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Opioid use disorder (OUD) among pregnant women over the last decade has led to more

than a fivefold increase in the number of neonates born with withdrawal signs known

as Neonatal Abstinence Syndrome (NAS) or Neonatal Opioid Withdrawal Syndrome

(NOWS). The impact of prenatal opioid exposure on these neonates remains a public

health and research priority due to both its short and long-term effects on offspring.

Among the adverse long-term effects associated with OUD is a metabolic syndrome with

accompanying cardiovascular comorbidities. The susceptibility to metabolic diseases

may begin as early as conception. Neonates born in a setting of prenatal opioid

exposure are known to have aberrant early growth, e.g., lower birth weight and smaller

head size, and dysregulated feeding behavior that ranges from feeding difficulty to

hyperphagia which may predispose these neonates to metabolic syndrome in adulthood.

However, studies on this topic are lacking. In this article, we describe the reported

association between OUD and metabolic syndrome in adults, animal data linking opioid

receptors with the development of diet-induced obesity, the inflammatory modulation

of opioids and finally, neonatal salivary transcriptomic data from our laboratory that

highlighted the sex-specific impact of opioids on the hypothalamic and reward receptors

that regulate feeding behavior in opioid-exposed neonates. There is a great need for

future research linking opioids with epigenetic and gene expression changes, as well

as neuromodulatory effects in the developing brain, that may underlie the dysregulated

feeding, growth, and long-term metabolic and cardiovascular risks for these neonates.

Keywords: opioid epidemic, Neonatal Abstinence Syndrome, Inflammation, Neuromodulation, Feeding

dysregulation, metabolic syndrome

INTRODUCTION

The rate of pregnant women misusing opioids has quadrupled between 1999 and 2014 (1),
leading to a fivefold increase in Neonatal Abstinence Syndrome (NAS) or Neonatal Opioid
Withdrawal Syndrome (NOWS) in the last decade (2). NAS affects multiple organs, including
the gastrointestinal system, often resulting in uncoordinated feeding, excessive suck and
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hyperphagia, feeding intolerance, diarrhea, and poor growth
(3, 4). The impact of these aberrant feeding and growth
patterns is not well understood, yet they likely contributes to
obesity or metabolic syndrome. Opioid use disorder (OUD) is
associated with metabolic syndrome, defined as dyslipidemia,
insulin resistance, obesity, and hypertension, predisposing these
adults to cardiovascular disease, diabetes mellitus (DM), and
death (5). Rodents exposed to opioids develop drug-induced
obesity and DM type 2 (6), while administration of opioid
antagonists reduces opioid craving and appetite for palatable food
leading to weight loss (7, 8). The exact mechanisms by which
drug addiction and metabolic syndrome are linked together are
of growing interest, with some reporting no direct association (9),
while others reporting disrupted reward circuitry, i.e., dopamine
receptors, as a common denominator between opioid addiction,
food dependence and obesity (10–12). To close this knowledge
gap, our laboratory examines the expression of hypothalamic
and reward genes that regulate feeding behavior in opioid-
exposed neonates, with evidence of abnormal reward signaling
and behavioral changes that may predispose these neonates to
long-term growth and metabolic issues (13).

METABOLIC SYNDROME IN ADULTS WITH
OPIOID USE DISORDER

Research has demonstrated that adults with OUD undergoing
treatment had increased appetite and weight several months
into the program (14, 15), with a 30% prevalence of metabolic
syndrome, higher than the general population (16). Methadone
exposure, compared to buprenorphine, was associated with worse
metabolic syndrome in individuals with heroin use disorder (17).
The rate of DM in patients on methadone was much higher than
in the general population, while those on buprenorphine had a
similar DM risk as the general population (18). This difference
could be explained by the role of µ-opioid receptor (MOR)
in the metabolic pathway, regulating fatty acid oxidation and
promoting fat storage (19). Further, the κ-opioid receptor (KOR)
is involved in hepatic lipid metabolism and signals fat storage
(20). Therefore, methadone, a full MOR and a KOR agonist,
exerts stronger metabolic side effects than buprenorphine, a
partial MOR agonist and a KOR antagonist (21). Methadone also
antagonizes the N-methyl-D-aspartate receptors, which normally
function as an appetite suppressant (22). Despite this clinical
evidence, it remains unclear whether these metabolic effects
result from the medications or the lifestyle changes related to
being in the program. Alternatively, obesity itself is associated
with chronic pain and discomfort, leading to an increased use of
opioids and other pain-controlling medications (23, 24).

