.23, p
value = 1e - 05), and grade (Cor = 0.16, p value =0.003), and
it was positively correlated with other features (Figure 1(a)).
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FiGure 1: Identification of coexpressed metabolic genes associated with HBV hepatitis using WGCNA. (a) Heatmap of the correlation
between gene modules and clinical traits of HCC. (b) Coexpression network of blue module genes. (c) GO and KEGG enrichment analyses

of genes in the blue coexpression network.

Therefore, genes from the blue module were chosen for
analysis in detail.

We found a total of 248 genes and 515 edges in the
network of blue modules via the selection of pairs of re-
lationships with threshold weights >0.05 (Figure 1(b)). The
GO and KEGG enrichment analyses of the genes in the blue
module network indicated significant enrichment in various
biological processes and signaling pathways, including viral
processes, metabolic processes, and hepatitis B (Figure 1(c)).

3.2. Prognostic Significance of Metabolism-Related Key Genes
in Patients with HBV-Infected HCC. To investigate the
prognostic values of metabolism-related key genes (n = 248)
in the coexpression module (blue module) associated with
hepatitis HBV in patients with HBV infection, univariate and
multivariate Cox regression analyses were performed on these
variables, respectively. Three metabolism-related key genes,
including ATIC, KIF2C, and POLR3C, were considerably
linked to survival and identified in HBV-infected HCC pa-
tients using univariate Cox regression analysis (Figures 2(a)-
2(c)). Multifactorial Cox regression analysis was performed
for identifying independent prognostic genes in HBV-
infected HCC patients, showing that ATIC and KIF2C
were two independent prognostic genes that exhibited high
expression of high risk (Figure 2(d)). Furthermore, the

prognostic index was constructed for all samples and cal-
culated as MRGPI Score = EXP of ATIC x (0.0150) + EXP of
KIF2C x (0.0417). The Kaplan-Meier survival curve revealed
that HBV-infected HCC patients in the low MRGPI risk
group had remarkably better survival in comparison with
those in the high MRGPI risk group (p value=0.0053)
(Figures 2(e) and 2(f)). We carried out the evaluation of the
predictive performance of the prognostic model with the help
of the ROC curve, indicating good predictive ability with an
area under the ROC curve (AUC) of 0.919 at 5 years. In
addition, the AUC values for 1, 3, and 7 years were 0.712,
0.818, and 0.819, respectively (Figure 2(g)).

Moreover, the GEO dataset GSE14520 (n=218) was
used to validate ATIC, KIF2C, and POLR3C genes and the
ability of the prognostic model. ATIC (p value=0.00012),
KIF2C (p value =0.0054), and POLR3C (p value =0.0092)
showed significant correlations with survival (Supplemen-
tary Figures 2(a)-2(c)). In the prognostic model, patients in
the low MRGPI risk group showed remarkably better sur-
vival than those in the high MRGPI risk group (p val-
ue=0.0074) (Supplementary Figure 2(d)). This result is
consistent with that from the TCGA LIHC dataset. In ad-
dition, the validation set model was evaluated using ROC
curves, with an AUC value of 0.612 at 5 years (Supple-
mentary Figure 2(e)).
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3.3. Molecular Characterization of MRGPI Subgroups. We
carried out univariate and multifactorial Cox regression
analyses on the MRGPI risk groups and clinical data such as
gender, age, TNM, stage, and grade, to determine whether
the MRGPI risk group is an independent prognostic factor
for overall survival. In HBV patients, univariate Cox re-
gression analysis revealed that the risk group was consid-
erably linked to overall survival (HR=4.2308347, 95%
CI=1.4377316-12.450141, p value =0.0088). In addition, T
(p value=0.040), M (p value=0.010), stage (p val-
ue=0.048), and grade (p value =0.020) were greatly linked
to overall survival. A subsequent multifactorial Cox re-
gression analysis revealed the MRGPI risk group being an
independent prognostic factor was considerably linked to
overall survival (HR=5.961821, 95% CI=1.651621
-21.52026, p value =0.006) (Figure 3(a)).

Clinical information and molecular characteristics were
compared to explore differences between the two MRGPI
risk groups. The results showed no significant differences in
the stage distribution (Fisher’s exact test, p value =0.695)
and significant differences in the grade distribution (Fisher’s
exact test, p value=0.0169) (Figures 3(b) and 3(c)). DEGs
between the high and low MRGPI risk groups were dis-
covered using differential analysis, revealing that the ex-
pression levels of 1220 and 1079 genes, respectively, were
elevated in the high and low MRGPI risk groups (Supple-
mentary Table 2). Furthermore, GSEA enrichment analysis
revealed that the gene set in the high MRGPI risk group was
greatly enriched in seven related pathways, including neu-
roactive ligand-receptor interaction, cellular senescence, and
cell cycle (Figure 3(d)), whereas the gene set in the low
MRGPI risk group was significantly enriched in neuroactive
ligand-receptor interaction, valine, leucine, and isoleucine
degradation, peroxisome, and other related pathways
(Figure 3(e)).

