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Automatic radar‑based 2‑D 
localization exploiting vital signs 
signatures
Marco Mercuri1*, Pietro Russo2, Miguel Glassee3, Ivan Dario Castro3, Eddy De Greef3, 
Maxim Rykunov3, Marc Bauduin3, André Bourdoux3, Ilja Ocket3, Felice Crupi1 & Tom Torfs3

In light of the continuously and rapidly growing senior and geriatric population, the research of new 
technologies enabling long-term remote patient monitoring plays an important role. For this purpose, 
we propose a single-input-multiple-output (SIMO) frequency-modulated continuous wave (FMCW) 
radar system and a signal processing technique to automatically detect the number and the 2-D 
position (azimuth and range information) of stationary people (seated/lying down). This is achieved 
by extracting the vital signs signatures of each single individual, separating the Doppler shifts caused 
by the cardiopulmonary activities from the unwanted reflected signals from static reflectors and 
multipaths. We then determine the number of human subjects present in the monitored environment 
by counting the number of extracted vital signs signatures while the 2-D localization is performed 
by measuring the distance from the radar where the vital signs information is sensed (i.e., locating 
the thoracic region). We reported maximum mean absolute errors (MAEs) of 0.1 m and 2.29◦ and 
maximum root-mean-square errors (RMSEs) of 0.12 m and 3.04◦ in measuring respectively the ranges 
and azimuth angles. The experimental validation demonstrated the ability of the proposed approach 
in monitoring paired human subjects in a typical office environment.

The continuous and rapid growth of the combined senior and geriatric population has resulted in an increase 
of age-related chronic diseases, such as congestive heart failure, chronic obstructive pulmonary disease, sleep 
disorders, arthritis, osteoporosis, and dementia1. There are currently more than 1 billion people over the age 
of 60 worldwide, a number that is expected to double within the next 30 years2. This scenario translates into a 
shortage of healthcare personnel, in tandem with the ever-increasing demands for healthcare services. Coupled 
with the expected rise in healthcare cost and given that only a minority can afford private home-care personnel, 
the need for technologies enabling remote patient monitoring is certainly on the rise3, 4.

