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SUMMARY

Long-read sequencing techniques, such as the Oxford Nanopore Technology, can
generate reads that are tens of kilobases in length and are therefore particularly
relevant for microbiome studies. However, owing to the higher per-base error
rates than typical short-read sequencing, the application of long-read sequencing
on microbiomes remains largely unexplored. Here we deeply sequenced two hu-
man microbiota mock community samples (HM-276D and HM-277D) from the Hu-
man Microbiome Project. We showed that assembly programs consistently
achieved high accuracy (�99%) and completeness (�99%) for bacterial strains
with adequate coverage. We also found that long-read sequencing provides
accurate estimates of species-level abundance (R = 0.94 for 20 bacteria with
abundance ranging from 0.005% to 64%). Our results not only demonstrate the
feasibility of characterizing complete microbial genomes and populations from
error-prone Nanopore sequencing data but also highlight necessary bioinformat-
ics improvements for future metagenomics tool development.

BACKGROUND

The fundamental importance of microbiota as the microbial communities that reside in human body is increas-

ingly recognized. Over the past decade, there have been tremendous amounts of evidence suggesting that mi-

crobiota plays a crucial role in human health throughmodulating themetabolic functions, as well as food energy

harvest and storage. Microbiota, especially the gut microbiota, is associated withmany chronic diseases such as

obesity, diabetes, metabolic syndrome, inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), liver

disease, and hepatocellular and colorectal carcinoma (Gill et al., 2006; Lewis et al., 2015; Chehoud et al., 2015;

Hooper et al., 2003; Jones et al., 2015; Ley et al., 2006; Liang et al., 2015; Sartor, 2008; Schauber et al., 2003; Turn-

baugh et al., 2009; Wang et al., 2016; Wen et al., 2008; Wu et al., 2011; Group et al., 2009). Therefore, accurate

profiling of complete genomes and population is crucial to understanding the impact of microbiota on human

health. Currently, high-throughput sequencing technologies have been widely used in microbial community

characterization. In particular, 16S ribosomal RNA (rRNA) (Janda and Abbott, 2007) and shotgun metagenome

sequencing on Illumina platforms (Quince et al., 2017) are two dominant approaches for describing micro-

biomes. Overall, the high-throughput nature of metagenomics sequencing allows us to interpret microbial com-

munity by using computational approaches such as operational taxonomic unit (OTU) identification (Hao and

Chen, 2012), abundance quantification (Chen et al., 2017), read assembly (Ruan and Li, 2019; Bertrand et al.,

2019; Koren et al., 2017; Kolmogorov et al., 2019; Li et al., 2015), and binning and taxonomic profiling (Gregor

et al., 2016; Huson et al., 2016, 2018; Francis et al., 2013; Hong et al., 2014; Byrd et al., 2014). Specifically, 16S

rRNA sequencing targets on very specific regions that are highly variable between species, which is much

cost-efficient. This is very useful for us to examine and compare themicrobiota across a high number of samples

in a large-scale project. However, this technique can only identify bacteria but not viruses or fungi, and the low

resolution limits its usage in microbiome study below the genus level. As opposed to only the 16S sequences,

shotgun metagenome sequencing surveys the whole genomes of all organism in the community (Jovel et al.,

2016; Laudadio et al., 2018; Ranjan et al., 2016). It allows us to perform deep investigation of the microbial com-

munity as its ability to capture sequences from all organisms.

Despite the theoretical advantage of shotgun metagenome sequencing, owing to the short read length

(150–300 nucleotides), metagenomes cannot be fully characterized by next-generation sequencing

(NGS) data. In addition, the lack of contextual information has become a barrier for short read to span
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both intra- and intergenomic repeats, which is crucial for complete de novo genome assembly of all domi-

nant species in a microbial community. As a consequence, short-read assemblies remain highly frag-

mented. In comparison, the use of long-read sequencing has the potential to facilitate the complete

and contiguous metagenome assembly. Lee et al. (2014) sequenced a reference mock community sample

using PacBio long read and evaluated the metagenome assembly performance. Results showed that sin-

gle-molecule real-time (SMRT) long-read data offered significantly improved assembly contiguity by span-

ningmany of repetitive regions, whereas single bacterial chromosomewas assembled tomore than 50 con-

tigs based on short-read data. In recent years, the Oxford Nanopore technologies (ONTs) have offered

advantages over traditional short-read NGS technologies in genome study. This single-molecule

sequencing platform is able to generate average read length of >10 kbp, spanning low complexity and re-

petitive genomic regions, which provides much more continuous assemblies. Subsequently, this approach

has become an attractive option in metagenomics sequencing. Although the ONTs have great potential,

complete and contiguous de novometagenome assembly is still constrained by the high error rate (�15%)

of single-molecule long-read sequence data (Sczyrba et al., 2017). Therefore, a comprehensive evaluation

of long-read bioinformatics tools in microbial profiling is needed (Mason et al., 2017). Nicholls et al. (2019)

presented Nanopore sequencing datasets of two mock communities with 10 microbial species from Zymo-

BIOMICS (McIntyre et al., 2019). They showed the utility of these datasets for future bioinformatics method

development for long-read metagenomics. However, publicly available datasets based other sequencing

technologies of these samples are limited as the samples are only commercially available and are not well

studied so far by competing approaches. A study to evaluate the advantages of Nanopore sequencing in

complete microbial genomes and a comparison over other sequencing technologies is still lacking so far.

In this article, we generated two deeply sequenced Nanopore datasets from new reference samples that

are more commonly studied and performed comprehensive analysis to compare microbial community

profiling performance with PacBio and Illumina technologies. We first generated 5253 coverage data on

HM-276D mock community sample from Human Microbiome Project, which is an evenly mixed DNA sam-

ple of 20 bacterial strains (each with 5% abundance). We performed de novo assembly analysis with four

long-read assemblers at different depth of coverage. Twenty bacterial genomes were assembled with

high accuracy and genome completeness. This sample also has been well studied by many groups. As

mentioned above, Lee et al. (2014) sequenced this mock community with PacBio to show the improvement

of long-read data in metagenome assembly analysis. Jones et al.(2015) compared the influence of different

NGS platforms on genomic and functional predictions using HM-276D sample. We downloaded these two

datasets and compared the performance with Nanopore data. Our results show that Nanopore improved

assembly contiguity compared with PacBio and Illumina across computational approaches. Next, we

sequenced HM-277D Mock Community sample with 1,0683 coverage. HM-277D is unevenly mixed DNA

sample of 20 bacterial strains. Kuleshove et al. (2016) sequenced this sample with Illumina TruSeq synthetic

long-read technique and showed the improvement in bacterial species identification, genome reconstruc-

tion compared with short sequences. Also, Leggett et al., 2020 demonstrated Nanopore metagenomics

sequence can be reliably classified using this community. In addition to metagenome assembly, we eval-

uated taxonomy binning and profiling performance across technologies (Nanopore and PacBio) and sam-

ples (HM-276D and HM-277D). High identification and classification accuracy were achieved above the spe-

cies level. Overall, we demonstrate the technical feasibility to characterize complete microbial genomes

and populations from error-prone Nanopore sequencing without any DNA amplification. We also discuss

the limitations of current bioinformatics tools, when dealing with error-prone long-read metagenomics

sequencing data. All our data are made publicly available, to benefit computational tool development

on long-read-based microbial genome assembly for metagenomics studies.

