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Abstract: Blood levels of the vitamin D3 (D3) metabolites 25-hydroxyvitamin D3 (25(OH)D3), 24R,25-
dihydroxyvitamin D3, and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) are recognized indicators for
the diagnosis of bone metabolism-related diseases, D3 deficiency-related diseases, and hypercalcemia,
and are generally measured by liquid-chromatography tandem mass spectrometry (LC-MS/MS)
using an isotope dilution method. However, other D3 metabolites, such as 20-hydroxyvitamin D3

and lactone D3, also show interesting biological activities and stable isotope-labeled derivatives are
required for LC-MS/MS analysis of their concentrations in serum. Here, we describe a versatile
synthesis of deuterium-labeled D3 metabolites using A-ring synthons containing three deuterium
atoms. Deuterium-labeled 25(OH)D3 (2), 25(OH)D3-23,26-lactone (6), and 1,25(OH)2D3-23,26-lactone
(7) were synthesized, and successfully applied as internal standards for the measurement of these
compounds in pooled human serum. This is the first quantification of 1,25(OH)2D3-23,26-lactone (7)
in human serum.

Keywords: vitamin D; deuterium labeling; liquid-chromatography tandem mass spectrometry;
measurement of vitamin D metabolites in blood

1. Introduction

Vitamin D3 (D3) (1) is metabolized by members of the cytochrome P450 (CYP) fam-
ily to generate more than 50 compounds in vivo. Among them, 25-hydroxyvitamin D3
(25(OH)D3) (2) is generated from D3 (1) by CYP2R1 and/or CYP27A1-mediated hydroxyla-
tion at C25 in the liver, and the resulting 25(OH)D3 (2) is further metabolized to the active
form of D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) (3), by CYP27B1-mediated oxidation
at C1α in the kidneys (Figure 1). 1,25(OH)2D3 (3) plays a key role in the regulation of bone
metabolism in vivo [1]. In normal conditions, production of 3 from 2 is strictly controlled
by the concentrations of calcium and parathyroid hormone (PTH) in the blood, and thus
the concentration of 3 in the blood is a useful indicator of functional status [2] and is helpful
in the diagnosis of diseases such as hypercalcemia, hyperphosphatemia, rickets, and bone
metabolism-related diseases [3,4]. The concentration of 2 in the blood is also useful as
an indicator for the diagnosis of various vitamin D deficiency-related diseases [3,4]. Re-
cently, various D3 metabolites, mostly oxidized at the D-ring side chain, have also been
found to show biological activities. For example, 20S,25(OH)2D3, which is generated by
CYP11A1, inhibits the growth of keratinocytes, leukemia cells, and melanoma cells [5–9],
while 24R,25(OH)2D3 (4), produced by CYP24A1, shows inhibitory activity against vari-
ous cancer cell lines [10,11]. Further, 25(OH)D3-23,26 lactone (6) and 1,25(OH)2D3-23,26
lactone (7), which are thought to be final metabolites of D3, show antagonistic activity
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towards 1,25(OH)2D3 [12–14], thereby, inhibiting bone formation and resorption. Recently,
compound 7 was reported to inhibit fatty acid oxidation [15]. Thus, there is a need to
measure the blood levels of these metabolites.
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Figure 1. Structures of vitamin D3 (1) and its metabolites (2)–(7).

