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Abstract: The statistical mechanics-based 3-dimensional reference interaction site model with the
Kovalenko-Hirata closure (3D-RISM-KH) molecular solvation theory has proven to be an essential
part of a multiscale modeling framework, covering a vast region of molecular simulation techniques.
The successful application ranges from the small molecule solvation energy to the bulk phase be-
havior of polymers, macromolecules, etc. The 3D-RISM-KH successfully predicts and explains the
molecular mechanisms of self-assembly and aggregation of proteins and peptides related to neu-
rodegeneration, protein-ligand binding, and structure-function related solvation properties. Upon
coupling the 3D-RISM-KH theory with a novel multiple time-step molecular dynamic (MD) of the
solute biomolecule stabilized by the optimized isokinetic Nosé–Hoover chain thermostat driven
by effective solvation forces obtained from 3D-RISM-KH and extrapolated forward by generalized
solvation force extrapolation (GSFE), gigantic outer time-steps up to picoseconds to accurately cal-
culate equilibrium properties were obtained in this new quasidynamics protocol. The multiscale
OIN/GSFE/3D-RISM-KH algorithm was implemented in the Amber package and well documented
for fully flexible model of alanine dipeptide, miniprotein 1L2Y, and protein G in aqueous solution,
with a solvent sampling rate ~150 times faster than a standard MD simulation in explicit water.
Further acceleration in computation can be achieved by modifying the extent of solvation layers
considered in the calculation, as well as by modifying existing closure relations. This enhanced
simulation technique has proven applications in protein-ligand binding energy calculations, lig-
and/solvent binding site prediction, molecular solvation energy calculations, etc. Applications of the
RISM-KH theory in molecular simulation are discussed in this work.

Keywords: molecular solvation theory; three-dimensional reference interaction site model; Kovalenko-
Hirata closure; biomolecular simulation; multiple time step MD; protein-ligand binding; biomolecu-
lar solvation

1. Introduction

The developments of molecular simulations started first with statistical methods like
Monte-Carlo simulations (MC) to address the time-progression of multi-particle systems.
The use of macroscopic spheres to simulate atomic motions dates backs to early 1940. The
work on elastic collision in phase transition by Alder and Wainwright is attributed as the
first realistic simulation [1]. The progress in molecular dynamics (MD) simulations from
that point is phenomenal thanks to ever evolving computer architectures and development
of efficient algorithms. While the initial applications of the MD simulations were aimed
at material science applications, they covered biophysics and biomolecules very fast. The
applications in biomolecular systems are numerous: X-ray structure processing, protein
folding, and receptor-ligand interactions, to name a few [2–4]. Performance and accuracy
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of MD simulations were verified by comparison with experimental data obtained from
diffraction and NMR experiments. An essential component of MD simulation, the force
field is developed by fitting against high-level quantum chemical calculations [5–7]. The
other variant of the force field, the Kirkwood-Buff (KB) force fields designed through
application of the KB theory in calculating densities and other physical properties of
multicomponent solutions, has shown immense potential for use in molecular simulations,
both with all atom and united atom settings [8–10]. The deviations of MD simulations from
experimental results are attributed to the shortcomings of the force field(s) used, as well as
inadequate simulation time frame. It is imperative to point to the local minima problem
faced by MC and MD methods for potential energy surfaces (PESs) with multiple minima
separated by large energy barriers [11–13]. A plethora of research has been devoted to
overcome such issues [14,15]. The explicit solvent simulations using MD techniques are the
most adequate ones for modeling biologically important molecules which often requires
specific environments. Explicit solvation simulations are quintessential for solvation free
energy as well as receptor-ligand binding energy calculations. All these theoretical and
computational techniques essentially deal with multiple interactions present in liquid
environment (e.g., solution). These interactions involve solvent-solvent and solute-solvent
interactions. The solute-solvent interaction further breaks down into the electrostatic and
non-polar components. To complete the interaction terms in order to calculate solvation
energy, solute polarization and deformation energies are important factors. The last term
becomes more significant for binding studies in biomolecular simulations. Incorporating
all these intra- and intermolecular terms in solvation process modeling is a daunting task,
and justifies development of several theoretical methods to address molecular solvation.

The differences in molecular properties between isolated systems and continuum
calculations are often the results of different scalabilities of the systems under consider-
ation. The “gold-standard” quantum mechanical (QM) methods can achieve accuracy
up to one-tenth of a kcal/mol, but limited to systems with small sizes [16–19]. Different
continuum solvation models (e.g., PCM and its variants, SMD, COSMO) are calibrated
against experimental solvation energy databases of small molecules, and are problematic
for absolute solvation energy calculations of systems beyond the chemical classes covered
in calibration databases (viz. transition metal containing systems) [20–24]. The difficulty
in achieving accurate solvation free energy prediction can be attributed to the absence of
specific solute-solvent interactions, limited (or most of the time, absent) sampling of the
solute conformal steps, etc. Application of quantum chemical calculations of biomolecules
(protein, DNA/RNA) are restricted due to system size resulting in a large number of
basis functions required to describe such systems. The ONIOM methodology as well as
QM/MM and QM/MM/MD techniques provide respite to this handicap by offering a
computationally more amenable scenario where site(s) of importance are treated with high
level QM calculations while the rest of the system is treated with molecular mechanics
potentials for specialized applications [25–28].

The applicability of different theoretical methods to solvation dynamics of systems
of different sizes and dimensions is quite compartmentalized. Thus, a theoretical model
that spans over a large scale of computational requirements with reasonable accuracy
and speed is desirable, and much research activity is devoted toward this goal. The
reference interaction site model (RISM) is based on first principle statistical mechanics,
with proven applications in the field of van der Waals fluid, biomolecules, material science,
and drug development [29–31]. The theoretical framework of RISM is suitable to couple
with MD-engines and QM self-consistent-field (SCF) iterations [32–35]. This makes the
RISM formalism an excellent candidate from the perspective of building materials of
desired properties, as the theory provides understanding of all the underlying interactions
between different constituent fragments. The RISM theory with the integral equation
formalism was developed and used for solvation structure and energetics calculations,
although the potential of this theory goes beyond regular solvation energy calculations and
expands to molecular partitioning, physical-chemical property calculation, and molecular
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simulations [36–48]. The key feature of the RISM theory is that it can provide reasonably
accurate result rapidly, a feature that made this the theory an essential part of the multiscale
modeling framework (Figure 1).
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Figure 1. Computational simulation scale and versality of the 3D-RISM theory.