In the last years, radar has become one of the most promising telemedicine technologies for both home and 
clinical environments enabling long-term smart monitoring of patients5–11. Practical applications are: sleep 
monitoring; contactless monitoring of patients in multi-bed; monitoring elderly people in domestic environment 
or in nursing homes; monitoring household members in quarantine or patients in departments of infectious dis-
eases to reduce contamination risks; detecting whether people are respecting social distancing. Research focuses 
mainly on vital signs monitoring and indoor localization. Novel and sophisticated radars have been proposed to 
properly demodulate the phase shift caused by the subject’s movements (i.e., cardiopulmonary activity, walking, 
running, etc) and embedded into the reflected radar signal (i.e., Doppler effect). The first devices were based on 
continuous wave (CW) architectures12–17. However, they were only able to monitor one single subject without 
providing any information on their position. To solve this limitation, several studies have been conducted on 
ultra-wideband (UWB) architectures, in particular on frequency-modulated CW (FMCW), stepped-frequency 
CW (SFCW), phase-modulated CW (PMCW), and UWB impulse-ratio (UWB-IR) radars18–27. Single-input-
multiple-output (SIMO), multiple-input-multiple-output (MIMO) and beamforming UWB architectures have 
been preferred over classic single-input-single-output (SISO) solutions as they can provide azimuth and range 
information, namely two-dimensional (2-D) localization, of multiple targets28–30. At the same time, many novel 
signal processing methods have been proposed to tackle the challenges that practical circumstances impose. 
Most research focused on monitoring a single subject. However, to better cope with many complex everyday 
life applications (e.g., monitoring people lying on their beds in the hospital, elderly people in nursing homes, 
household members in quarantine, etc), multi-people monitoring has become an important research direction. 
One of the biggest challenges in radar-based remote patient monitoring is to automatically estimate the number 
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and the 2-D positions of stationary people (i.e., seated/lying down and normally breathing). With this respect, 
in recent years, some significant works have been published in literature. The authors proposed a SISO FMCW 
radar, integrating two frequency scanning antennas, which allows determining the 2-D positions and the vital 
signs of people31. Wang et al. introduced the ViMo radar sensor for multi-person monitoring with a prior knowl-
edge of the number of subjects32. Su et al. presented the combination of a self-injection-locked (SIL) radar with 
FMCW and switched phased-array (SPA) techniques to locate multiple people33. Xiong et al. proposed a SIMO 
CW radar and an adaptive digital beamforming technique to detect the respiration and angular information of 
multiple individuals34. The information known a priori was the number of targets and their absolute distances 
(ranges) from the radar. Feng et al. presented a MIMO CW radar for 2-D chest motion imaging from which 
the angular information of each subject can be determined35. The system can estimate the azimuth and eleva-
tion angles where the subjects’ chests are situated but it requires the information on the number of targets and 
their ranges. Zhang et al. presented a SIMO SFCW radar for multi-people localization36. Koda et al. developed 
a respiratory-space clustering technique for monitoring multiple people using MIMO FMCW radar when the 
number and locations of people are unknown37. Wang et al. used a commercial MIMO FMCW radar to identify 
the number of multiple users and their locations38. Although these works achieved high accuracy in monitoring 
multiple individuals, one limitation is that the experiments were conducted in conditions that significantly reduce 
the effects of the multipath propagation39–41. This was achieved with no objects in between the radar and the 
person or with objects placed strategically to not generate significant interferences. This reduces the probability 
that the signals reflected from different individuals interfere each other and hence the subjects can be treated 
independently. If this (rare) condition is not met, especially in everyday indoor environments, those approaches 
would result in non-linear combinations of the Doppler signals generated by the subjects, making correlation-
based algorithms unable to eliminate the multipaths36. This because, current approaches aim at directly extracting 
the Doppler signals from the received radar signals which are the overall results of the sums of reflections due 
to direct paths (desired information), multipath, and static reflectors (i.e., clutter, furniture, objects, etc), whose 
Doppler (phase) information combines non-linearly. In this condition, the radar may: (1) fail to determine the 
right number of subjects in the room; (2) erroneously conclude people being located elsewhere than the actual 
location; (3) detect a non-existing person (i.e., a radar ghost) or even represent a life-less object as alive (hence, 
static objects cannot be simply treated as stationary); (4) assign disturbed signals to an individual42.

In this article, we propose a signal processing algorithm to automatically detect the number and the 2-D 
position (azimuth and range) of seated people. This method, demonstrated experimentally using a millimeter-
wave (mmWave) SIMO FMCW radar, is capable to isolate the Doppler signals caused by the cardiopulmonary 
activity (vital signs signatures) of each single subject from the reflections of static reflectors and multipaths. We 
also propose a phase demodulation technique based on geometric fitting which is performed of each isolated 
Doppler signal. The localization is then performed by measuring the linear distances from the radar where the 
vital signs information is sensed (i.e., locating the thoracic regions).

Signal model and data cube generation
Figure 1 shows a graphical illustration of the antenna array of a generic SIMO radar with uniform equispaced 
linear array (ULA). The radar consists of one transmitter (TX) antenna and NRX receiver (RX) antennas, forming 
an antenna array of NRX elements equally spaced of d meters. Assuming collocated antennas and a target in the 
far field at a distance r and angle α from the first element of the array (considered as the reference), the signal 
reflected from the target should travel an additional distance of (nRX-1)·d sin α to reach the nRX-th antenna. This 
corresponds to a phase difference of 2π/�·dsin α among the signals received by adjacent antennas. Therefore, 
there is a linear progression in the phase of the signals across the array.