The concentrations of metabolites 2 and 3 in blood have been measured for clini-
cal purposes by radioimmunoassay (RIA) or chemiluminescent enzyme immunoassay
(CLEIA) [16]. They, however, have disadvantages such as the need to handle radioactive
materials, and insufficient discrimination of vitamin D metabolites by antibodies [17].
More recently, a liquid-chromatography tandem mass spectrometry (LC-MS/MS) method
has been developed to determine the concentration of multiple vitamin D metabolites
simultaneously in blood [18]. However, LC-MS/MS-based measurement also has some
problems, such as the low ionization efficiency of vitamin D derivatives and interference
by contaminants including multiple D3 metabolites in the blood. To address these issues,
several approaches have been investigated. Cookson-type reagents have been developed to
improve the ionization efficiency of D3 metabolites, affording high sensitivity even at low
abundance [19,20]. The isotope dilution method has also been applied to avoid interference
from contaminants in the blood. This method requires a stable isotope-labeled compound
as an internal standard, and so far, deuterium-labeled 25(OH)2D3 (2), 1,25(OH)2D3 (3), and
24R,25(OH)2D3 (4), in which deuterium is introduced at C26, C27, C6, and C19, have been
synthesized (Figure 2) [21–25].

In the synthesis of the deuterium-labeled metabolites 2–4-d6, deuterium was intro-
duced into the side chain at C26 and C27 by reacting esters 8 with deuterated Grignard
reagent, CD3MgBr (Figure 2B) [21,22]. On the other hand, 2–3-d3 were synthesized by
reacting SO2 adducts of cyclic compounds 9 derived from D3 with deuterium oxide
(D2O) [23–25]. In both strategies, the range of metabolites that can be synthesized is limited
due to the restrictions imposed by the use of steroid precursors. Therefore, a more versatile
approach is required. Convergent strategies, with coupling between CD-ring and A-ring
moieties, have been widely applied for the synthesis of D3 derivatives [26,27]. Since the CD-
ring structures of the metabolites are diverse, whereas the A-ring structures are relatively
constant, we considered that deuterium-labeled A-ring synthons would be suitable for the
preparation of a variety of deuterium-labeled D3 metabolites (Figure 2D). In addition, label-
ing in the A-ring has an advantage in metabolism studies because the side chains of the D3
are well known to be enzymatically metabolized easily. In this study, we have developed
a synthesis of deuterium-labeled A-ring precursors 13-d3 and 16-d3 incorporating three
deuterium atoms. These precursors were coupled with CD-ring moieties 17 and 18 to afford
deuterium-labeled 25(OH)D3-d3 (2-d3) and vitamin D lactones 25(OH)D3-23,26-lactone-d3
(6-d3) and 1,25(OH)2D3-23,26-lactone-d3 (7-d3). We also confirmed that the concentrations
of 2, 6, and 7 in human serum could be measured by LC-MS/MS using the corresponding
deuterium-labeled compounds as the internal standards (IS) (see Supplementary Materials).
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2. Results

We employed a convergent strategy using the palladium-catalyzed coupling reaction
of enyne-type deuterium-labeled A-ring precursors 13-d3 and 16-d3 with bromoolefins 17
and 18 as the CD-ring moieties. The deuterium atoms in 13-d3 and 16-d3 were introduced
by the H/D exchange at the a-position of the alcohol, as reported by Sajiki et al. [28]. Our
synthesis of deuterium-labeled enyne 13 commenced with the H/D exchange reaction
of alcohol 10, which was obtained from L-(-)-malic acid in 4 steps (Scheme 1) [29]. The
alcohol 10 was subjected to the H/D exchange reaction with a catalytic amount of Ru/C
in D2O at 80 ◦C under an H2 atmosphere to afford 10-d3 deuterium-labeled at C3 and C4
in a 96% yield with over 93% deuteride content [28]. In this reaction, the stereochemistry
at C3 was isomerized (4:1 ratio of α-10a and β-10b). The deuterium-labeled alcohol 10
(enantiomeric mixture) was converted into alkyne 11 by tosylation of the primary alcohol
followed by epoxidation with NaH and reaction with TMS-acetylene (22% yield from 10-d3).
The hydroxyl group in alkyne 11 was protected with TBS ether, followed by deprotection
of the TMS and pivaloyl groups with NaOMe in MeOH to give the alcohol 12 in an 86%
yield from 11. Enyne 13 was obtained in a 51% yield from 12 via 4 steps, (i) tosylation of the
primary alcohol; (ii) cyanation with NaCN; (iii) reduction of the nitrile group with DIBAL-H
to aldehyde; and (iv) a Wittig reaction with Ph3PCH3I and NaHMDS. It was confirmed by
1H-NMR that the deuteration rate did not decrease in these reaction steps [30].
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Scheme 1. Synthesis of deuterium-labeled enyne 13-d3.