2. Theoretical Background

The foundation of the RISM theory is credited to the seminal works of Chandler and
coworkers [49–56]. This theory grew enormously over past forty years. The key theoretical
aspects are outlined in this section. Further theoretical backgrounds are provided for
individual applications in the respective sections. For a solute of arbitrary shape, the
3-dimensional (3D-) version of the RISM theory provides a probability distribution of all
possible interaction sites (γ) of solvent molecules around the solute at position r which
is a product of the average number density (ργ) in the bulk solution and the normalized
density distribution, gγ(r) (Figure 2). The density enhancement and/or depletion (gγ(r) > 1
and/or gγ(r) < 1) relative to the average density at a point in solution bulk where gγ(r)→ 1
is provided by the average number density. The total correlation function of solvent sites
in 3D is related to the 3D direct correlation function cγ(r) and site-site bulk susceptibility
function for α-solvent sites around a solute by Equation (1).

hγ(r) = ∑
α

∫
dr′cα

(
r− r′

)
χαγ

(
r′
)

(1)

Additionally, gγ(r) = hγ(r) + 1 and cγ(r) ~ −uγ(r)/(kBT), where T is temperature and
kB is the Boltzmann constant. The bulk susceptibility function χ is an essential input to the
3D-RISM integral equation, and is constructed from the intramolecular correlation function
ωαγ from the dielectrically consistent RISM (DRISM) [57]:

χαγ(r) = ωαγ(r) + ωαγ(r) ργ hαγ(r) (2)
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Figure 2. The normalized distribution of the water oxygen sites around the scorpion toxin protein
(PDB ID: 1AHO) computed using the 3D-RISM-KH theory and the modified TIP3P water model. The
protein backbone is colored in cyan.

The intramolecular correlation function can be expressed in reciprocal k-space via
terms of a zeroth-order Bessel function:

ωαγ(r) = j0(klαγ) (3)

The intra- and inter-species correlation functions are renormalized through an analyti-
cal dielectric bridge function for solvents with high dielectric constant value, thus ensuring
that all inter- and intra-species interactions are considered for a few solvent layers around
a solute (or cosolvent, etc.). The renormalized form of the dielectric correction is written in
terms of zeroth- and first-order Bessel functions over the position of each atom rα = (xα, yα,
zα) with partial charge qα of site α on species with respect to its molecular origin:

χαγ(k) = j0(kxα)j0(kyα)j1(kzα)hc(k)j0(kxγ)j0(kyγ)j1(kzγ) (4)

The envelope function hc(k) determines the dielectric constant of the solution using
a non-oscillatory form with amplitude A falling off rapidly at wavevectors k larger than
the characteristic size l of the liquid. The characteristic length is important for DRISM
calculations, to avoid spurious non-physical distribution functions.

hc(k) = A exp
(
−l2k2/4

)
(5)

A =
1

ρpolar

(
ε

y
− 3
)

(6)

For a mixed solvent scenario, the total number density of polar species and solution
dielectric susceptibly y can be used in combination with Equations (4)–(6) to apply 3D-RISM
formalism as:

ρpolar = ∑
s∈polar

ρs (7)

y =
4π

9kBT ∑
s∈polar

ρs(ds)
2 (8)
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A closure function is required to integrate an infinite chain of correlation diagrams
generated from the direct and total correlation function. The functional form of such a
closure function in unknown, and several approximated forms were reported over time
for simplified computations. Closure functions differ from each other in the mathematical
form of the bridging function used in the construct. The Kovalenko-Hirata (KH) closure is
among the best closure relations till date in terms of both numerical stability and reasonable
accuracy [58,59]. The mathematical form of the KH closure is given as:

gγ(r) =
{

exp(−uγ(r)/(kBT) + hγ(r)− cγ(r)) for gγ(r) ≤ 1
1− uγ(r)/(kBT) + hγ(r)− cγ(r) for gγ(r) > 1

(9)

The overall form of the KH closure can be explained as a coupling of the mean spherical
approximation for the regions of density enrichment (gγ(r) > 1) with the hypernetted chain
approximation for the region of density depletion (gγ(r) < 1). The excess chemical potential
and the solvation free energy is obtained from the analytical form of the KH closure as:

µsolv = ∑
γ

∫
V dr Φγ(r)

Φγ(r) = ργkBT
[

1
2 h2

γ(r)Θ(−hγ(r))− cγ(r)− 1
2 hγ(r)cγ(r)

] (10)

The Φγ(r) is the Heaviside step function. Important thermodynamic parameters are
derived from the excess chemical potential for solute sites (u) and solvent sites (v) as:

∆µ = ∆εuv + ∆εvv − T∆sV (11)

The entropy (∆SV) and partial molar volume (PMV,
∼
V) are calculated as:

∆SV = − 1
T

(
∂∆µ

∂T

)
V

(12)

∼
V = kBTχT

(
1−∑

γ

ργ

∫
dr cγ(r)

)
(13)

The errors in 3D-RISM calculations have several origins. Firstly, the internal pressure
calculated in the 3D-RISM molecular solvation theory is wrong. A few correction schemes
were developed to counter this error [60,61]. Another source of errors arises from the
choice of the Lennard-Jones potential used for calculating interaction potentials. A careful
calibration is warranted while selecting a force field for a specific application. For example,
the computational framework of 3D-RISM failed to converge for polar protic hydrogen
atom (e.g., water) with conventional force fields, as the hydrogen atoms has no van der
Walls parameters assigned. This problem is circumvented by using a non-zero van der
Wall’s terms for hydrogens [62,63]. The KH closure is known to shift the strongly associated
peaks while broadening them simultaneously; interestingly, this provides an adequately
correct solvation structure.