RESULTS

Sequence Data Quality

HM-276D DNA sample includes 20 evenly mixed bacterial strains with reference genome size 70Mb in total

with 39 chromosomes. A total of 11,610,183 reads with 35,578,375,166 bases (5253 coverage depth) were

generated on the Nanopore GridION platform, with a median length of 1,374 bp. The N50 length is

6,828 bp, andmedian read quality is 9.39 in Phred scale. By using minimap2, 95% of reads were successfully

aligned to reference genomes of 20 bacterial strains with 13.1% error rate (Table 1). As shown in Figure 1A,

read coverage across 20 bacterial strains has good agreement with known abundances. Read depth is rela-

tively homogeneous across bacterial strains with 521.9X (sd = 524.7X) in average. Sequencing depth of

each strain is at least 150 reads and only 0.03% region is covered by less than 3 reads.
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HM-277D DNA sample includes 20 unevenly mixed bacterial strains. A total of 18,254,839 reads dataset

with 72,312,638,112 bases (1,0683 coverage depth) were generated, leading to 2,065 bp in median read

length with 10.12 median read quality. The N50 length is 7,857 bp; 99.2% of QC-passed reads were map-

ped to the reference genome and the error rate was 9.8% (Table 1). As shown in Figure 1B, read distribution

is more heterogeneous across strains due to unevenly mixed samples. The average coverage is 988.8 reads

with standard deviation 1941.6 bp. This leads to 1.6% of region with less than three reads covered and four

strains with sequencing depth less than 10 bp, which makes it more difficult for biological interpretation of

this microbial community (Figures 1C and 1D).

De Novo Assembly of HM-276D Mock Community

To assess the ability of Nanopore sequencing in profiling microbial community, we first conducted a de

novo assembly of dataset with 5253 coverage from HM-276D mock community using four assemblers:

wtdbg2 (Ruan and Li, 2019), OPERA-MS (Bertrand et al., 2019), Canu (Koren et al., 2017), and meta-flye (Kol-

mogorov et al., 2019). OPERA-MS and meta-flye are designed to be capable of handling metagenome

data, whereas wtdbg2 and canu are broadly used for haploid or diploid genomes. Overall, the results

show promise for the characterization of microbial genomes using long-read sequencing data. Canu pro-

duced the largest assembly of 69.5 Mb (99.3% of the benchmark data), including 83 contigs with contig N50

length of 3.91 Mb. meta-flye assembled 67.7 Mb genome with 89 contigs. wtdbg2 generated similar results

with 64.9 Mb genome size, 61 contigs, and 2.97 Mb N50 length. Assembly metrics of OPERA-MS (67.9 Mb

genome size, 4,734 contigs with contig N50 length of 2.94 Mb) are similar with Canu and wtdbg2, whereas

much more contigs were generated because OPERA-MS utilizes both long and short sequencing reads for

assembly. In addition, for aligned blocks, meta-flye yielded the highest NA50 with 1.71Mb in length

compared with other assemblers (wtdbg2: 1.2Mb, OPERA-MS: 1.21Mb, Canu: 1.4Mb). Furthermore, by

mapping all contigs to the reference genomes using MUMMer v3.23, we assessed the accuracy and

genome completeness of contigs produced by four assemblers. As shown in Figure 2A, meta-flye achieved

the highest genome fraction (99.99%) and one-to-one identity percentage (99.62%), followed by OPERA-

MS (genome fraction: 99.98% and accuracy 99.92%), Canu (genome fraction 99.81% and accuracy

99.4%), and wtdbg2 (genome fraction 96.02% and accuracy 98.60%). Moreover, we evaluated aligned

blocks for each method based on NA50 length. As shown in Table S1, meta-flye achieved the highest

NA50 with 1.71 Mb in length compared with other assemblers (wtdbg2: 1.2Mb, OPERA-MS: 1.21Mb,

Mapping Statistics HM-276D HM-277D

# of reads 8,086,684 18,254,839

# of mapped reads 7,640,934 18,110,317

Reads unmapped 445,750 144,522

Reads MQ0 60,972 103,601

Non-primary alignments 287,369 732,671

Total length 33,563,573,383 72,312,638,112

Bases mapped 32,143,689,158 72,216,146,980

Bases mapped (cigar) 31,156,025,998 70,073,211,829

Mismatches 4,104,593,752 6,925,222,080

Average length 4,150 3,961

Maximum length 472,762 214,792

Average Phred quality per

base

13 17

Table 1. Mapping Statistics of HM-276D and HM-277D Sequenced Dataset

Sequenced data were mapped against reference genomes of 20 known bacterial strains. Sequences indicate the number of

QC passed reads. Number of mapped and unmapped reads were summarized. MQ0 represents number of mapped reads

with MQ = 0. Clipping was ignored when calculating total length, bases mapped. Bases mapped (cigar) provides a more ac-

curate number of mapped bases. Number of mismatches were obtained from NM field of BAM file.

ll
OPEN ACCESS

iScience 23, 101223, June 26, 2020 3

iScience
Article



Canu: 1.4Mb). Overall, four tools generated results with similar good quality in term of contiguity, accuracy,

and completeness using long-read data with evenly mixed samples at 5253 coverage depth.

Next, we subsampled 5253 dataset to 3653 (70%), 1603 (30%), 803 (15%), 403 (7.5%), and 203 (3.75%) to

examine the effect of sequencing depths on de novo assembly (Figure 2A, Table S1). The assembly results

of four tools ranges 95.95%–99.96% in consensus accuracy and 91.26%–99.99% in genome fraction. In spe-

cific, OPERA-MS outperforms others with the highest and most consistent metrics for completeness and

accuracy across different sequencing depths because its metagenomics design substantially improves

the robustness to low sequencing depth, where genome fractions are 99.68% in average (sd = 0.61%)

and consensus identities are 99.92% in average (sd = 0.05%). In spite of reduced metrics as the sequencing

depth becomes lower, meta-flye and Canu still recovered at least 96.8% genomes with 98.5% accuracy.

Notably, wtdbg2 improved the assembly metrics with coverage depth reduced from 3653 to 803. In addi-

tion, we examined whether genomes of 20 bacterial strains can be better constructed with Nanopore

Figure 1. Summary of Nanopore Sequencing Data from HM-276D and HM-277D Microbial Communities

(A–C) (A and B) Circos plots of read coverage across whole genome of 20 bacterial strains from (A) HM-276D and (B) HM-

277D. Each chromosome was divided into bins with 5,000 bp width. Average read coverage was calculated within each bin

and converted to log scale to facilitate viewing and comparing between bacterial strains. AB, Acinetobacter baumannii;

AO, Actinomyces odontolyticus; BC, Bacillus cereus; BV, Bacteroides vulgatus; CB, Clostridium beijerinckii; DR,

Deinococcus radiodurans; DF, Enterococcus faecalis; EC, Escherichia coli; HP, Helicobacter pylori; LG, Lactobacillus

gasseri; LM, Listeria monocytogenes; NM, Neisseria meningitides; PAN, Propionibacterium acnes; PAG, Pseudomonas

aeruginosa; RS, Rhodobacter sphaeroides; SAR, Staphylococcus aureus; SE, Staphylococcus epidermidis; SAL,

Streptococcus agalactiae; SM, Streptococcus mutans; SP, Streptococcus pneumonia. (C) Read length distribution of HM-

276D and HM-277D datasets. Blue dashed lines represent different quantiles. Red line represents the density of read

length distribution.