Next, the deuterium-labeled enyne 16 bearing a hydroxyl group at C1α was synthe-
sized (Scheme 2). The alcohol moiety in 12 was oxidized with an IBX and the resulting
aldehyde was reacted with a HWE Wittig reagent to give an unsaturated ester, whose ester
group was reduced with a DIBAL-H to give allyl alcohol 14 in a 70% yield from 12 [31,32].
The allyl alcohol 14 was subjected to a Sharpless asymmetric epoxidation with a TBHP in
the presence of Ti(OiPr)4 and L-(+)-DET [33], and the resulting epoxy alcohol was subjected
to iodination with iodine and triphenylphosphine followed by treatment with zinc to give
a secondary alcohol 15 in a 79% yield (3 steps) [31,32]. The diastereomer ratio at C1 in 15
was 10:1, and the undesired C1β diastereomer was removed by kinetic resolution, using
acylation with isopropyl acid anhydride in the presence of (2S,3R)-HyperBTM [34], to give
(-)-15 in an 82% yield as a single diastereomer. The undesired diastereomer at C3 was also
removed via silica gel column purification. The deuterium-labeled enyne 16, in which the
secondary alcohol was protected as the TBS ether, was obtained in an 82% yield.
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Scheme 2. Synthesis of deuterium-labeled enyne 16-d3.

The palladium-catalyzed coupling reaction of 13-d3 and bromoolefin 17 followed by
deprotection of the silyl groups provided 25(OH)D3-d3 (2-d3) in a 36% yield [35]. Next,
25(OH)D3-23,26-lactone-d3 (6-d3) and 1,25(OH)2D3-23,26-lactone-d3 (7-d3) were similarly
synthesized by reacting bromoolefin 18 and enynes 13-d3 and 16-d3, respectively [36]. In
the synthesis of 2-d3 and 6-d3, the undesired diastereomers at C3α were separated by an
HPLC (Scheme 3).
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Scheme 3. Synthesis of vitamin D3 metabolites-d3 (2-d3, 6-d3, 7-d3).

2.1. Derivatization of 2, 6, 7 for LC-MS/MS, and Preparation of Calibration Curves

With the deuterium-labeled D3 metabolites of 2-d3, 6-d3, and 7-d3 in hand, we next
examined the quantitative analysis of the three D3 metabolites in pooled human serum by
LC-MS/MS. First, we confirmed that our deuterium-labeled D3 metabolites were suitable
as the internal standards for the isotope dilution method in an LC-MS/MS analysis. As de-
scribed above, D3 and its metabolites have low ionization efficiency in an LC-MS/MS, and
derivatization is necessary to improve the ionization efficiency. Thus, the D3 metabolites 2,
6, and 7, as well as 2-d3, 6-d3, and 7-d3, were derivatized with a recently developed reagent
DAP-PA (4-(4′-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione-phenyl anthracene) [20],
and the ion peaks of the DAP adducts were detected by selective reaction monitoring (SRM)
under the LC-MS/MS conditions shown in Table 1 (Figure 3).

Table 1. Parameters for the LC/MS/MS analysis.

Compound SRM Transition
(m/z) Cone Voltage (kv) CE (eV)

25(OH)D3-DAP (2-DAP) 619.4 > 341.2
[M + H]+ [A]+ 48 28

25(OH)D3-23,26-lactone-DAP (6-DAP) 647.4 > 341.2 48 28
1,25(OH)2D3-23,26-lactone-DAP

(7-DAP) 663.4 > 357.2 48 28

25(OH)D3-d3-DAP (2-d3-DAP) 622.4 > 344.2 48 28
25(OH)D3-23,26-lactone-d3-DAP

(6-d3-DAP) 650.4 > 344.2 48 28

1,25(OH)2D3-23,26-lactone-d3-DAP
(7-d3-DAP) 666.4 > 360.2 48 28
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Figure 3. SRM chromatograms for the DAP adducts of D3 metabolites 2, 6, and 7, as well as 2-d3,
6-d3, and 7-d3.