3. Biomolecular Simulations with the 3D-RISM-KH Molecular Solvation Theory

The center of simulations for biophysics related problems are structure-function fea-
tures of protein and nucleic acids. The structural landscape of biomolecular folding is
a high demand research field. Recent achievements in achieving millisecond time scale
simulation of protein structure opened further developments in order to explore the entire
folding landscape of proteins of reasonable sizes [64–66]. The molecular dynamics simula-
tion with the 3D-RISM-KH theory was first incorporated in the AMBER MD simulation
suite, using the Sander engine as well as standalone unit for single point solvation free
energy calculations [32]. The standard Sander implementation was modified to support
long time scale simulations using damped Langevin dynamics for a canonical ensemble
to address the instability of the multiple time step MD (MTS-MD). This is achieved by
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combining two simulation cycles for two different parts of the system (MTS-MD). The outer
time steps are obtained from 3D-RISM-KH calculation. For each inner step, the effective
solvation force is used to extrapolate solvation force coordinates, based on the outer time
steps. The force matrix {F}(k) working on each solute atom is approximated as a linear
combination of forces at N previous steps, at any given time step tk:

{F}(k) =
N

∑
i=1

aki{F}(i), i ∈ 3D− RISM steps (14)

The weighted coefficients aki for a given time step are obtained from the best projec-
tion of N previous steps. These non-conservative potentials provided a smooth transition
between steps. However, strong coupling through the Nosé-Hoover chain of thermostats
impeded structural transitions. The next generation of development provided the advanced
solvation force extrapolation scheme (ASFE). This development used the optimized isoki-
netic Nosé-Hoover thermostat (OIN) for each atom by imposing kinetic energy constraints.
The fast-dynamics (solute-solute) and slow dynamics (solute-solvent via 3D-RISM) are
separated in the ASFE implementation. The accuracy of extrapolation was estimated by
relative mean square deviation of the extrapolated effective solvation forces from their
original values calculated from converged 3D-RISM-KH for the outer time step. The ap-
plicability of the novel formalism containing two separate time cycles for MD simulation
of solute-solvent systems were validated against conformational space of alanine dipep-
tide in water. The subsequent developments, generalized solvation force extrapolation
(GSFE), used rotational transformation of the relative coordinates for each atom in order to
smoothen the force matrix described previously. In this new development which also used
OIN thermostats, a weighting function was introduced for each discretized space. The
new algorithm also takes into account that the nearest neighbors have maximum effect on
mean solvation forces for any given atom. The efficiency of this new algorithm was shown
by the MTS-MD/OIN/GFSE/3D-RISM-KH simulation of a miniprotein (PDB: 1L2Y) and
protein G with their reported folded forms [67–69]. The miniprotein folding was achieved
via the MTS-MD formalism, starting from a fully extend denatured state, at about 60 ns
simulation in comparison to the average physical folding time in the order of µs observed
via experiment [68].

4. Binding Site Mapping

Receptor-ligand binding is in the heart of early-stage drug discovery. A correct map-
ping helps to stop waste of resources, both financially and computationally. Traditionally,
lead-like molecules are used to find potential binding site(s) on a receptor surface. An
alternative option to this is fragment-based mapping. These processes will lead to a set of
fragments/probe molecules that are potential binders on a receptor surface with defined
binding sites [70,71]. Chemical linking based on available linker databases and knowledge
of chemical space yields potential leads. The success of this process depends on correctly
finding a binding site, usually using empirical scoring algorithms. The 3D-RISM-KH theory
essentially provides a 3D-distribution of solvent sites around a solute of arbitrary shape.
Thus, one can replace the solvent with a small molecule fragment and even a mixture of
fragments, and develop a distribution of unique sites from a mixture of fragments, around
a solute of interest. The concept behind this process is easy to visualize, but requires spe-
cialized algorithms that can reduce computational burden and help in finding a physically
meaningful solution. The 3D-distribution function for ligand site γ is given as:

gγ(rγ(R, Ω)) =
∫

gγ(r)ργ(r− rγ(R, Ω))dr (15)

The ligand sites spatial position is defined with three cartesian coordinates (R, transla-
tional) and three Euler angles (Ω, rotational). In practice, the ligand site density distribution
is described using a Gaussian-type function. The so-called “site-integrated” potential of
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mean force (W, SI-PMF) is used to find the most probable binding site(s) of a ligand probe
on a receptor [72]:

W
(

∆
→
R, Ω

)
= −kBT ∑

γ

ln gγ

(
rγ

(→
R, Ω

))
(16)

The latest development of this concept used spatial distribution function of a ligand
around a protein and thus explored all possible binding modes of the ligand, and final
filtering was done based on a scoring function [73]. This scoring function is based on
estimated free energy terms and is written as:

WSP({r}; Ω) ≈ −RT ln

[
∏

i
gi(ri; Ω)

]
(17)

These methodologies were validated against several small molecule binders and
protein-ligand datasets [72–74].

Another important aspect of protein-ligand interactions is the role played by binding-
site water molecules in ligand recognition [75–77]. For a regular molecular simulation
with explicit solvent molecules, it is cumbersome to look for such binding site water
molecules. This search of binding site waters can be eased with the help of the 3D-RISM-KH
water distribution function around a solute molecule. Water distribution in the Lysozyme
cavity was first successfully explored to locate binding site water using the 3D-RISM-KH
theory [78]. The most updated protocol was reported by Sindhikara and Hirata [79,80]. In
their method (placevent), a new successive orthogonal image (SOI) technique for sampling
was employed to analyze the distribution function (Figure 3). The SOI method calculates
the rotational space of three orthogonal vectors for a spherical search space by using a
heavy atom of the solvent as anchor of rotation (e.g., oxygen atoms of water molecules).

The solvation site volume (
∼
Vn) is calculated by applying the Kirkwood-Buff equation in a

3D-RISM-KH calculation as:

∼
Vn = kBTχT

1− ρ0 ∑
γ

∫
Vn

cγ(r) dr

 (18)

The success of this applications was reported against experimentally determined
binding site and poses of ligands in biologically relevant targets. The 3D-RISM-KH based
water site prediction is implemented in the MOE© suite [81]. Some examples of successful
applications of the 3D-RISM-KH theory in exploiting the explicit role of water maps
are reported for in-drug design and protein aggregation studies [82–84]. A very recent
modification of the 3D-RISM theory in mapping solvation sites in enzyme active site
was reported by Nguyen et al. [85]. This new development extended the GIST (grid
inhomogeneous solvation theory) based mapping technique in to the 3D-RISM grids.
Briefly, an approximated distribution of oxygen site α (from water) around a site of interest
is related to thermochemical property of interest (A) as position r as:

A(r) ≈ Aα(r) + gα(r) ∑
γ 6=α

ωαγ(r) ∗ Aγ(r) (19)

The number density distribution gα(r) is used to weight the convolution (*) in the
right-hand side of Equation (19). This formalism did not consider the non-local effect in
the distribution, although the authors reported negligible errors in the final distribution
resulting from this issue in comparison to molecular simulations and experimental data.
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Among other reports of biomolecular simulations using the 3D-RISM-KH theory,
the effect of (micro-) solvent environments on amyloid structure and potential of mean
force calculations of solute permeation across UT-B and AQP1 proteins provided further
extension of the applications of the 3D-RISM-KH theory based molecular solvation [86,87].