(D) Summary statistics of HM-276D and HM-277D datasets. Each value was calculated by using pycoQC (Leger and

Leonardi, 2019) and LongreadQC. Real-time statistics are shown in Figures S1–S5.
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sequencing technology compared with PacBio and Illumina. As shown in Figure 2B, assemblers using

Nanopore sequenced data outperforms other two technologies. With the same assembler, on average,

the number of contigs of Nanopore is �30% lower than that of PacBio; genome fraction and genome

size are 1.56% and 3.1 Mb higher, respectively. To understand the reason, we compared read length char-

acteristics between these two datasets. For N50 length, ONT (7,350 bp) is 15% longer than PacBio

(6,357 bp), and for N05 length, ONT (35.9 kbp) is even 159% longer than PacBio (13.8 kbp). This indicates

that read length is the main advantage for ONT. Therefore, as shown in Figure 2B, N50 length of ONT (13.3

Mbp) is 68% longer than PacBio (8.1 Mbp). Assemblies using Illumina sequenced data have 99.9% accuracy,

but more contigs generated and lower genome size in total compared with Nanopore.

De Novo Assembly of HM-277D Mock Community

To evaluate the metagenome reconstruction in a more realistic setting, we carried out another de novo as-

sembly of 1,0683 dataset from HM-277D Mock Community, with unevenly mixed DNA samples of the 20

bacterial strains (Figure S6). Assembly accuracy still remains high, ranging from 97.78% to 99.75% across

tools. However, not surprisingly, genome fractions and genome sizes of all methods are substantially lower

than even community. This is because 13 bacterial strains have extremely low abundances (<1%) in this un-

evenly mixed samples, leading to reduced genome coverage fractions (Canu: 71.68%, OPERA-MS: 71.25%,

Figure 2. Assembly Results for HM-276D and HM-277D Datasets

(A) Assembly statistics (N50 length, accuracy, and genome fraction) of each assembler at different coverage depths based

on HM-276D dataset. Colors indicate results from different assemblers (see Supplemental Information for details in

parameter settings).

(B) Assembly statistics (N50 length, number of contigs, genome fraction, and genome size) of each assembler based on

HM-276D sample sequenced by different technologies (Nanopore, PacBio, Illumina). To make fair comparison, each

dataset was downsampled to 1603 depth of coverage.

(C) Strain-specific assembly performance of each assembler based on HM-277D dataset. Assembly statistics (accuracy

and genome fraction) distributions were presented using boxplots with jitter. Radius of each dot indicates the known

relative abundance of each bacterial strain from the mock community.
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meta-flye: 91.57%, wtdbg2: 82.95%) and genome sizes (Canu: 50.21 Mb, OPERA-MS: 47.99 Mb, meta-flye:

64.12Mb, wtdbg2: 61.75Mb). To assess how strain abundance affects assemblies, we calculated strain-spe-

cific genome fraction for each tool. Across bacterial strains, meta-flye recovered the highest percentage of

genome (median 100%), followed by OPERA-MS (median: 98.75%), Canu (median 94.78%), and wtdbg2

(median: 91.66%) (Figure 2C). For bacteria with relative abundance higher than 0.2%, least 99.99% of refer-

ence genome can be covered by assembly contigs (meta-flye), with identity consensus reaching to 99.93%.

These results suggest that bacterial strain with nontrivial abundance can be accurately assembled with

Nanopore sequenced data. Overall, we observed that meta-flye returned assemblies for 20 bacterial

strains with the best performance in completeness and accuracy. Metric for each strain is correlated with

abundance of the corresponding bacteria. Some strains were proved hard to assemble for all assemblers

due to extremely low relative abundance. For example, 13.6% of region of Enterococcus faecalis (0.011%

relative abundance) were covered by 0 or 1 read and 56.1% covered by less than 3 reads, leading to 4.47%

genome fraction for meta-flye. Moreover, there were 2 contigs that belong to two different bacterial spe-

cies, Bacteroides vulgatus (0.19% relative abundance) and Streptococcus pneumoniae (0.05% relative

abundance), indicating the difficulty in differentiating one bacterium from another with low relative

abundance.

Taxon Binning and Identification

Metagenome assemblers construct contigs with variable length to recover original genome of each

bacteria frommicrobial community. Subsequently, another major challenge in studying the identity and di-

versity of this community member is to classify sequenced reads or contigs correctly according to their

taxonomic origins. Here we investigated the taxonomic binning performance based on three scenarios

of long-read sequencing data, HM-276D (Nanopore, PacBio) and HM-277D (Nanopore) at 1603 depth

of coverage, using a state-of-art taxonomic binner Megan-LR. First, all long reads were aligned to NCBI-

nr database. Then, we usedMegan-LR with interval-union LCA algorithm to assign�2million aligned reads

(�4.6 Mb bases) to taxonomic nodes (Figures 3A, 3B, and Figures S7–S10). Overall, 4.22 Mb (0.087%) from

Nanopore data of HM-276D sample weremis-assigned, whereas 4.37Mb (0.075%) and 4.66Mb (0.141%) for

Nanopore data of HM-277D and PacBio data of HM-276D, respectively. Specifically, we evaluated the

recovery of taxon bins at different ranks. We considered two metrics to quantify the read assignment ac-

curacy, average precision, and sensitivity of 20 bacterial strains. For each taxonomic bin, we obtained pre-

cision by calculating the percentage of reads correctly classified out of all binned reads. Sensitivity is the

percentage of correctly assigned reads out of all reads originally from the bin. As shown in Figure 3C,

HM-276D (Nanopore) has the highest precision, which are all above 60% from phylum to genus. HM-

277D (Nanopore) followed, with all above 50%, whereas HM-276D (PacBio) has the lowest average preci-

sion due to predicted small false-positive bins at the species level. Sensitivity has a similar pattern

(Figure 3D). HM-276D (Nanopore) still appears to be the best dataset for read classification than the other

two, and the difference in accuracy between these three scenarios is similar across ranks. Nanopore is�8%

higher than PacBio and HM-276D is 10% higher than HM-277D. To evaluate the stability of read assignment

accuracy, we calculated 95% confidence interval of precision and sensitivity for each scenario at each rank.

Not surprisingly, confidence bands are narrower at higher rank, indicating that more taxon recovery

accuracy can be reached. Owing to unevenly mixed bacterial strains, sensitivity is much more variable

for HM-277D than other HM-276D. Overall, these results demonstrated the advantage of long-read data

in accurate taxon recovery above the family level, whereas binning accuracy and stability were relatively

at the species level.

In addition to assigning sequence fragments (reads or contigs) to taxon bins, we recognized the impor-

tance of accurate determination of taxonomic identity presence or absence from microbial community.