The activation of reward circuitry seems to underlie the
propensity for both food and drug ingestion. Increasing evidence
shows that common genes implicated in addictive behaviors such
as dopamine (DA), proopiomelanocortin (POMC), and leptin
receptor (LEPR), may also be implicated in food addiction,
particularly palatable sweet and fatty foods (12). Other genes
involved in opioid consumption and appetite regulation include
transcription factor 7 like 2, melanocortin-4, orexin-1, and

opioid receptor µ-1 (25–28). Positron emission tomography
(PET) imaging of individuals with obesity showed reductions
in the striatal dopamine receptor type 2 (DRD2) that were
proportional to body mass index (BMI), evidence that dopamine
deficiency may induce pathological eating as a mechanism to
offset the reward circuitry (10). Volkow et al. demonstrated
that brain imaging of subjects with obesity had reduced striatal
DRD2 expression, similar in magnitude to reductions seen in
subjects with cocaine addiction, further supporting a similar
modulation of reward pathways in individuals with food and
drug addictions (29–31).

While opioids induce signs of insulin resistance, metabolic
changes, obesity, and diabetes, opioid-antagonists such as
naltrexone reduce body weight and indices of metabolic
syndrome (32). A clinical trial in patients with schizophrenia
treated with olanzapine and randomized to naltrexone
demonstrated a significant decrease in fat mass, an increase
in fat-free mass, and a trend of improved insulin resistance
compared to the placebo (32). These findings suggest that
opioid antagonists effectively ameliorate the gain of body
fat mass induced by olanzapine, an opioidergic compound.
Additionally, an injection of long-acting depot naltrexone in
opioid-dependent patients reduced self-reported hedonic and
motivational characteristics of sucrose, which, in turn, was
associated with diminished cue-induced opioid cravings (33).
This study supports the link between opioid neurotransmission,
hedonic signaling, and metabolic effects.

Other studies showed a less clear linkage between OUD
and metabolic syndrome. A retrospective cross-sectional study
of 10,032 subjects showed that drug use was linked to a
higher waist circumference but did not find a significant
association between drug use and clusters of three or more
cardiometabolic disease risk factors (impaired glucose tolerance,
insulin resistance, hypertension, dyslipidemia, and central
adiposity) (9). Complicating this linkage is that adults with OUD
have multiple life stressors and psychiatric comorbidities that
may contribute to the development of metabolic syndrome (34,
35). Preclinical studies allow an opportunity to mechanistically
understand the impact of opioid use on the development of
metabolic syndrome in a more controlled setting.

THE INTERSECTION OF FOOD AND DRUG
ADDICTION: ANIMAL DATA

Animal studies have shown that injections of morphine lead
to hyperphagia and an increased intake of preferred foods (fat
versus carbohydrates), resulting in weight gain. At the same
time, naloxone, a MOR antagonist, decreased the intake of the
preferred diet (36–39). The stimulation of MOR by injection
of morphine into the lateral septum (LS) also reliably increased
feeding behavior in a dose-responsive manner. In contrast,
injection of high doses of MOR antagonist suppressed feeding
(40). Another rodent experiment showed that administration
of a highly selective MOR antagonist reduced food seeking
after ingestion of palatable food, pointing to the reduction in
the hedonic value of food. However, the MOR antagonist also
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reduced the seeking response before the delivery of palatable food.
Therefore, this highly selectiveMOR antagonist reduced not only
the hedonic/reward value of the highly palatable food but also
the incentive motivational drivers that control food seeking (41),
serving as evidence of direct effects of MOR on feeding behavior.

Animal research also showed that obesity, in turn, modulates
the opioid system. Maternal consumption of high-fat diets
and obesity was shown to upregulate the expression of
MOR in offspring brain (42). Interestingly, there was an
interaction between maternal obesity status and offspring sex,
with pregestational obesity affecting male offspring only, while
gestational obesity affecting both male and female offspring
(42). Other studies also demonstrated that dams on high-fat
diets produced offspring with a preference for high-fat diets,
hyperphagia, and altered expression of MOR in male offspring
(43). Furthermore, MOR is also susceptible to pre-pregnancy
and gestational obesity, evidenced by reduced methylation in
the promoter regions of MOR and the dopamine reuptake
transporter, in addition to global DNA hypomethylation in
the mouse brain. These behavioral and epigenetic effects were
blocked with either the administration of MOR antagonist
or methyl donor supplementation (44), mechanistic evidence
of the intricate relationships between obesity, opioid receptor
activation, and dysregulated feeding behavior.