A SIMO FMCW radar radiates a series of signals, called chirps, whose instantaneous frequency increases 
linearly over time. Mathematically, a chirp can be expressed as:

Figure 1.   Uniform linear antenna array of a SIMO radar.
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where aT is a complex number indicating the amplitude and the initial phase, ρ = B/T is the sweeping rate 
with B and T being respectively the total bandwidth and duration, and f0 is the initial frequency. The chirps are 
transmitted with a certain pulse repetition interval (PRI) and are received over NRX multipath channels. The 
corresponding received signals sR(t, nRX ,m) can be modelled as the convolution between the transmitted signal 
sT (t,m) and the channel impulse responses h(t, nRX ,m) , as:

with

where m = 0, ..., M-1 is the slow time index, M is the number of chirps per TX-RX combination that should be 
received before starting any data processing, β is the complex path gain which indicates the overall attenuation 
and phase shift, τ is the propagation path, i is the index corresponding to the i-th target/object, l is the path 
index, δ(·) is the Dirac delta function, c0 is the speed of light, and y(m) is the chest surface vibration caused by 
the cardiopulmonary activity. Equation (3) models a multipath channels as proposed by Jakes43 and includes the 
essential propagation parameters (i.e., namely magnitude, frequency and phase). Since a room has a limited size, 
we considered only the first L range bins. As consequence, we assume that the number of possible path delays is 
also equal to L. This assumption is valid since, due to the small size of a range bin, the differences in delays among 
the electromagnetic waves falling into a range bin are very small and translate into phase shifts. The digitized 
time domain beat signals sB(n, nRX ,m) , obtained mixing the received signals with the replicas of the transmitted 
signal of each TX-RX pair and following a low-pass filter and an analog-to-digital (ADC), can be expressed as:

where n = 0 , ..., N − 1 is the index in fast time, with N being the number of samples acquired per beat signal 
and depends both on T and on the sampling time Tf  of the ADC. In Eq. (5), the gain (or loss) of the mixer was 
included in β . Moreover, the contribution of −πρτ 2i,l,nRX

(m) is negligible for short-range applications as τ is in 
the order of few nanoseconds. After performing the Fast Fourier Transform (FFT) in fast time, the range profile 
is obtained. The resulting frequency domain signal X(k, nRX ,m) becomes:

with

where k = 0, ..., K-1, K corresponds to the maximum unambiguous range, F is the fast Fourier transform opera-
tor, w(n) is a rectangular window function in fast time, w(n) and W(k) are a Fourier pair. Since the rectangular 
window in frequency domain is a sinc function with gradients close to zero around 2πρτi,l , the frequency domain 
window function Wi,j(k) can be considered as a fixed one in slow time. Assuming P subjects and Q static clutter 
in a room, equation (7) can be rewritten as:
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where φi(m) is the Doppler shift caused by the vital signs.
The block diagram of the data cube generation is shown in Fig. 2. Per each TX-RX pair, a range profile matrix 

is created performing a K-point FFT to M consecutive beat signals. The range profile matrices are then stacked 
together to form the data cube, which is the starting point for the signal processing algorithm described in 
“Methods”.

Methods
The block diagram of the proposed algorithm for automatic detection of the number of human subjects and 2-D 
localization is shown in Fig. 3. In order to reduce the computational complexity and memory usage, due to the 
limited size of the room, we consider only the first L of the possible K range bins.

Rough beamforming.  The conventional beamformer is performed in frequency domain over the data 
cube described in (8) for all the antenna elements and for each range bin. We obtain the angle data cube which 
can be expressed as:
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(13)Xangle(k, na,m) = X(:, :,m)×WBF(α),

Figure 2.   Block diagram of the data cube generation.

Figure 3.   Block diagram of the proposed algorithm. SVD stands for singular value decomposition and ICA 
stands for independent component analysis.
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where na = 0, ..., NA -1 is the angle index corresponding to a certain angle, NA is the number of considered angles, 
and × indicated the vectorial product operation. The graphical illustration of the beamforming is shown in Fig. 4. 
From the initial data cube, a sub-matrix, containing all the range bins information of all antennas at a certain 
slow time index, is extracted. It is multiplied by a weighting vector W(α) of NRX element, whose coefficient have 
been calculated considering a certain angle and using the following formula:

This results in an L-element vector which is inserted in the angle data cube at the (:,na,m) indexes. This opera-
tion is repeated until all the M slow time indices have been considered. This corresponds to focus the beam to 
the first angle under study (Fig. 4a). The very same process is then repeated with a next angle, and then with a 
new weighting vector, until all the angles of the rough beamforming have been covered. This results in the angle 
data cube depicted in Fig. 4b.