Therefore, we continued to investigate the performance of taxonomic identity prediction between data

from HM-276D (Nanopore, PacBio) and HM-277D (Nanopore). For taxon prediction, we defined that the

species is significantly present in the community when at least 10 reads were assigned to it, whereas identity

with less than 10 supporting reads wasmarked as absence.We considered two other metrics to quantify the

detection accuracy, true-positive rate (TPR), and false discovery rate (FDR), where TPR is the percentage of

correctly predicted taxonomic identities out of known existing taxon and FDR is the percentage of incor-

rectly predicted taxonomic identities out of all predicted taxon. TPR and FDR were calculated at different

ranks in Figure 3E. TPRs were consistent across three datasets from phylum to order level (90%–77%). Below

the order level, PacBio (HM-276D) and Nanopore (HM-277D) are 22% lower compared with Nanopore (HM-

276D) (92%–87%). From phylum to family level, FDRs were controlled under 15% for all three datasets.
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However, at the genus level, more than 20% of detections are false for PacBio (HM-276D) and Nanopore

(HM-277D), whereas it was 6% for Nanopore (HM-276). All three scenarios have inflated FDR (>20%) at

the species level. Across datasets, there was drastic increase in FDR between phylum to family level and

below family level, 10% G 3% and 21% G 5%. Similar to binning results, Nanopore data of HM-276D still

consistently performed better than other two datasets across ranks. However, accurately predicting taxo-

nomic profiles at the species level still remains challenging owing to many false predicted taxonomic iden-

tities with 10–100 reads assigned incorrectly.

Strain Profiling

Despite the challenges in assembly and binning of HM-277D microbial community even at the species

level, especially for low abundance bacteria (relative abundance <1%), the golden standard profile of

this mock community still allows us to evaluate other unique advantages of this deeply sequenced dataset

at strain level. First, we examined the ability in identifying these 13 extremely rare strains based on

Figure 3. Taxonomic Binning Results for HM-276D and HM-277D Datasets

(A and B) Megan taxonomic tree assignment obtained from HM-276D (A) and HM-277D (B) Nanopore sequenced datasets. Both datasets were

downsampled to 1603 depth of coverage. Each read was aligned against NCBI-nr protein reference database, then binned and visualized using Megan-LR.

Megan taxonomic tree showing bacterial taxa identified and their corresponding abundances across taxonomic rank. The radius of circle represents the

number of reads assigned for each taxon. Bacterial strains highlighted in red represent true organisms in the mock community.

(C–E) Taxonomic binning and identification performance metrics across ranks based on different datasets (indicated by colors). Average precision (C),

average sensitivity (D), and their 95% CIs were calculated based onmetrics from different taxon at each rank. (E) Taxonomic detection accuracy metrics, true-

positive rate (solid), and false-positive rate (dashed), were calculated based on identified taxon (reads >10) at each rank. To make fair comparison, each

dataset was downsampled to 1603 depth of coverage.
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annotated target genes. To explore the sensitivity of strain detection using this dataset, we mapped raw

sequenced reads to reference genomes of the 20 bacterial strains with Minimap2. Then, for each strain-

specific gene, the average coverage was estimated by summing up read depth across all exonic region,

normalized for gene length. In addition, exon coverage fractions were calculated. We required a gene

with average coverage greater than 1 and exon coverage fraction greater 50% simultaneously in order

to be declared as a detected gene. The results are shown in Figures 4A, S11, and S12. Detection rates

Figure 4. Taxonomic Profiling Results for HM-277D Datasets

(A) Gene identification performance of 20 bacterial strains. Three gene sets (RefSeq, 16S rRNA, protein coding) were

evaluated. Colors indicate different metrics (exonic coverage and detection rate). Exonic coverage (orange) is the

percentage of exonic region covered by at least one readout of all exons. Detection rate (blue) is the percentage of genes

with coverage depth >1 and exonic coverage >50% out of all genes. Gold standard abundance of each strain was

indicated in black.

(B) Bacterial abundance estimation. Scatterplots abundance estimates versus gold standard abundances from HM-277D

mock community across taxonomic ranks. Abundances were converted to log scale to facilitate viewing. Pearson

correlation and L1 norm were utilized to quantify the performance. Estimates consistently share a good agreement with

gold standard across ranks with correlation >0.85 and L1 norm <0.32. Abbreviations for bacterial name above the species

level are listed below. Phylum level: Actinobacteria, Bacteroidetes (Bac), Deinococcus-Thermus (Dei), Firmicutes (Fir),

Proteobacteria (Pro); Class level: Actinobacteria (Act), Alphaproteobacteria (Alp), Bacilli (Bac), Bacteroidia (Bact),

Betaproteobacteria (Bet), Clostridiales (Clo), Deinococcus (Dei), Epsilonproteobacteria (Eps), Gammaproteobacteria

(Gam); Order level: Actinomycetales (Act), Bacillales (Bac), Bacteroidales (Bact), Campylobacterales (Cam), Clostridiales

(Clo), Deinococcales (Dei), Enterobacteriales (Ent), Lactobacillales (Lac), Neisseriaceae (Nei), Propionibacteriaceae (Pro),

Pseudomonadales (Pse), Rhodobacterales (Rho); Family level: Actinomycetaceae (Act), Bacillaceae (Bac), Bacteroidaceae

(Bact), Clostridiaceae (Clo), Deinococcaceae (Dei), Enterobacteriaceae (Ent), Enterococcaceae (Ent), Helicobacteraceae

(Hel), Lactobacillaceae (Lac), Listeriaceae (Lis), Moraxellaceae (Mor), Neisseriaceae (Nei), Propionibacteriaceae (Pro),

Pseudomonadaceae (Pse), Rhodobacteraceae (Rho), Staphylococcaceae (Sta); Genus level: Acinetobacter (Act),

Actinomyces (Act), Bacillus (Bac), Bacteroides (Bact), Clostridium (Clo), Deinococcus (Dei), Enterococcus (Ent),

Escherichia (Esc), Helicobacter (Hel), Lactobacillus (Lac), Listeria (Lis), Neisseria (Nei), Propionibacterium (Pro),

Pseudomonas (Pse), Rhodobacter (Rho), Staphylococcus (Sta), Streptococcus (Str).
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and average coverage among all genes largely keep high in abundant strains (>1%), ranging from 96.4 bp

to 4,207.6 bp, as well as most of rare strains (<1%). Most of bacterial strains except for Bacteroides vulgatus

(69.1%) and Streptococcus pneumoniae (81.7%) have achieved at least 97% gene detection rate.

Next, we recognized that 16S rRNA genes are most commonly used as gene marker for bacteria identifi-

cation; we further selected them out for each strain based on RefSeq annotation. As shown in Figure 4A,

although Bacteroides vulgatus and Streptococcus pneumoniae still have about 50% of 16S rRNA genes un-

detected by raw sequenced reads, 18 strains have 100% detection rates and exon coverage fraction with

434.77 bp coverage in average, which demonstrates the feasibility of identifying rare strain (<1%) in micro-

bial community with long-read sequencing data. Additionally, read coverage of protein coding genes for

20 bacterial strains was summarized, which shows similar results. Fourteen strains have average coverage

above 100 bp and gene detection rates for 18 strains have reached to 99%, indicating the presence of bac-

terial strains in the sample.