3.4. Immune Cell Compositions in MRGPI Risk Groups.
The Wilcoxon test was employed for examining the dis-
tribution of immune cells in different MRGPI risk groups,
and the CIBERSORT method was utilized to systematically
analyze the infiltration levels of immune cells in the MRGPI
risk groups. Figure 4(a) describes the level of immune cell
infiltration in the two MRGPI risk groups, as well as clinical
data for each sample. Patients in the high MRGPI risk group
had more memory B cells (p value=0.032) and M0 mac-
rophages (p value =0.001), whereas those in the low MRGPI
risk group had more monocytes (p value = 0.012) and resting
mast cells (p value=0.01) (Figure 4(b)). Furthermore, the
linkage pattern among immune cells in HBV-infected pa-
tients revealed a link between the immunological milieu and
the disease (Figure 4(c)).

3.5. Benefits of Immunotherapy in MRGPI Risk Groups.
TIDE was employed for assessing the prospective clinical
efficacy of immunotherapy in the two MRGPI risk groups,
with high TIDE prediction scores indicating a high potential
for immune evasion and implying that these patients are less
likely to gain benefit from immunotherapy. TIDE scores

were lower in the low MRGPI risk group (p value =0.015)
than those in the high MRGPI risk group (Figure 5(a)),
implying that patients in the low MRGPI risk group may
have better treatment outcomes. In addition, in the low
MRGPI risk group, the MSI (p value=0.015) and T-cell
dysfunction (p value=0.0026) scores were greater, and the
T-cell exclusion score (p value=0.0017) was lower
(Figures 5(b)-5(d)). The outcome showed that patients in
the low MRGPI risk group were more likely to benefit from
immunotherapy than those in the high MRGPI risk group.

3.6. Differences in Drug Treatment in MRGPI Risk Groups.
The differences in response to drug treatment were con-
sidered in patients with HBV infection to assess treatment
differences among four drugs, including sorafenib,
A 443654, ABT.263, and AZD6244. Hence, the prediction
models in the GDSC cell line dataset were trained using ridge
regression, and the accuracy of predictions was assessed
using 10-fold cross-validation. According to prediction
models for these drugs, IC50 values were estimated for each
sample in patients with HBV infection. The following sig-
nificant differences were observed in the IC50 values for all
four drugs: Sorafenib (p value=0.0067), A.443654 (p
value =5.5¢-07), and ABT.263 (p value=0.017) showed
a higher sensitivity in the high MRGPI risk group than those
in the low MRGPI risk group (Figures 6(a)-6(c)), and
AZD6244 (p value =0.00018) showed a higher sensitivity in
the low MRGPI risk group than that in the high MRGPI risk
group (Figure 6(d)).

4. Discussion

Recent evidence shows that metabolic reprogramming may
be a hallmark of cancer [22]. Many reports have shown that
lipid, glucose, and lactate metabolism have vital effects on
TME, angiogenesis, local invasion, and distant metastasis
[23-27]. Therefore, WGCNA was performed in the study to
cluster MRGs and identify metabolism-related central genes
in modules associated with HBV hepatitis. Survival analyses
of 248 metabolism-related central genes were performed to
construct an MRGPI of ATIC and KIF2C, and the accuracy
of the model was validated using the GEO database. Based
on different MRGPI scores in the HCC samples, immune cell
infiltration and differences in response to immunotherapy
were compared. The consistency between different cohorts
suggests that the MRGPI has a great prognostic value for
patients with HCC, and its components may be essential in
the regulation of TME in patients with HBV-infected HCC.

According to many reports, ATIC is linked to various
tumor cell proliferation and drug treatment sensitivity
[28-30]. It has also been shown that ATIC inhibits auto-
phagy and promotes proliferation, invasion, and metastasis
of HCC cells in vivo via the AKT/FOXO3 signaling pathway
[31]. Li and other scientists demonstrated that ATIC pro-
motes HCC development by regulating the purine synthesis
pathway and inhibits AMPK activation, thereby activating
mTOR-S6 K1-S6 signaling to support the growth of HCC
cells [32]. The results of the above two experiments are
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consistent with our findings of ATIC expression being
considerably greater in the HCC tissues than that in the
normal liver tissues. In addition, some scientists have
identified anti-ATIC autoantibodies as a potential HCC-
associated serum biomarker [33]. In summary, ATIC is
a potential therapeutic and diagnostic target in patients
with HCC.