Static reflectors removal.  The sub-matrices of (13) along the na dimension can be modelled as:

where

is an L × P complex mixing matrix whose elements are described in equation (10),

is a P × M complex matrix containing the Doppler signals equation (11), and hence the vital signs information 
caused by the P subjects at each Ts , and

is an L × M matrix with identical columns containing the direct current (DC) information in slow time result-
ing from static reflections equation (12), the superscript T indicates the transpose, and 1 is a length M all-ones 
column vector. In presence of additive noise, the data model becomes as:
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Figure 4.   Graphical illustration of the rough beamforming algorithm. (a) Vector beamforming using the data 
cube and a weighting vector of a certain angle. (b) Angle data cube obtained after scanning all the angles under 
study.
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where N is an L × M matrix containing the additive white Gaussian noise assumed to be independent and identi-
cally distributed (I.I.D.) for different range-azimuth bins. In order to remove the DC contribution of the static 
reflectors (e.g., clutter, static parts of the human body, ...), we perform alternate current (AC) coupling to ’Eq. 
(19). The latter is achieved subtracting the mean value along the slow time for each range and angle. It should 
be noted that the variable cardiopulmonary signals are preserved. Each sub-matrix can be then expressed as:

where H determines the linear combinations of the sources in S , so the magnitudes of the elements in H indicate 
the energy of the sources in every range bin.

Singular value decomposition.  The angle data cube Xangle is re-arranged in a 2-D matrix X2D . This is 
performed by transposing each of the NA XA sub-matrices and then concatenating them by columns. The result 
is an M × (L· NA ) modelled as:

where Z is the result of the concatenation of the NA H sub-matrices. The observation matrix X2D contains signals 
which can be direct paths, multipaths, or combinations of them. Those signals are linear combinations of the P 
independent sources S which are the information to retrieve.

We use the economy-sized singular value decomposition (SVD) as the first step of the proposed methodology 
to determine the number of persons P. It is applied to Eq. (21) as:

where U and V are matrices containing singular vectors, � is a diagonal matrix containing all the singular values, 
and the superscript H indicates the Hermitian transpose. The economy-sized SVD saves both time and storage 
by producing an M × M U, an M × M � , and an (L· NA ) × M V. The next step is to define a metric to evaluate the 
most significant components of U by which we determine P.

Circle fitting.  Before evaluating the most significant components of U, we perform phase demodulation in 
slow time (i.e., per columns). Considering the operating wavelengths (i.e., mmWave range) and the typical values 
of the mechanical displacements of the lungs and the heart, the Doppler signal produced by the cardiopulmo-
nary activity describes a circle in a complex plane16–18. For a proper phase demodulation, and hence to avoid 
distortions, this circle should first be centered to the origin. The AC coupling applied to Eq. (19) (introduced 
in  “Static reflectors removal”) should already centre the circle to the origin. However, due to the presence of 
noise, this may not be optimal44. Therefore, we propose the following technique which is applied to each column 
of U. The coordinates of the center zc (in the complex plane) and the radius rc of a circle can be estimated by 
resolving a nonlinear least-squares geometric fitting problem45. Assume u =

[

u
R , uI

]

 being an M × 2 matrix 
containing the real (R) and imaginary (I) parts of the complex signal corresponding to a column of U, the objec-
tive function becomes:
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representing the geometric distance between the mth sample and the circle. The best circle is then iteratively 
computed. A good starting vector is the solution of minimizing the algebraic distance45. The algebraic represen-
tation of a circle is defined as:

where d is a nonzero number and e ∈ IR2 . Given u , we can compute the circle parameters d̂ , ê , f̂  . Only when all 
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After knowing the coordinates of the center, the circle can be shifted to the origin of the complex plane. As 
a result, we can demodulate the phase by directly computing the angular information of the complex signal as:

This operation is applied to all the M columns of U , obtaining M φ̂(m) . This method works well also with 
radio-frequency (RF) radars, where the vital signs information describes an arc in the complex plane.