To understand the composition, diversity, and spatial dynamics of microbial communities, we continued to

evaluate the bacterial abundance estimation accuracy based onNanopore data.We determined two abun-

dance metrics to measure the accuracy, Pearson correlation, and L1 norm. These two metrics assess how

well Nanopore sequenced reads can reconstruct the bacterial abundances in comparison with the gold

standard. Relative abundance was obtained by normalizing total read coverage with chromosome length

for each taxon at different ranks. As shown in Figure 4B, abundance estimates at the species level agrees

well with the known relative abundances from the mock community. However, abundance estimation at

higher ranks appears to be more challenging, as correlation coefficient ranges from 0.87 to 0.85 and L1

norm is above 0.3 from class to family level, whereas two metrics improved with Pearson correlation

>0.9 and L1 < 0.29 when rank is below the family level. Poor abundance estimation at class or family level

may be due to the presence of extremely rare bacterial strains in the HM-277D sample, as read coverages

were simply summed up between species belonging to the same family or class without accounting for

abundance heterogeneity.

DISCUSSION

Complete genome assembly and population profiling are critical for the interpretation of microbial com-

munity diversity. However, a benchmarking long-read dataset with consistent evaluationmetrics is still lack-

ing, which has hindered our understanding of long-read sequence data in metagenome assembly. In this

study, we deeply sequenced HM-276D and HM-277D samples to assess the performance of error-prone

Nanopore sequencing data and bioinformatics tools in characterizing microbial community. Assemblers

consistently achieved high accuracy and completeness for nontrivial bacterial strains, and genome binners

performed well at above the genus level. Furthermore, by targeting onmarker genes, we were able to iden-

tify rare strains with extremely low abundance in microbial community. Overall, our results have demon-

strated the technical feasibility to characterize complete microbial genomes and populations from Nano-

pore sequencing data with metagenomic software.

We note that, despite the feasibility to characterize complete microbial genomes from long-read sequencing

data, there are still challenges to be resolved in our study. Even for evenly mixed samples, the best performing

assembler meta-flye achieve 99.99% consensus accuracy. However, as the reference genomes contains 70 Mb,

0.04% error rate has led to 28 kbp of mismatches. These erroneous bases could be due to sequencing errors in

low-quality read, a major drawback of long-read sequence data and base modification, which may complicate

the genome assembly. To prevent these errors, a sequencer with unbiased andmethylation-aware base caller is

in need. (We also acknowledge that some of the mismatches may be due to natural differences between refer-

encemicrobiome samples and the reference genomes that were used.) In addition, there is still room for further

improvement in assembly completeness by using longer reads or better designed assemblers to account for

long repeats in genomes. In our study, we assembled long-read sequenced data from 20 bacterial strains across

species. However, the performance at strain-level still remains unknown as closely related genomes are always a

major challenge for genome assembly. In the future, we anticipate that more mock microbial community will be

released with bacteria at strain level for benchmarking study.

By evaluating the performance of bioinformatics tools across different technologies, we found that third-

generation sequencing generally facilitates the complete characterization of complex bacterial genomes

by overcoming many limitations of second-generation sequencing. The short read length has limited the
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ability of Illumina sequencing in genome interpretation. For example, the length of repetitive genomic re-

gion is larger than a single read. As a consequence, intra- and intergenomic diversities are unlikely to be

captured by short sequencing data. This issue has been resolved by long-read sequencing technologies

(ONT and PacBio), which is able to span low complexity and repetitive regions by providing sequence

reads with at least 10 kb in length. While generating data with much higher error rate than PacBio, ONT

has become a promising platform in many applications, especially for studies requiring large amounts of

data. This is because ONT provides longer reads (up to 900 kb in length) with higher throughput compared

with PacBio (10–15 kb in length). Moreover, ONT is currently more affordable with lower per-base cost of

data generation, which is a key factor in long-read sequencing studies. Overall, the application of these two

major long-read sequencing platforms in metagenomics analysis of complex communities is still restricted

by higher error rate. This problem could be addressed with improvement of consensus sequences.

Recently, newly released R10 chip fromONT has longer base-contacting constriction in the pore, which im-

proves the homopolymer resolution as compared with R9 and improved per-base error rates. Similarly, the

HiFi protocol from PacBio can provide Sanger-quality accuracy (>99%) with reduced read length, which are

still much longer than short-read sequencing for assembly of complex genomes (Wenger et al., 2019).This

can lead to metagenome assembly with higher accuracy and completeness, as well as more accurate OTU

identification. Future metagenomics studies are expected to be changed dramatically by this approach.

For example, strain UA159 and NN2025 under species Streptococcus mutans only share 8% common re-

gions, which can be uniquely assigned. We then found that 20% of ONT reads can cover the unique region

of these two strains, respectively, which is infeasible for short reads. Therefore, with better quality of long-

read data, this approach may allow us to identify bacteria of interest directly at strain level instead of per-

forming binning analysis in the future.

In addition to illustrating the advantages brought by long-read sequence data, we also assessed the per-

formance of four de novo assembly algorithms and a long-read genome binner. The bioinformatics chal-

lenges to interpret rich information from complex microbial community include high error rates and low

throughput for long-read sequencing, fragmented nature for short-read sequencing, and large CPU hours

requirement. For evenly mixed (each with 5% abundance) HM-276D mock community, four tools consis-

tently achieved high accuracy and completeness. No single assembler significantly outperforms others.

By subsampling data to less coverage depths, not surprisingly, we found that the corresponding metrics

for four tools decreased. In terms of speed, wtdbg2 is tens of times faster than other tools. For the unevenly

mixed mock community HM-277D, assembly accuracy still remains high for all four tools (�97%–98%).

Genome fraction was reduced because 13 rare bacterial strains (<1%) were poorly assembled. Hybrid-

assembler OPERA-MS, which combines the advantages from long- and short-read technologies, shows

more robust performance to bacterial strains with extremely low abundance than other tools. However,

it produced much more contigs with less contiguity, whereas meta-flye, Canu, and wtdbg2 returned single

contig for 18, 15, and 17 strains respectively. Furthermore, taxonomic binning results show that Megan-LR

performs well when genomes are not closely related. Taxon bins were reconstructed with acceptable ac-

curacy down to the genus level, whereas performance decreased at species and strain levels.

In summary, our results not only demonstrate the feasibility of characterizing complete microbial genomes and

populations from error-prone Nanopore sequencing data but also highlight necessary bioinformatics improve-

ments for future metagenomics tool development to handle specific challenges in error-prone long-read

sequencingdata.Webelieve that futuremetagenomics studieswill benefit from this approach to assemble com-

plete microbial genomes, while maintaining the theoretical ability to detect DNA methylations and base mod-

ifications, infer repetitive elements and structural variants, and achieve strain-level resolution within microbial

communities. All the datasets on reference microbiomes are made publicly available to facilitate benchmarking

studies on metagenomics and the development of novel software tools.