5. Protein-Ligand Binding Energy

Heart to drug development is correct prediction or binding affinity of small molecules
toward target receptor, if not quantitatively accurate then a trend of binding affinity.
Methodologies developed for calculating binding energy for the process, Protein + Lig-
and→ Complex, are the linear-response approximation (LRA), protein-dipole Langevin-
dipole approach (PDLD), linear interaction energy (LIE) approach, and MM/PB(GB)SA
approach [88–93]. The MM/PBSA method is favored over the others, as it avoids empirical
parameterizations. In this method, the free energy of binding (Gbind) is expressed via the
molecular mechanics (MM) based energy (EMM, gas phase, for reactants covering internal,
electrostatic, and van der Wall’s terms), the solvation energy term (Gsolv), and the entropy
term (-TSMM), computed at temperature T.

Gbind = EMM + Gsolv − TSMM = Eint + Eel + Evdw + Gsolv, polar + gsolv, non-polar − TSMM (20)

The solvation terms are calculated by solving the Poisson-Boltzmann (PB) equation
(or via generalized Born, GB, model). While this method is fast enough to estimate binding
energy in complex, the detailed inter- and intra-species interactions are not transferred
properly due to the use of implicit solvation method(s). In the 3D-RISM-KH based binding
energy calculation method, the MM/PBSA part is replaced with the 3D-RISM-KH calcula-
tions using solvent distribution functions around solutes in the MD simulation trajectory.
The PB/GB polar and solvent accessible surface area (SASA) nonpolar solvation terms



Int. J. Mol. Sci. 2021, 22, 5061 9 of 14

are replaced with the solvation free energy term from Equation (10). This modification
was shown to be equally effective as of traditional MM-PBSA or MM-GBSA methods. The
most notable difference was reported between the 3D-RISM-KH and SASA computed
non-bonded terms. The later was found to be always favoring binding, whereas the former
was not [91,94]. The 3D-RISM-KH based binding calculations were also reported for other
protein-ligand complexes and host-guest complexes [95–97].

6. Molecular Solvation Energy Calculations

The excess chemical potential obtained from 3D-RISM-KH calculations are theoret-
ically a direct measure of solvation energy. However, as mentioned previously, due to
erroneous calculations of internal pressure, the computed solvation energy (Gaussian
fluctuation excess chemical potential) showed large deviation from actual experimental
solvation energy. Other possible reasons for deviations in calculated solvation energy in
the 3D-RISM are approximate nature of the closure relations, absence of explicit cavitation
energy terms, and inadequacy in force field terms, etc. Incomplete sampling of solutes and
short simulation times are also responsible in errors in solvation energy calculations, which
reflects in physical property calculations. A correction scheme was developed in order to
address this shortcoming, initially for solvation free energy [98]. This so-termed universal
correction has the form:

∆Ghydration = ∆GGF
hydration, RISM + a × PMV + b (21)

The partial molar volume (PMV) of a solute in water is an output of a RISM calculation.
The coefficients a and b were obtained from regression analysis against the experimental sol-
vation energy database of Mobley and co-workers [99]. For hydration energy calculations
with the 3D-RISM-KH formalism, a modified correction scheme was reported by Truchon
et al. which aimed to account for the cavitation energy term [100]. Further development of
solvation energy calculations in various solvents were reported from the lab of the authors,
both in the context of exploring liquid state of pure solvents as well as in calculating molec-
ular partitioning and permeability properties. Effect of atomic charge assignment schemes
in hydration free energy calculation was reported by Roy et al. for an extended database of
compounds with experimental hydration free energy [37]. Literature reports on hydration
free energy calculations with the 3D-RISM-KH theory obtained excellent results with the
GAFF force field parameters of the solute with the modified point charge models of water.
While water is one of the most polar solvents used in biochemical simulations, the RISM-
KH theory is extended to non-polar solvents too. Non-polar solvents that are modeled
using the 3D-RISM-KH theory are hydrocarbons (hexadecane, cyclohexane), haloalkane
(chloroform), and alcohol (n-octanol, t-butanol) [41,47,101,102]. Other solvents like nitro-
compounds (nitromethane, nitroethane, and nitrobenzene), acetonitrile, and dimethyl
sulfoxide (DMSO) were also used in RISM-KH calculations for both liquid structure and
solvation energetic studies [42,103,104]. The performance of the 3D-RISM-KH calculations
is summarized in Table 1. The performance of the 3D-RISM-KH theory in solvation free
energy calculation, in comparison to the performance of MD and/or quantum chemical
models, together with computation speed made this theory ideal for such applications.
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Table 1. Performance of the 3D-RISM-KH theory in predicting solvation free energy of solutes
in various solvents reported in the literature. Performance of different computational method in
solvation free energy calculation is provided in parentheses.

Solvent Dielectric
Constant No. of Solutes Accuracy

(Kcal/Mol) Reference

Water 78.5 504
0.91–0.95 a (1.51) c [99]

0.89 a [100]

n-Octanol 9.86
205 0.94 b [41]
158 1.03 b [102]

Cyclohexane 2.0165 91 1.12 a [37,101]
Hexadecane 2.0402 189 0.88 a [37,101]
Chloroform 4.7113 105 0.75 a [37,101]
Acetonitrile 35.688 7 2.2 a (1.9) d [47]

Nitromethane 36.562 7 1.32 a (1.83) d [103]
Nitroethane 28.29 7 0.38 a (2.00) d [103]

Nitrobenzene 34.809 15 0.88 a (2.91) d [103]
DMSO 46.826 8 2.09 a [42]

a Mean absolute error. b Relative mean square error. c RMSE computed from MD simulation in ref. [99]. d RMSE
computed using CPCM continuum solvation model on Minnesota solvation database [105].