In the case of the DAP-adducts of 2 and 2-d3 (Figure 3A,B), we observed identical
ion peaks at the retention time of 5.60 min (abbreviated as tR: 5.60 min). Similarly, 6 and
6-d3 showed the same tR of 3.50 min, and 7 and 7-d3 showed the same tR of 2.15 min,
indicating that the deuterium-labeled compounds are suitable as internal standards for the
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isotope dilution method. We also observed small peaks at the retention times of 5.20 min
(Figure 3A,B), 2.65 min (Figure 3C,D), and 2.37 min (Figure 3E,F) for 2/2-d3, 6/6-d3, and
7/7-d3, respectively. These peaks are due to the epimers at C6 of the DAP adducts, because
DAP-PA reacts from both the α- and β-faces.

Next, the calibration curves were prepared as follows (Figure 4). A total of 100 µL
of each one of the calibrator solutions was mixed with 200 µL of the internal standard
solution and evaporated to dryness. After derivatization with DAP-PA, an LC-MS/MS
analysis of the unlabeled and labeled DAP-adducts was performed, and the calibration
curves were prepared by plotting the concentration of unlabeled DAP-adduct against the
ion peak area ratio of unlabeled versus labeled DAP-adduct. All of the calibration curves
showed good linearity.
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Figure 4. Calibration curve of D3 metabolites; (A) 25(OH)D3 (2); (B) 25(OH)D3-23,26-lactone (6); and
(C) 1,25(OH)2D3-23,26-lactone (7).

2.2. Quantification of the D3 Derivatives in Human Serum

The levels of 2, 6, and 7 in pooled human serum were quantified by the LC-MS/MS
using the isotope dilution method with the constructed calibration curves. The serum was
pretreated as follows. An aliquot of serum (100 µL) was mixed with the internal standards
solution (200 µL). Each sample was loaded onto a supported liquid extraction column
(ISOLUTE SLE+ 300 µL sample Volume, Biotage, Uppsala, Sweden) and eluted three times
with 600 mL hexane/ethyl acetate (1/1, v/v) using a PRESSURE+48 positive pressure
manifold (Biotage, Uppsala, Sweden). The combined eluates were evaporated to dryness
in a centrifugal evaporator. The ion peaks of the metabolites matched well with those of
the corresponding internal standards in the pretreated samples (Figure 5).
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Figure 5. SRM chromatograms for D3 derivatives 2, 6, and 7 in pooled human serum.

The concentrations of 2, 6, and 7 in human serum were calculated to be 5.1 ng/mL,
38.3 pg/mL, and 8.9 pg/mL, respectively, based on the area ratios of the detected peaks.
The concentrations of 2 and 6 were in agreement with previously reported values [37],
while this is the first quantification of 1α-lactone 7 in human serum.
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3. Conclusions

We synthesized deuterium-labeled A-ring-d3 synthons 13 and 16 and utilized them for
the convergent synthesis of deuterium-labeled D3 derivatives 25(OH)D3 (2), 25(OH)D3-23,
26-lactone (6), and 1,25(OH)2D3-23, 26-lactone (7). These deuterium-labeled D3 metabolites
were successfully applied as internal standards for the quantification of the metabolites in
pooled human serum by LC-MS/MS using the isotope dilution method. This is the first
quantification of 1,25(OH)2D3-23, 26-lactone (7) in human serum.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27082427/s1, Experimental procedures for synthesis
and characterization of compounds, Experimental procedure for LC-MS/MS analysis using the
isotope dilution method, 1H and 13C NMR spectra.
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