Limitations of the Study

In this study, we note that there is still room for further improvement in assembly completeness using long

reads. Also, the performance of binning analysis using long read at strain-level still remains unknown.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Kai Wang (wangk@email.chop.edu).
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Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The Oxford Nanopore sequencing data that support the findings of this study have been deposited in the

BioProject database at http://www.ncbi.nlm.nih.gov/bioproject/630658 (reference number:

PRJNA630658).

The PacBio data used in this study were generated from the PacBio RS II sequencer. The data were

downloaded from the following URL: https://github.com/PacificBiosciences/DevNet/wiki/

Human_Microbiome_Project_MockB_Shotgun.

The Illumina paired-end data for HM-276D were downloaded from NCBI SRA database with accession

numbers SRR2726671 and SRR2726672.

The Illumina TruSeq synthetic long-read data for HM-277D were downloaded from NCBI SRA database

with accession number SRR2822457.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101223.
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Figure S1. Read quality of Nanopore sequencing data, Related to Table 1. Read 

quality of sequenced data sets, HM-276D (A) and HM-277D (B), were summarized using 

PycoQC respectively. Dashed lines indicate different quantiles (10%, 25%, 50%, 75%, 

90%). 

 

 

 

 

 

 

 



 

 

Figure S2. Read output over experiment of Nanopore sequencing data, Related to 

Table 1. Number of output reads over experiment time for sequenced data sets, HM-

276D (A) and HM-277D (B), were summarized using PycoQC. Blue line indicates output 

velocity at specific time. Shaded area represents cumulative read output over experiment 

time. 

 

 

 

 

 



 

 

Figure S3. Read length over experiment of Nanopore sequencing data, Related to 

Table 1. Read length in log scale over experiment time for sequenced data sets, HM-

276D (A) and HM-277D (B), were summarized using PycoQC. 

 

 

 

 

 

 

 



 

 

Figure S4. Read quality over experiment of Nanopore sequencing data, Related to 

Table 1. Mean read quality over experiment time for sequenced data sets, HM-276D 

(A) and HM-277D (B), were summarized using PycoQC. 



 

Figure S5. Read quality score vs estimated read length, Related to Table 1. 

Nanopore read distribution of read length and quality score for sequenced data sets, HM-

276D (A) and HM-277D (B), were summarized using PycoQC. Color indicates read 

density. 

 

 

 

 

 



 

Figure S6. Assembly performance on HM-277D data set, Related to Figure 2. 

Assembly statistics (N50 length, accuracy and genome fraction) of each assembler at 

different coverage depths based on HM-277D data set. Colors indicate results from 

different assemblers (Canu, OPERA-MS, wtdbg2, meta-flye). Assembly accuracy 

remains high compared to HM-276D, ranging around ~99% across tools. N50 lengths 

and genome fractions of all methods are substantially lower than the even community. 

 

 

 

 



 

Figure S7. Megan taxonomic tree assignment obtained from HM-276D PacBio 

sequenced data set, Related to Figure 3. HM-276D PacBio data set was subsampled 

to 160× depth of coverage. Each read was aligned against NCBI-nr protein reference data 

base, then binned and visualized using Megan-LR. Megan taxonomic tree showing bacteria 

taxa identified and their corresponding abundances across taxonomic rank. The radius of circle 

represents the number of reads assigned for each taxa.  

 

 

 



 

Figure S8. Megan taxonomic read distribution at different ranks obtained from HM-

276D Nanopore sequenced data set, Related to Figure 3. HM-276D Nanopore data 

set was subsampled to 160× depth of coverage. Each read was aligned against NCBI-nr 

protein reference data base, then binned and visualized using Megan-LR.  

 



 

Figure S9. Megan taxonomic read distribution at different ranks obtained from HM-

277D Nanopore sequenced data set, Related to Figure 3. HM-277D Nanopore data 

set was subsampled to 160× depth of coverage. Each read was aligned against NCBI-nr 

protein reference data base, then binned and visualized using Megan-LR.  



 

Figure S10. Megan taxonomic read distribution at different ranks obtained from 

HM-276D PacBio sequenced data set, Related to Figure 3. HM-276D PacBio data set 

was subsampled to 160× depth of coverage. Each read was aligned against NCBI-nr 

protein reference data base, then binned and visualized using Megan-LR.  



 

Figure S11. Strain-specific read assignment performance comparison across 

sequencing technologies, Related to Figure 4. Read assignment accuracy statistics 

for each bacterial strain were summarized based on datasets: HM-276D Nanopore (A), 

HM-276D PacBio (B) and HM-277D Nanopore (C) across ranks.  Colors indicates 

different metrics: sensitivity, precision and accuracy. Taxon were accurately recovered 

above the family level. HM-276D Nanopore outperformed other two data sets. AB, 

Acinetobacter baumannii; AO, Actinomyces odontolyticus; BC, Bacillus cereus; BV, 

Bacteroides vulgatus; CB, Clostridium beijerinckii; DR, Deinococcus radiodurans; DF, 

Enterococcus faecalis; EC, Escherichia coli; HP, Helicobacter pylori; LG, Lactobacillus 

gasseri; LM, Listeria monocytogenes; NM, Neisseria meningitides; PAN, 

Propionibacterium acnes; PAG, Pseudomonas aeruginosa; RS, Rhodobacter 

sphaeroides; SAR, Staphylococcus aureus; SE, Staphylococcus epidermidis; SAL, 

Streptococcus agalactiae; SM, Streptococcus mutans; SP, Streptococcus pneumonia. 

 

 

 

 



 

Figure S12. Strain-specific base pair assignment performance comparison across 

sequencing technologies, Related to Figure 4. Read base assignment accuracy 

statistics for each bacterial strain were summarized based on datasets: HM-276D 

Nanopore (A), HM-276D PacBio (B) and HM-277D Nanopore (C) across ranks.  Colors 

indicates different metrics: sensitivity, precision and accuracy. PacBio performed better 

than Nanopore data above the family level because of lower error rate. AB, Acinetobacter 

baumannii; AO, Actinomyces odontolyticus; BC, Bacillus cereus; BV, Bacteroides 

vulgatus; CB, Clostridium beijerinckii; DR, Deinococcus radiodurans; DF, Enterococcus 

faecalis; EC, Escherichia coli; HP, Helicobacter pylori; LG, Lactobacillus gasseri; LM, 

Listeria monocytogenes; NM, Neisseria meningitides; PAN, Propionibacterium acnes; 

PAG, Pseudomonas aeruginosa; RS, Rhodobacter sphaeroides; SAR, Staphylococcus 

aureus; SE, Staphylococcus epidermidis; SAL, Streptococcus agalactiae; SM, 

Streptococcus mutans; SP, Streptococcus pneumonia. 

 

 

 

 



 

Figure S13. Assembly results for wtdbg2 based on HM-276D data sets, Related 

to Figure 2. Barplots indicate assembly statistics (Number of contigs, N50 length 

and genome size). Each row represents a run of wtdbg2 with parameters “-e” and “--

node-max”. 