7. Conclusions

The 3D-RISM theory is under continuous development, and the range of the applica-
tion of this theory is ever expanding. For biomolecular simulations, MTS-MD provides a
platform to combine fast dynamics of the solute with slow solute-solvent dynamics, and
is proven to be able to avoid the local minima problem in molecular dynamics. Several
important modifications covering the algorithm of the 3D-RISM code for application with
massive parallel computer architectures were reported [106–108]. The algorithm was also
coupled with density functional theory based electronic grids for electronic structure cal-
culations [33,109]. It is important to understand that 3D-RISM-KH molecular solvation
theory deals with liquid state. Thus, a direct comparison of the simulation results obtained
from 3D-RISM calculations with structures determined from solid state experiments (e.g.,
solid-state X-Ray, neutron diffraction, etc.) may not result in a great match. For a better
comparison, data obtained from experiments with liquid state should be used. Further, the
Gaussian fluctuation excess chemical potentials from a 3D-RISM calculation should not be
taken as an absolute measure of solvation free energy. For solvation energy calculations,
the results should be compared against experimental datasets and should be fitted for use
against a test set, should such a need arise. The 3D-RISM calculations provide a unique ma-
chinery to represent liquid medium with specific concentrations of cosolvent(s), additives,
etc., and thus providing an opportunity to model a more realistic environment. The theory
is extendable to multiphasic systems with inhomogeneous version of molecular solvation
theory. However, one should keep in mind that the 3D-RIM-KH theory is not one a “size
fits all” theory. It requires detailed benchmarking of every aspects of a specific problem
before using it for predictive modeling.
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38. Nikolić, D.; Blinov, N.; Wishart, D.; Kovalenko, A. 3D-RISM-Dock: A New Fragment-Based Drug Design Protocol. J. Chem. Theory
Comput. 2012, 8, 3356–3372. [CrossRef] [PubMed]

39. Kiyota, Y.; Yoshida, N.; Hirata, F. A New Approach for Investigating the Molecular Recognition of Protein: Toward Structure-Based
Drug Design Based on the 3D-RISM Theory. J. Chem. Theory Comput. 2011, 7, 3803–3815. [CrossRef]

40. Palmer, D.S.; Mišin, M.; Fedorov, M.V.; Llinas, A. Fast and General Method To Predict the Physicochemical Properties of Druglike
Molecules Using the Integral Equation Theory of Molecular Liquids. Mol. Pharm. 2015, 12, 3420–3432. [CrossRef] [PubMed]

41. Roy, D.; Hinge, V.K.; Kovalenko, A. To Pass or Not To Pass: Predicting the Blood–Brain Barrier Permeability with the 3D-RISM-KH
Molecular Solvation Theory. ACS Omega 2019, 4, 16774–16780. [CrossRef]

42. Roy, D.; Kovalenko, A. Application of the Approximate 3D-Reference Interaction Site Model (RISM) Molecular Solvation Theory
to Acetonitrile as Solvent. J. Phys. Chem. B 2020, 124, 4590–4597. [CrossRef] [PubMed]

43. Subramanian, V.; Ratkova, E.; Palmer, D.; Engkvist, E.; Fedorov, M.; Llinas, A. Multisolvent Models for Solvation Free Energy Pre-
dictions Using 3D-RISM Hydration Thermodynamic Descriptors. J. Chem. Inf. Model. 2020, 60, 2977–2988. [CrossRef] [PubMed]

44. Roy, D.; Dutta, D.; Wishsart, D.S.; Kovalenko, A. Predicting PAMPA permeability using the 3D-RISM-KH theory: Are we there
yet? J. Comput. Aided Mol. Des. 2021, 35, 261–269. [CrossRef]

45. Hinge, V.K.; Roy, D.; Kovalenko, A. Predicting skin permeability using the 3D-RISM-KH theory based solvation energy descriptors
for a diverse class of compounds. J. Comput. Aided Mol. Des. 2019, 33, 605–611. [CrossRef]

46. Hinge, V.K.; Roy, D.; Kovalenko, A. Prediction of P-glycoprotein inhibitors with machine learning classification models and
3D-RISM-KH theory based solvation energy descriptors. J. Comput. Aided Mol. Des. 2019, 33, 965–971. [CrossRef]

47. Huang, W.J.; Blinov, N.; Kovalenko, A. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation
with Partial Molar Volume Correction. J. Phys. Chem. B 2015, 119, 5588–5597. [CrossRef] [PubMed]

48. Luchko, T.; Blinov, N.; Limon, G.C.; Joyce, K.P.; Kovalenko, A. SAMPL5: 3D-RISM partition coefficient calculations with partial
molar volume corrections and solute conformational sampling. J. Comput. Aided Mol. Des. 2016, 30, 1115–1127. [CrossRef]

49. Chandler, D. Equilibrium structure and molecular motion in liquids. Acc. Chem. Res. 1974, 7, 246. [CrossRef]
50. Lowden, L.J.; Chandler, D. Solution of a new integral equation for pair correlation functions in molecular liquids. J. Chem. Phys.

1973, 59, 6587. [CrossRef]
51. Lowden, L.J.; Chandler, D. Theory of intermolecular pair correlations for molecular liquids. Applications to the liquids carbon

tetrachloride, carbon disulfide, carbon diselenide, and benzene. J. Chem. Phys. 1974, 61, 5228. [CrossRef]
52. Chandler, D. Derivation of an integral equation for pair correlation functions in molecular fluids. J. Chem. Phys. 1973,

59, 2742. [CrossRef]
53. Chandler, D.; Hsu, C.S.; Street, W.B. Comparisons of Monte Carlo and RISM calculations of pair correlation functions. J. Chem.

Phys. 1977, 66, 5231. [CrossRef]
54. Singer, S.J.; Chandler, D. Free energy functions in the extended RISM approximation. Mol. Phys. 1985, 55, 621. [CrossRef]
55. Chandler, D.; Silbey, R.; Ladanyi, B.M. New and proper integral equations for site-site equilibrium correlations in molecular

fluids. Mol. Phys. 1982, 46, 1335. [CrossRef]
56. Richardson, D.M.; Chandler, D. Calculation of orientational pair correlation factors with the interaction site formalism. J. Chem.