Target number estimation.  The spectrum of a canonical vital signs signal extracted using radar tech-
niques consists mainly of the respiration fundamental, some respiration harmonics, decreasing in magnitude 
(normally up to three), and the very small heartbeat fundamental. The signals also contain the heartbeat har-
monics, however their magnitudes are so weak that they can be neglected. The energy of the signal is essentially 
contained in the fundamental and first harmonic of the respiration. We determine P by calculating the signal-
to-noise (SNR) of the M φ̂(m) . We estimate the signal power considering the spectrum within the respiration 
fundamental and its first harmonic, while the remaining spectrum is used to determine the noise power. We 
also perform an additional check on the spectra’s local maxima. First, if the main peak, which in a canonical 
spectrum indicates the respiration rate, is outside the typical medical ranges of 0.1-0.4 Hz, we conclude that this 
source is noise. Secondly, we determine the magnitude ratio of the strongest peak (expected to be the respiration 
fundamental) and its first harmonic. We assume as noise any source with a ratio less than 2. The latter comes 
with the observation that the respiratory physiology involves signals consisting of a dominant fundamental and 
smaller (more than half) harmonics19, 33, 34. In the two aforementioned situations, we set the SNR to the mini-
mum of -20 dB. The SNR values are stored in a vector, whose n-th element is related to the n-th uncorrelated 
sources in U. The final step is to scan this vector starting from the first position. We stop before the first value is 
below a threshold which, in this work, was determined empirically and set to 10 dB. We assign the correspond-
ing index to P. We denote the first P sources of U as US.

Independent component analysis.  The independent component analysis (ICA) allows separating the 
statistically independent sources S from the set of observations US . The latter are a linear combination of the 
sources and they can be expressed as:

where A is called mixing matrix. Therefore, knowing the US , it is possible to determine Ŝ by evaluating the 
unmixing matrix, namely Â−1 , as:

Hence, the ICA determines Ŝ estimating Â−1 , while US is provided by the SVD. The sources Ŝ are the vital 
signs signatures we use to localize the subjects.

2‑D localization.  The 2-D localization is performed on the angle data cube Xangle . More precisely, to each of 
its sub-matrices XA , we estimate Ĥ , which contains the energy of the sources in every range bin (i.e., the channel 
information), by minimizing the residual error, as:

where ζ is the penalty coefficient which represents a trade-off between the residual error and the sparsity, whose 
value was determined empirically. The results of this operation are NA Ĥ propagation channels, one per each na
-th considered angle. The final results are hence the responses of each subject (i.e., source) in every azimuth-range 
bin from which it is possible to perform the 2-D localization (example in “Results and discussion”).

Once the subjects have been 2-D located, it is possible to improve the accuracy of the azimuth information 
through a fine beamforming. This means re-running the proposed algorithm and performing the conventional 
beamformer only around the angles where the subjects were detected during the rough beamforming with a fine 
angular step. The beamforming algorithms are generally computationally heavier, that’s why the fine beamform-
ing is not applied directly as first option.