Furthermore, many studies have reported that KIF2C is
upregulated in colorectal, breast, and endometrial cancer
tissues and is greatly linked to immune infiltration, lymph
node metastasis, and OS in cancer patients [34-36]. Some
scientists found that KIF2C was highly expressed in HCC,
correlating with tumor malignancy. KIF2C is important in
HCC progression via the Wnt/$-catenin-KIF2C-mTORC1
axis [37]. The results of the above experiments are consistent
with our findings that KIF2C negatively affects the prognosis
of patients with HBV-infected HCC. However, the mech-
anism of KIF2C as an MRG affecting HCC development in
terms of metabolism remains unclear, warranting further
research.

Based on the potential impacts of ATIC and KIF2C on
TME, the link between MRGPI and immune cell compo-
sition in TME was explored. According to recent research,
memory B cells in tertiary lymphoid structures enhance the
response to immune checkpoint blockade therapy in met-
astatic melanoma and metastatic renal cell carcinoma pa-
tients, suggesting that memory B cells may potentially
contribute to the antitumor response by producing anti-
bodies against the tumor [38]. Since memory B cells in-
dependently promote antitumor immune function in
immunotherapy, there is a possible basis for patients in the
high MRGPI group to receive immune checkpoint blockade
therapy. Growing evidence suggests that tumors turn
monocytes in TME into a protumor factor, which is con-
firmed in HCC [39-41]. Resting mast cell infiltration is

linked to a poor prognosis in HCC patients [42]. These
results suggest that the high MRGPI group has a better
immune microenvironment than the low MRGPI group,
owing to the rational response of the immune system as the
tumor progresses.

TIDE is a computational approach that models two
separate mechanisms of tumor immune evasion: dys-
function of tumor-infiltrating cytotoxic T lymphocytes
(CTLs) and exclusion of CTLs by immunosuppressive
factors. TIDE more accurately predicts the prognosis of
patients with melanoma treated with ICIs than other
biomarkers, such as PD-L1 levels and tumor mutation
burden [20]. In the present study, patients in the high
MRGPI risk group had high TIDE scores and CTL ex-
clusion levels, and those in the low MRGPI risk group had
high CTL dysfunction scores. Accordingly, patients in the
low MRGPI risk group have low immune escape levels and
may benefit from immunotherapy through CTL activation.
MSI is observed in some tumors where the number of
repeat units at specific microsatellite loci is altered relative
to normal tissues [43]. Research suggests that upon re-
ceiving immunotherapy, the prognosis of patients suffering
from colorectal cancer with high MSI was improved [44].
In the present study, patients in the low MRGPI risk group
had high MSI scores, which is in line with the outcomes of
the TIDE analysis. Hence, immunotherapy may be more
beneficial to patients in the low MRGPI risk group than
those in the high MRGPI risk group.

Finally, differences in response to four drugs, namely,
sorafenib, A.443654, ABT.263, and AZD6244, were assessed
between the MRGPI risk groups. Patients in the high MRGPI
risk group had a higher sensitivity to sorafenib than to the
other drugs. A.443654 is a specific inhibitor of Akt and
significantly inhibits viral replication in infected or trans-
fected HCC [45]. In the present study, patients in the high
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A.443654, ABT.263, and AZD6244, between the MRGPI risk groups in patients with HBV infection (ns: not significant; *p < 0.05;

**p<0.01; ***p<0.001).

MRGPI risk group showed a remarkably higher sensiti-
vity to A.443654 than those in the low MRGPI risk
group, suggesting the antiviral effect of A.443654 may be
better in the high MRGPI risk group. Some studies re-
ported that combining ABT-263 and sorafenib was safe
and efficient in inducing apoptosis in cancer cells in vitro
and inhibiting tumor growth and progression in vivo
[46]. As with sorafenib, patients in the high MRGPI group
showed a higher sensitivity to it. This suggests that sor-
afenib, in combination with ABT-263, has strong ther-
apeutic potential for patients in the high MRGPI risk
group. Unlike the previous three drugs, patients in the
low MRGPI risk group were more sensitive to AZD6244
than those in the high MRGPI risk group. Hence, the
selection of therapeutic agents based on MRGPI scores
can help target the treatment of patients with HCC,
reflecting the importance of MRGPI scores in the treat-
ment of HCC.

5. Conclusions

An MRGPI, consisting of ATIC and KIF2C, is a promising
metabolism-related prognostic biomarker. The MRGPI
successfully predicted the prognosis of patients with HBV-
infected HCC. Furthermore, the MRGPI grouping may

distinguish immunological and molecular features. It may
also help determine the efficacy of immunotherapy and
conventional drug therapy.
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