Phys. 1984, 80, 4484. [CrossRef]
57. Perkyns, J.; Pettitt, B.M. A site–site theory for finite concentration saline solutions. J. Chem. Phys. 1992, 97, 7656. [CrossRef]
58. Kovalenko, A.; Hirata, F. Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference

interaction site model approach. J. Chem. Phys. 2000, 112, 10391. [CrossRef]
59. Kovalenko, A. Multiscale modeling of solvation in chemical and biological nanosystems and in nanoporous materials. Pure Appl.

Chem. 2013, 85, 159–199. [CrossRef]

http://doi.org/10.1021/cr5000283
http://doi.org/10.1021/ct900460m
http://www.ncbi.nlm.nih.gov/pubmed/20440377
http://doi.org/10.1021/jp054344t
http://doi.org/10.1021/ct6001785
http://doi.org/10.1021/acs.jctc.5b01137
http://doi.org/10.1088/1361-648X/aad076
http://doi.org/10.1021/acs.jpca.9b01623
http://doi.org/10.1021/ct300257v
http://www.ncbi.nlm.nih.gov/pubmed/26605742
http://doi.org/10.1021/ct200358h
http://doi.org/10.1021/acs.molpharmaceut.5b00441
http://www.ncbi.nlm.nih.gov/pubmed/26212723
http://doi.org/10.1021/acsomega.9b01512
http://doi.org/10.1021/acs.jpcb.0c03230
http://www.ncbi.nlm.nih.gov/pubmed/32392049
http://doi.org/10.1021/acs.jcim.0c00065
http://www.ncbi.nlm.nih.gov/pubmed/32311268
http://doi.org/10.1007/s10822-020-00364-4
http://doi.org/10.1007/s10822-019-00205-z
http://doi.org/10.1007/s10822-019-00253-5
http://doi.org/10.1021/acs.jpcb.5b01291
http://www.ncbi.nlm.nih.gov/pubmed/25844645
http://doi.org/10.1007/s10822-016-9947-7
http://doi.org/10.1021/ar50080a002
http://doi.org/10.1063/1.1680038
http://doi.org/10.1063/1.1681868
http://doi.org/10.1063/1.1680393
http://doi.org/10.1063/1.433787
http://doi.org/10.1080/00268978500101591
http://doi.org/10.1080/00268978200101971
http://doi.org/10.1063/1.447231
http://doi.org/10.1063/1.463485
http://doi.org/10.1063/1.481676
http://doi.org/10.1351/PAC-CON-12-06-03


Int. J. Mol. Sci. 2021, 22, 5061 13 of 14

60. Sergiievskyi, V.; Jeanmairet, G.; Levesque, M.; Borgis, D. Solvation free-energy pressure corrections in the three dimensional
reference interaction site model. J. Chem. Phys. 2015, 143, 184116. [CrossRef] [PubMed]

61. Misin, M.; Vainikka, P.A.; Fedorov, M.V.; Palmer, D.S. Salting-out effects by pressure-corrected 3D-RISM. J. Chem. Phys. 2016,
145, 194501. [CrossRef]

62. Pettitt, B.M.; Rossky, P.J. Integral equation predictions of liquid state structure for waterlike intermolecular potentials. J. Chem.
Phys. 1982, 77, 1451–1457. [CrossRef]

63. Hirata, F.; Levy, R.M. A new RISM integral equation for solvated polymers. Chem. Phys. Lett. 1987, 136, 267–273. [CrossRef]
64. Noé, F. Beating the Millisecond Barrier in Molecular Dynamics Simulations. Biophys. J. 2015, 108, 228. [CrossRef]
65. Shaw, D.E. Millisecond-long molecular dynamics simulations of proteins on a special-purpose machine. Biophys. J. 2013,

104, 45A. [CrossRef]
66. Voelz, V.A.; Bowman, G.R.; Beauchamp, K.; Pande, V.S. Molecular Simulation of ab Initio Protein Folding for a Millisecond Folder

NTL9(1−39). J. Am. Chem. Soc. 2010, 132, 1526. [CrossRef]
67. Miyata, T.; Hirata, F. Combination of molecular dynamics method and 3D-RISM theory for conformational sampling of large

flexible molecules in solution. J. Comput. Chem. 2008, 29, 871–882. [CrossRef]
68. Omelyan, I.; Kovalenko, A. MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with

Generalized Solvation Force Extrapolation. J. Chem. Theory Comput. 2015, 11, 1875–1895. [CrossRef]
69. Omelyan, I.; Kovalenko, A. Enhanced solvation force extrapolation for speeding up molecular dynamics simulations of complex

biochemical liquids. J. Chem. Phys. 2019, 151, 214102. [CrossRef]
70. Murray, C.W.; Rees, D.C. The rise of fragment-based drug discovery. Nat. Chem. 2009, 1, 187–192. [CrossRef]
71. Tounge, B.A.; Parker, M.H. Chapter one—Designing a Diverse High-Quality Library for Crystallography-Based FBDD Screening.

Methods Enzymol. 2011, 493, 3–20.
72. Imai, T.; Oda, K.; Kovalenko, A.; Hirata, F.; Kidera, A. Ligand Mapping on Protein Surfaces by the 3D-RISM Theory: Toward

Computational Fragment-Based Drug Design. J. Am. Chem. Soc. 2009, 131, 12430. [CrossRef]
73. Sugita, M.; Hamano, M.; Kasahara, K.; Kikuchi, T.; Hirata, F. New Protocol for Predicting the Ligand-Binding Site and Mode

Based on the 3D-RISM/KH Theory. J. Chem. Theory Comput. 2020, 16, 2864. [CrossRef] [PubMed]
74. Imai, T. A Novel Ligand-Mapping Method Based on Molecular Liquid Theory. Curr. Pharm. Des. 2011, 17, 1685–1694.

[CrossRef] [PubMed]
75. Lemmon, G.; Meiler, J. Towards Ligand Docking Including Explicit Interface Water Molecules. PLoS ONE 2013, 8, e67536.

[CrossRef] [PubMed]
76. Ross, G.A.; Morris, G.M.; Biggin, P.C. Rapid and Accurate Prediction and Scoring of Water Molecules in Protein Binding Sites.