Results and discussion
We conducted the experimental validation using the commercial Texas Instruments IWR6843ISK mmWave 
radar sensor, configured to operate as a SIMO FMCW architecture with a ULA antenna array of 4 elements. The 
distance between the TX antenna and the adjacent RX antenna is of 5 mm. Therefore, we can safely assume co-
located radar. The system parameters are: f0 = 60.645 GHz, B = 3.25 GHz, T = 64 µ s, PRI = 50 ms and Tf = 0.25 
µ s. We implemented the algorithm in MATLAB. In order to reduce the spectral leakage, before applying the FFT 
in fast time, each beat signal is multiplied by a Hann window function. We fixed L equal to 111, corresponding 
to a maximum range of 4.5 m (the range resolution is of 4.05 cm). All procedures in this study protocol adhered 
to the ethical principles of the Declaration of Helsinki. Written informed consent was provided by all patients 
before they were enrolled in the study. The IMEC ethical board reviewed and approved the study protocols (IP-
19-WATS-TIP2-056). All the collected data were pseudonymized.
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Figure 5 shows the results of an experiment with two volunteers in an office room whose 2-D positions are 
1.5 m / 16.85◦ and 2.7 m / -18.71◦ , respectively (Fig. 5a). We used a measuring tape to determine the absolute 
distances between the radar and middle of the chest area of the subjects (expected results). We determined the 
azimuth information using geometric calculation. The radar position was considered as the origin, namely 0 m/0◦ 
in the polar coordinate system. The orientation was calculated considering the line of sight (LoS) of the radar 
as 0 ◦ . Clockwise angles were treated as positive while counterclockwise ones as negative. Subject 1 (the closest 
to radar) is seated right next to a metal wall, while Subject 2 (the farthest to radar) is seated in between an office 
desk and a large metal cabinet. This clutter causes a strong spreading of the transmitted and reflected signals in 
the whole room, generating significant multipaths. Due to the closer proximity to the radar, the Subject 1 is not 
affected by the multipaths of Subject 2 but their Doppler signal is strongly influenced by the metal wall (very 
strong reflector). Furthermore, the latter might reflect the multipath signals generated by Subject 1 which can 
have identical delays (time of flight) as the direct path signal of Subject 2, involving non-linear combinations of 
their phase contents. This generates uncorrelated signals that can be interpreted as independent targets (i.e., radar 
ghosts). Figure 5b shows the 2-D map (range vs. angle) obtained after the rough beamforming (we considered 
angular steps of 10◦ ). It is possible to see the strong contribution of Subject 1, two significant responses nearby 
the expected location of Subject 2, and other effects due to the multipath, side lobes, and FFT spreading. In such 
a situation, it is not trivial to determine the right number of subjects in the room and their positions. It should 
be noted that, depending on the radar cross section (RCS), the multipath signal generated by a closer target 
might appear much stronger than the direct path of a distant target. Figure 5c shows the first five components 
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Figure 5.   Experiment with two seated and normally breathing subjects at 1.5 m / 16.85◦ and 2.7 m / -18.71◦ 
away from the radar. (a) Experimental environment. Subject 2 took the picture. (b) 2-D map after the rough 
beamforming. (c) First five components of the SVD. (d) Result of the target number estimation operation. (e) 
Estimated independent sources (i.e., vital signs signature). (f) Responses of Subject 1. (g) Responses of Subject 
2. (h) 2-D localization after the fine beamforming. An angular step of 10◦ was used for (b), (f), (g) and one of 2 ◦ 
for (h). Interpolation was performed to obtain the 2-D maps.
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produced by the SVD. As expected, the latter cannot provide exclusively the two vital signs signatures. In fact, 
we can clearly see periodicities in these five components which may resemble vital signs signals. Figure 5d shows 
the output of the target number estimation operation, from which only the first two components of the SVD 
are considered valid. This sets P = 2. These signals are then processed by the ICA, whose results are shown in 
Fig. 5e. At this point, we face an ordering ambiguity issue. We are still not able to indicate which source (i.e., 
vital signs signature) corresponds to which subject. We solve this with the 2-D localization operation, where 
we determine the responses of each source (i.e., target), as shown in Fig. 5f,g. In Fig. 5g, it is possible to see the 
subject’s response and the very strong multipath effect. We remove the outliers resulting from multipaths by 
detecting the shortest direct path, while the outliers originating from additive noise are small and can easily be 
excluded. We finally perform the fine beamforming with angular steps of 2 ◦ . The final 2-D localization map is 
shown in Fig. 5h. Subject 1 was localized at 1.54 m/16◦ while Subject 2 at 2.75 m/−18◦ . These results are in fair 
agreement with the expected values.