 

 

 

 

 

 

 

 

 

 

 



 

Tools Depth 
N50 

length 
NG50 
length 

NA50 
length 

NGA50 
length 

Accura
cy (%) 

Fraction 
(%) 

# 
contig

s 

# long 
contig

s 

Longest 
contig 

Genome 
size 

CPU 
time 
(min) 

Canu 20x 717267 616530 450953 413727 98.5 96.8 298 254 2612567 65503873 98 

Canu 40x 1987236 1975600 893966 893966 99.07 99.29 132 112 6286130 67676017 250 

Canu 80x 2886059 2731942 1284219 1284219 99.24 99.86 62 57 6316623 68735511 678 

Canu 160x 3901381 3901381 1302124 1506778 99.27 99.93 60 52 6299115 68879111 1537 

Canu 365x 2983818 2983818 1219953 1219953 99.28 99.83 64 58 6292103 68964121 2651 

Canu 480x 3911963 3911963 1400993 1400993 99.4 99.81 83 65 6359094 69425747 3858 

OPERA-
MS 

20x 1122204 1122204 450323 489324 99.83 99.71 5117 201 6324007 67168904 61 

OPERA-
MS 

40x 2657727 2657727 1210958 1210958 99.96 99.99 1695 81 5220208 67629371 102 

OPERA-
MS 

80x 2835709 2732545 1189226 1189226 99.96 99.99 1921 74 4636570 67632885 186 

OPERA-
MS 

160x 2933262 2792941 1273171 1273171 99.95 98.45 2347 65 6255842 66580943 382 

OPERA-
MS 

365x 2938016 2938016 1298425 1298425 99.91 99.98 4734 64 6255878 67858470 856 

OPERA-
MS 

480x 2938019 2938019 1213537 1298125 99.92 99.98 4732 63 6255756 67892051 1238 

wtdbg2 20x 552100 415407 243026 208370 96.22 90.73 439 367 3542441 60910472 3 

wtdbg2 40x 2106610 2057746 751004 751004 98.1 98.58 143 110 6265362 66286613 7 

wtdbg2 80x 3152112 2920474 1331021 1331021 98.79 98.97 105 66 6229939 66511311 13 

wtdbg2 160x 2910424 2910424 1286826 1286826 98.95 98.75 134 76 6215258 66615029 13 

wtdbg2 365x 2706821 2706821 1278483 1265683 98.66 97.34 90 73 6251621 65544245 19 

wtdbg2 480x 3168384 2922530 1201346 1184259 98.73 95.95 201 119 6210210 65977641 23 

meta-
flye 

20x 1653589 1547909 558652 534341 98.96 98.76 223 206 5630982 66808399 57 

meta-
flye 

40x 2725547 2653197 1209147 1209147 99.43 99.97 64 52 6274273 67627825 86 

meta-
flye 

80x 2930772 2930772 1588493 1588493 99.52 99.99 59 43 6251934 67630110 140 

meta-
flye 

160x 3888260 3180529 1622636 1622636 99.54 99.97 61 39 6252579 67595608 372 

meta-
flye 

365x 3181836 2934283 1315358 1315358 99.62 99.98 88 44 6245780 67727067 603 

meta-
flye 

480x 3181822 2934277 1718698 1718698 99.62 99.99 89 43 6245565 67700317 756 

Table S1. Comprehensive assembly statistics on HM-276D using Canu, OPERA-

MS, wtdbg2 and meta-flye, Related to Figure 2. 

 

 

 



 

Species Abundance 

RefSeq gene 16S rRNA gene Protein coding gene 

average 
coverage
(#bases) 

Significantly 
detected gene 

average 
coverage
(#bases) 

Significantly 
detected gene 

average 
coverage
(#bases) 

Significantly 
detected gene 

Acinetobacter 
baumannii 

0.18% 9.83 94 9.50 6 9.86 3,817 

Actinomyces 
odontolyticus 

0.01% 4.27 56 3.10 2 4.65 1,999 

Bacillus cereus 1.22% 100.51 138 94.04 12 102.33 5,675 

Bacteroides 
vulgatus 

0.02% 2.32 65 1.77 4 2.39 3,067 

Clostridium 
beijerinckii 

1.43% 96.40 143 78.49 14 97.42 5,149 

Deinococcus 
radiodurans 

0.03% 4.94 57 5.19 3 4.86 3,060 

Enterococcus 
faecalis 

0.01% 2.76 53 3.81 2 3.37 2,497 

Escherichia coli 15.75% 1,032.93 179 
1,003.

79 
7 1,060.46 4,341 

Helicobacter 
pylori 

0.07% 113.13 43 
117.1

5 
2 114.16 1,444 

Lactobacillus 
gasseri 

0.03% 27.95 96 24.06 6 28.97 1,783 

Listeria 
monocytogenes 

0.07% 10.74 184 8.92 6 11.42 2,864 

Neisseria 
meningitides 

0.07% 42.67 71 28.53 4 47.85 1,926 

Propionibacteri
um acnes 

0.11% 41.60 58 38.75 3 43.02 2,506 

Pseudomonas 
aeruginosa 

5.01% 141.55 105 
160.8

6 
4 137.90 5,572 

Rhodobacter 
sphaeroides 

64.44% 2,219.40 67 
1,993.

22 
3 2,438.52 4,279 

Staphylococcus 
aureus 

0.83% 323.26 79 
289.0

0 
5 404.68 2,982 

Staphylococcus 
epidermidis 

6.52% 976.37 76 
1,117.

10 
5 1,002.43 2,472 

Streptococcus 
agalactiae 

0.03% 72.99 101 70.16 7 75.54 2,127 

Streptococcus 
mutans 

4.15% 4,207.60 80 
3,598.

02 
5 3,818.93 1,953 

Streptococcus 
pneumoniae 

0.01% 1.91 58 1.30 2 2.39 1,868 

Table S2. Species-specific gene coverage summary of HM-277D data set, Related 

to Figure 4. Gene coverage statistics were summarized for 3 different gene sets: all 

Refseq genes, 16S rRNA genes and protein coding genes. Average coverage = number 

of bases mapped to the exonic region / length of exonic region. Gene is noted as 



significantly detected when 50% exonic region is covered by at least 1 read and 

average coverage > 1. 

Transparent Methods 

Oxford nanopore sequencing of HM-276D and HM-277D 

DNA samples of HM-276D and HM-277D were ordered from BEI Resources. 

Concentration of DNA was assessed using the dsDNA HS assay on a Qubit  fluorometer 

(Thermo Fisher). 

For library preparation, 1.0 µg DNA was used as the input DNA of each library. The library 

was prepared using the ligation sequencing protocol (SQK-LSK109) from ONT. 

Concretely, end repair, dA-tailing and DNA repair was performed using NEBNext Ultra II 

End Repair/dA-tailing Module (catalog No. E7546) and NEBNext FFPE Repair Mix 

(M6630). In all, 3.5 μl Ultra II End-prep reaction buffer, 3 μl Ultra II End-prep enzyme mix, 

3.5 μl NEBNext FFPE DNA Repair Buffer and 2 μl NEBNext FFPE DNA Repair Mix were 

added to the input DNA. The total volume was adjusted to 60 µl by adding nuclease-free 

water (NFW). The mixture was incubated at 20 °C for 5 min and 65 °C for 5 min. A 

1 × volume (60 µl) AMPure XP clean-up was performed and the DNA was eluted in 61 µl 

NFW. One microliter of the eluted dA-tailed DNA was quantified using the Qubit 

fluorometer. A total of 0.7 µg DNA should be retained if the process is successful. 