PLoS ONE 2012, 7, e32036. [CrossRef]
77. Rudling, A.; Orro, A.; Carlsson, J. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics

Simulations: The Impact of Ligand Binding on Hydration Networks. J. Chem. Inf. Model. 2018, 58, 350–361. [CrossRef]
78. Imai, T.; Hiraoka, R.; Kovalenko, A.; Hirta, F. Water Molecules in a Protein Cavity Detected by a Statistical−Mechanical Theory. J.

Am. Chem. Soc. 2005, 127, 15334. [CrossRef] [PubMed]
79. Sindhikara, D.J.; Yoshida, N.; Hirata, F. Placevent: An algorithm for prediction of explicit solvent atom distribution-application to

HIV-1 protease and F-ATP synthase. J. Comput. Chem. 2012, 33, 1536. [CrossRef] [PubMed]
80. Hinge, V.K.; Blinov, N.; Roy, D.; Wishart, D.S.; Kovalenko, A. The role of hydration effects in 5-fluorouridine binding to SOD1:

Insight from a new 3D-RISM-KH based protocol for including structural water in docking simulations. J. Comput. Aided Mol. Des.
2019, 33, 913. [CrossRef]

81. Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC: Montreal, QC, Canada, 2021.
82. Nukaga, M.; Yoon, M.J.; Taracilia, M.A.; Hoshino, T.; Becka, S.A.; Zeiser, E.T.; Johnson, J.R.; Papp-Wallace, K.M. Assessing the

Potency of β-Lactamase Inhibitors with Diverse Inactivation Mechanisms against the PenA1 Carbapenemase from Burkholderia
multivorans. ACS Infect. Dis. 2021, 7, 826–837. [CrossRef]

83. Hüfner-Wulsdorf, T.; Klebe, G. Mapping Water Thermodynamics on Drug Candidates via Molecular Building Blocks: A Strategy
to Improve Ligand Design and Rationalize SAR. J. Med. Chem. 2021. [CrossRef]

84. Aggarwal, L.; Biswas, P. Hydration Thermodynamics of Familial Parkinson’s Disease-Linked Mutants of α-Synuclein. J. Chem.
Inf. Model. 2021. [CrossRef]

85. Nguyen, C.; Yamazaki, T.; Kovalenko, A.; Case, D.A.; Gilson, M.K.; Kurtzman, T.; Luchko, T. A molecular reconstruction approach
to site-based 3D-RISM and comparison to GIST hydration thermodynamic maps in an enzyme active site. PLoS ONE 2019,
14, e0219473. [CrossRef]

86. Blinov, N.; Wishart, D.S.; Kovalenko, A. Solvent Composition Effects on the Structural Properties of the Aβ42 Monomer from the
3D-RISM-KH Molecular Theory of Solvation. J. Phys. Chem. B 2019, 123, 2491–2506. [CrossRef] [PubMed]

87. Ariz-Extreme, I.; Hub, J.S. Potential of Mean Force Calculations of Solute Permeation across UT-B and AQP1: A Comparison
between Molecular Dynamics and 3D-RISM. J. Phys. Chem. B 2017, 121, 1506–1519. [CrossRef] [PubMed]

88. Lee, F.S.; Chu, Z.-T.; Bolger, M.B.; Warshel, A. Calculations of antibody-antigen interactions: Microscopic and semi-microscopic
evaluation of the free energies of binding of phosphorylcholine analogs to McPC603. Protein Eng. 1992, 5, 215–228. [CrossRef]

89. Sham, Y.Y.; Chu, Z.T.; Tao, H.; Warshel, A. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA,
and PDLD/S-LRA calculations of ligands binding to an HIV protease. Proteins: Struct. Funct. Genet. 2000, 39, 393–407. [CrossRef]

http://doi.org/10.1063/1.4935065
http://www.ncbi.nlm.nih.gov/pubmed/26567655
http://doi.org/10.1063/1.4966973
http://doi.org/10.1063/1.443972
http://doi.org/10.1016/0009-2614(87)80249-X
http://doi.org/10.1016/j.bpj.2014.11.3477
http://doi.org/10.1016/j.bpj.2012.11.289
http://doi.org/10.1021/ja9090353
http://doi.org/10.1002/jcc.20844
http://doi.org/10.1021/ct5010438
http://doi.org/10.1063/1.5126410
http://doi.org/10.1038/nchem.217
http://doi.org/10.1021/ja905029t
http://doi.org/10.1021/acs.jctc.9b01069
http://www.ncbi.nlm.nih.gov/pubmed/32176492
http://doi.org/10.2174/138161211796355092
http://www.ncbi.nlm.nih.gov/pubmed/21619527
http://doi.org/10.1371/journal.pone.0067536
http://www.ncbi.nlm.nih.gov/pubmed/23840735
http://doi.org/10.1371/journal.pone.0032036
http://doi.org/10.1021/acs.jcim.7b00520
http://doi.org/10.1021/ja054434b
http://www.ncbi.nlm.nih.gov/pubmed/16262373
http://doi.org/10.1002/jcc.22984
http://www.ncbi.nlm.nih.gov/pubmed/22522665
http://doi.org/10.1007/s10822-019-00239-3
http://doi.org/10.1021/acsinfecdis.0c00682
http://doi.org/10.1021/acs.jmedchem.0c02115
http://doi.org/10.1021/acs.jcim.1c00034
http://doi.org/10.1371/journal.pone.0219473
http://doi.org/10.1021/acs.jpcb.9b00480
http://www.ncbi.nlm.nih.gov/pubmed/30811210
http://doi.org/10.1021/acs.jpcb.6b11279
http://www.ncbi.nlm.nih.gov/pubmed/28128570
http://doi.org/10.1093/protein/5.3.215
http://doi.org/10.1002/(SICI)1097-0134(20000601)39:4&lt;393::AID-PROT120&gt;3.0.CO;2-H


Int. J. Mol. Sci. 2021, 22, 5061 14 of 14

90. Warshel, A.; Sharma, P.K.; Kato, M.; Parson, W.W. Modeling electrostatic effects in proteins. Biochim. Biophys. Acta 2006, 1764,
1647–1676. [CrossRef]

91. Åqvist, J.; Medina, C.; Samuelsson, J.E. A new method for predicting binding affinity in computer-aided drug design. Protein Eng.
1994, 7, 385–391. [CrossRef]