We validated the proposed approach conducting experiments on 6 subjects, differing in height (170–195 
cm), in weight, and in age (30–50 years). The subjects were seated on chairs with their chest regions facing the 
radar. Furniture and objects were present near and in between the volunteers, who were grouped in random pairs 
and they could randomly chose a seat. Two measurements have been collected at the same 2-D location. The 
reference values for the distances and for the angles where the subjects were expected to be located are reported 
in Table 1 under “Expected Results”. For the first 12 experiments, we considered 3 absolute distances (ranges) 
with the subjects’ chest centers at 0.5 m away from the LoS of the radar. For the remaining experiments, we 
selected random positions in the room. The experimental results, reported in Table 1 under “Measured Results”, 
demonstrate that the proposed approach was able to accurately determine the 2-D location of the subjects. In 
Table 2, we reported as maximum mean absolute errors (MAEs) 0.1 m and 2.29◦ and as maximum root-mean-
square errors (RMSEs) 0.12 m and 3.04◦ in measuring respectively the ranges and azimuth angles. Converted 
to meters, the maximum angular errors corresponds to 0.11 m for the MAE and 0.15 for the RMSE. Compared 
to the typical size of the human bodies, these small errors can be considered acceptable. Finally, in Table 3, we 
compared some relevant state-of-the-art works for automatic localization.

Conclusion.  In this work, we proposed a signal processing algorithm, demonstrated using a mmWave SIMO 
FMCW radar, to automatically determine the number and the 2-D positions of human subjects. This method 
aims at separating the radar reflections (direct paths from multipaths) to retrieve the vital signs signatures of the 
subjects present in the monitored environment. We determine the number of people by counting the number 

Table 1.   Results of the experimental validation.

Test

Expected results Measured results

Subject 1 Subject 1 Subject 2 Subject 2 Subject 1 Subject 1 Subject 2 Subject 2

Distance (m) Angle ( ◦) Distance (m) Angle ( ◦) Distance (m) Angle ( ◦) Distance (m) Angle ( ◦)

1 1.5 −18.43 1.5 18.43 1.42 −16 1.42 24

2 1.5 −18.43 1.5 18.43 1.42 −18 1.46 18

3 1.5 −18.43 2.5 11.31 1.46 −14 2.35 10

4 1.5 −18.43 2.5 11.31 1.42 −18 2.39 10

5 2.5 −11.31 2.5 11.31 2.47 −12 2.31 10

6 2.5 −11.31 2.5 11.31 2.31 −18 2.31 10

7 2.5 −11.31 1.5 18.43 2.31 −14 1.46 16

8 2.5 −11.31 1.5 18.43 2.31 −12 1.42 16

9 2.5 −11.31 4 6.34 2.31 −12 4.05 10

10 2.5 −11.31 4 6.34 2.31 −12 4.05 10

11 4 −6.34 2.5 11.31 3.89 −10 2.35 12

12 4 −6.34 2.5 11.31 3.97 −10 2.35 12

13 2.7 −18.71 1.5 16.85 2.67 −18 1.5 16

14 2.7 −18.71 1.5 16.85 2.75 −18 1.54 16

15 3 −17.94 1.8 20 3.04 −16 1.78 20

16 3 −17.94 1.8 20 3.04 −24 1.86 20

Table 2.   Mean absolute errors reported in this validation.

T1 distance T1 angle T2 distance T2 angle

(m) (◦) (m) (m) (◦) (m)

MAE 0.1 2.29 0.11 0.09 1.7 0.07

RMSE 0.12 3.04 0.15 0.1 2.24 0.11
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of sensed cardiopulmonary activities, while the 2-D localization is performed by measuring the distances from 
the radar to the thoracic regions of the subjects. The experimental validation has proven the ability of the pro-
posed approach in monitoring people in a typical office room, reporting maximum MAES of 0.1 m and 2.29◦ 
and maximum RMSEs of 0.12 m and 3.04◦ in measuring respectively the ranges and azimuth angles. This radar 
system and signal processing technique can be considered a useful technology for the development of future 
telemedicine.

Data availability
The data that support the plots within this paper and other findings of this study are available from the corre-
sponding author upon reasonable request.
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