Adaptor ligation was performed using the following steps. Five microliter Adaptor Mix 

(ONT, SQK-LSK109 Kit), 25 μl Ligation Buffer (ONT, SQK-LSK109 Kit) and 10 μl 

NEBNext Quick T4 DNA Ligase (NEB, catalog No. E6056) were added to the 60 µl dA-

tailed DNA from the previous step. The mixture was incubated at room temperature for 

10 min. The adaptor-ligated DNA was cleaned up using 40 µl AMPure XP beads. The 

mixture of DNA and AMPure XP beads was incubated for 5 min at room temperature and 

the pellet was washed twice by 250 μl Long Fragment Buffer (ONT, SQK-LSK109). The 

purified-ligated DNA was resuspended in 15 µl Elution Buffer (ONT, SQK-LSK109). A 1-

µl aliquot was quantified by fluorometry (Qubit) to ensure ≥ 400 ng DNA was retained. 



The final library was prepared by mixing 37.5 μl Sequencing Buffer (ONT, SQK-LSK109), 

25.5 μl Loading Beads (ONT, SQK-LSK109), and 12 µl purified-ligated DNA. The library 

was loaded to R9.4 flow cells (FLO-MIN106, ONT) according to the manufacturer’s 

guidelines. GridION sequencing was performed using default settings for the R9.4 flow 

cell and SQK-LSK109 library preparation kit. The sequencing was controlled and 

monitored using the MinKNOW software developed by ONT.  

Metagenome assembly  

Genome assemblies of the 20-mixed bacteria from HM-276D and MH-277D mock 

communities were conducted using 4 existing assemblers based on generated long-read 

sequencing reads. These 4 dedicated long-read assemblers we used are wtdbg2 (v2.4), 

OPERA-MS, Canu (v1.8) and meta-flye, where OPERA-MS and meta-flye are designed 

to be capable to handle metagenome while wdtbg2 and Canu are for broadly application. 

To evaluate the impact of coverage depth in genome assembly, in addition to 525× (HM-

276D) and 1068× (HM-277D), we subsampled 5 data sets with 365×, 160×, 80×, 40× and 

20× coverages for these two mock communities. In addition to long-read data, OPERA-

MS requires short reads to improve the assembly accuracy. Hence, we downloaded 

Illumina sequenced HM-276D(Jones et al., 2015)  and HM-277D data sets(Kuleshov et 

al., 2016). Similarly, these short-read data were also subsampled with depths 160×, 80×, 

40× and 20×, which were provided to OPERA-MS in corresponding data set analysis. We 

also analyzed a PacBio data set(Lee et al., 2014) of HM-276D sample using wtdbg2, 

OPERA-MS, Canu and meta-flye to compare assembly performance across sequencing 

technologies. For comparison fairness, we applied consistent configuration settings for 

each tool across different coverage depths. For wtdbg2, we first tuned parameters on “-

e”, “--node-max”. Assemblies were conducted under different parameter values (-e: 3, 10, 

20) (--node-max: 1000, 3000, 6000). Based on the genome contiguity and completeness 

results in Fig S13, we specified parameter “-e 3 –node-max” for wtdbg2. For other tools, 

we set estimated genome size as 70M, where the parameters are “genomeSize=70M 

useGrid=True” for Canu, and “CONTIG_LEN_THR 500, CONTIG_EDGE_LEN 80, 

CONTIG_WINDOW_LEN 340, KMER_SIZE 60, LONG_READ_MAPPER minimap2” for 

OPERA-MS, “-t 40 -g 70m -o ./ --meta” for meta-flye. 40 contig output files were obtained 



(2 mock community samples, 6 depths of coverage, 4 assembly tools) for further 

evaluation. 

Metagenome assembly evaluation 

Assembled genomes produced by each tool based on different samples and coverage 

depths were evaluated with metrics related to contiguity, genome completeness and 

accuracy. To assess the assembly contiguity, we first used our script to calculate the 

widely-used statistic N50, which is the shortest contig needed to cover at least 50% of the 

assembly. In addition, other related statistics, such as number of contigs, number of long 

contigs (>10kb), longest contigs and total assembly size, were collected from the FASTA 

output file of each assembler. Furthermore, we summarized NG50 for each method by 

replacing the assembly size with estimated genome size. This quantity represents the 

shortest contig needed to cover 50% of the genome. Instead of contigs, we also evaluated 

the performance based on aligned blocks for each method by using QUAST(Gurevich et 

al., 2013) to calculate NA50 and NGA50, which represent shortest aligned block to cover 

50% of the assembly and genome respectively. Based on these metrics, the contiguity of 

assemblies was comprehensively evaluated. Next, we downloaded the reference 

genome FASTA files of all 20 bacteria from NCBI database to measure the concordance 

between the references and assemblies. First, assemblies were mapped to the reference 

genomes using Mummer v3.23 with parameters “-maxmatch -c 100 -p nucmer”. Then, by 

comparing all contigs mapped onto the reference using dandiff, assembly accuracy was 

calculated using 1-to-1 alignment identity, which is the correctly matched base-pair 

percentage of contigs uniquely mapped to the reference genome (1-mismatch%). In 

addition, to assess the assembly completeness, we calculated the percentage of genome 

covered by the contigs. In real case, instead of evenly mixed in HM-276D mock 

community, bacterial strains are non-uniformly distributed, where some are likely to share 

extremely low abundance. Therefore, we evaluated the impact of the genomic DNA 

abundance on genome assembly. For the unevenly mixed HM-277D mock community 

samples, we calculated the abundance for each bacterial strain by normalizing the 

concentration with related reference genome size. The relationship between abundances 



and assessment metrics was displayed using scatter plots. For each plot, linearity was 

measured based on Spearman correlation using R v3.3.3. 

Taxonomic binning analysis  

Taxon bins of the 20-mixed bacteria from two mock communities were recovered using 

taxonomic binner Megan-LR(Huson et al., 2018)  with 3 long-read sequencing data sets: 

HM-276D (Nanopore, PacBio) and HM-277D (Nanopore) at 160× depth of coverage. We 

first aligned all reads against NCBI-nr protein reference database using LAST with 

parameters “-P 100 -F15”. Next, output MAF files were converted to DAA format in smaller 

size. Then, we meganized the DAA files using MEGAN(Huson et al., 2016), which allows 

us to interactively visualize and explore these taxonomic results. To evaluate the 

taxonomic binning performance, we first counted the number of reads and bases which 

were correctly assigned to each taxon from the mock microbial community. We 

determined the metrics (precision, sensitivity, true positive rate and false positive rate). 

Precision and sensitivity assess how accuracy each read is classified across different 

sequencing technologies. Precision is the percentage of reads assigned correctly to the 

corresponding taxa out of all reads. Sensitivity is the percentage of correct reads out of 

reads assigned to the particular taxa. Next, we use true positive rate (TPR) and false 

discover rate (FDR) to assess the accuracy in taxonomic detection across sequencing 

technologies. TPR is the percentage of correctly detected taxon out of known taxon from 

the microbial community. FDR is the percentage of correctly detected taxon out of all 

detected taxon. All metrics are defined at each taxonomic rank. 
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