92. Hansson, T.; Marelius, J.; Åqvist, J. Ligand binding affinity prediction by linear interaction energy methods. J. Comput. Aided Mol.
Des. 1998, 12, 27–35. [CrossRef]

93. Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating
Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc. Chem. Res.
2000, 33, 889–897. [CrossRef] [PubMed]

94. Genheden, S.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Ryde, U. An MM/3D-RISM Approach for Ligand Binding Affinities. J.
Phys. Chem. B 2010, 114, 8505–8516. [CrossRef] [PubMed]

95. Sugita, M.; Kuwano, I.; Higashi, T.; Motoyama, K.; Arima, H.; Hirata, F. Computational Screening of a Functional Cyclodextrin
Derivative for Suppressing a Side Effect of Doxorubicin. J. Phys. Chem. B 2021, 125, 2308–2316. [CrossRef]

96. Suárez, D.; Díaz, N. Affinity Calculations of Cyclodextrin Host–Guest Complexes: Assessment of Strengths and Weaknesses of
End-Point Free Energy Methods. J. Chem. Inf. Model. 2019, 59, 421–440. [CrossRef]

97. Miller, B.R., III; McGee, T.D., Jr.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for
End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [CrossRef] [PubMed]

98. Palmer, D.S.; Frolov, A.I.; Ratkova, E.L.; Fedorov, M.V. Towards a universal method for calculating hydration free energies: A 3D
reference interaction site model with partial molar volume correction. J. Phys. Condens. Matter 2010, 22, 492101. [CrossRef]

99. Mobley, D.L.; Guthrie, J.P. FreeSolv: A database of experimental and calculated hydration free energies, with input files. J. Comput.
Aided Mol. Des. 2014, 28, 711–720. [CrossRef] [PubMed]

100. Truchon, J.-F.; Pettit, B.M.; Labute, O. A Cavity Corrected 3D-RISM Functional for Accurate Solvation Free Energies. J. Chem.
Theory Comput. 2014, 10, 934. [CrossRef]

101. Roy, D.; Hinge, V.K.; Kovalenko, A. Predicting Blood–Brain Partitioning of Small Molecules Using a Novel Minimalistic
Descriptor-Based Approach via the 3D-RISM-KH Molecular Solvation Theory. ACS Omega 2019, 4, 3055–3060. [CrossRef]

102. Roy, D.; Blinov, N.; Kovalenko, A. Predicting Accurate Solvation Free Energy in n-Octanol Using 3D-RISM-KH Molecular Theory
of Solvation: Making Right Choices. J. Phys. Chem. B 2017, 121, 9268–9273. [CrossRef] [PubMed]

103. Roy, D.; Kovalenko, A. Application of the 3D-RISM-KH molecular solvation theory for DMSO as solvent. J. Comput. Aided Mol.
Des. 2019, 33, 905–912. [CrossRef] [PubMed]

104. Roy, D.; Kovalenko, A. A 3D-RISM-KH study of liquid nitromethane, nitroethane, and nitrobenzene as solvents. J. Mol. Liq. 2021,
332, 115857. [CrossRef]

105. Marenich, A.V.; Kelly, C.P.; Thompson, J.D.; Hawkins, G.D.; Chambers, C.C.; Giesen, D.J.; Winget, P.; Cramer, C.J.; Truhlar, D.G.
Minnesota Solvation Database—Version 2012; University of Minnesota: Minneapolis, MN, USA, 2012.

106. Maruyama, Y.; Yoshida, N.; Tadano, H.; Takahashi, D.; Sato, M.; Hirata, F. Massively parallel implementation of 3D-RISM
calculation with volumetric 3D-FFT. J. Comput. Chem. 2014, 35, 1347–1355. [CrossRef]

107. Maruyama, Y.; Hirata, F. Modified Anderson Method for Accelerating 3D-RISM Calculations Using Graphics Processing Unit. J.
Chem. Theory Comput. 2012, 8, 3015–3021. [CrossRef] [PubMed]

108. Onishi, I.; Tsuji, H.; Irisa, M. A tool written in Scala for preparation and analysis in MD simulation and 3D-RISM calculation of
biomolecules. Biophys. Physicobiol. 2019, 16, 485–489. [CrossRef]

109. Reimann, M.; Kaupp, M. Evaluation of an Efficient 3D-RISM-SCF Implementation as a Tool for Computational Spectroscopy in
Solution. J. Phys. Chem. A 2020, 124, 7439–7452. [CrossRef] [PubMed]

http://doi.org/10.1016/j.bbapap.2006.08.007
http://doi.org/10.1093/protein/7.3.385
http://doi.org/10.1023/A:1007930623000
http://doi.org/10.1021/ar000033j
http://www.ncbi.nlm.nih.gov/pubmed/11123888
http://doi.org/10.1021/jp101461s
http://www.ncbi.nlm.nih.gov/pubmed/20524650
http://doi.org/10.1021/acs.jpcb.1c00373
http://doi.org/10.1021/acs.jcim.8b00805
http://doi.org/10.1021/ct300418h
http://www.ncbi.nlm.nih.gov/pubmed/26605738
http://doi.org/10.1088/0953-8984/22/49/492101
http://doi.org/10.1007/s10822-014-9747-x
http://www.ncbi.nlm.nih.gov/pubmed/24928188
http://doi.org/10.1021/ct4009359
http://doi.org/10.1021/acsomega.8b03328
http://doi.org/10.1021/acs.jpcb.7b06375
http://www.ncbi.nlm.nih.gov/pubmed/28880087
http://doi.org/10.1007/s10822-019-00238-4
http://www.ncbi.nlm.nih.gov/pubmed/31637566
http://doi.org/10.1016/j.molliq.2021.115857
http://doi.org/10.1002/jcc.23619
http://doi.org/10.1021/ct300355r
http://www.ncbi.nlm.nih.gov/pubmed/26605714
http://doi.org/10.2142/biophysico.16.0_485
http://doi.org/10.1021/acs.jpca.0c06322
http://www.ncbi.nlm.nih.gov/pubmed/32838530

	Introduction 
	Theoretical Background 
	Biomolecular Simulations with the 3D-RISM-KH Molecular Solvation Theory 
	Binding Site Mapping 
	Protein-Ligand Binding Energy 
	Molecular Solvation Energy Calculations 
	Conclusions 
	References