NEURAL AND SYSTEMIC INFLAMMATION
OF OPIOIDS

In addition to the direct opioid effects on opioid and feeding
receptors, opioids also act via non-opioid receptors in the brain,
particularly microglia, and induce neuroinflammation through
their role as ‘foreign’ agents. Microglia, which originate from yolk
sac macrophages and migrate into the central nervous system
(CNS) during embryogenesis, serve as the brain’s innate immune
system and regulators of CNS homeostasis (45, 46). Classical
activation of microglia stimulates pattern recognition receptors
that sense pathogen- and damage-associated molecular patterns
in microorganisms, tumor cells, dying cells, or particles released
in response to tissue injury and inflammation (47). Figure 1
shows that opioid binding to TLR4 onmicroglia activates nuclear
factor-κB and the release of proinflammatory mediators (46,
48–51). TLR4 activation by opioids is similar to its classic
ligand, lipopolysaccharides (52). The opioid-TLR4 signaling also
induced extracellular DA increase in rodent NAc accompanied by
reward-seeking behavior, e.g., conditioned place preference and
opioid self-administration (53). This proinflammatory cascade
is thought to actively oppose the analgesic effects of morphine
and modulate the reward properties and the development of
tolerance (54). Antagonism of TLR4 in animal models prevented
the development of morphine tolerance in a dose-dependent
manner, and injections of TLR4 agonists produced a novel
tolerance to morphine (55). Together, these results confirmed
the role of TLR4 in the regulation of morphine tolerance and
showed that TLR4 might be a potential therapeutic target for
analgesia management.

FIGURE 1 | Binding of opioids with TLR4 induces the release of inflammatory

mediators and modulation of the reward properties (TLR4=toll-like receptor

type 4, MD=myeloid differentiation, NFκB=nuclear factor kappa beta,

IL1β =interleukin 1 beta, IL6=interleukin 6, IL10=interleukin 10, TNFα =tumor

necrosis factor alpha, CCL2=C-C motif chemokine ligand 2,

MCP1=monocyte chemoattractant protein 1, CCL5=C-C motif chemokine

ligand 5, CXCL1=C-X-C motif chemokine ligand 1. Figure created using

derivatives of “Cellular Biology,” Servier Medical Art (https://smart.servier.com/)

under the Creative Commons License Attribution 3.0 Unported License).

Jantzie et al. demonstrated that prenatal methadone elicits a
systemic inflammatory response, leading to neuroinflammation,
CNS injury, immune system dysfunction, and sustained
peripheral immune hyperreactivity (56). Pups of dams implanted
with mini-osmotic methadone pumps had significantly increased
inflammatory cytokines in their peripheral blood mononuclear
cells (PBMC) at P10, with IL1β significantly increased by P21,
evidence of prolonged peripheral inflammation. Stimulation
of PBMCs in the methadone-exposed pups with LPS resulted
in the hypersecretion of cytokines compared to the saline-
treated PBMCs, evidence of sustained immune hyperreactivity.
Treatment with naloxone dissipated this cytokine response.
The cortical section from methadone-exposed rats showed
significantly elevated expression of Tlr4, Myd88, and key
cytokines and chemokines, evidence of the opioid effects
via the TLR4-dependent pathway. Furthermore, biochemical
assessment and diffusion tensor imaging of the brain showed
decreased myelin maturity and disrupted microstructural brain
integrity in the methadone cohort, with executive function and
cognitive impairment into adulthood. Prenatal opioid exposure,
therefore, adversely modulates systemic inflammatory response
accompanied by molecular, structural, and behavioral/cognitive
consequences (56).
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Neuroinflammation is associated with obesity-driven
disorders through the neuroendocrine effects of opioids
(57). Animal models and human conditions of stress and
depression showed that the neuroimmune impact of opioids
dysregulates the hypothalamic-pituitary-adrenal axis and
induces the release of peptides and hormones including cortisol.
These glucocorticoids, in turn, regulate the expression of
inflammatory cytokines in the hypothalamus, hippocampus,
and prefrontal cortex (58). Prolonged neuroinflammation may
lead to imbalanced hypothalamic hormonal signaling and
subsequent dysregulated energy homeostasis, impaired control
of food intake, development of insulin resistance, obesity, and
cardiovascular disease (59–62).

While neuroinflammation disrupts insulin sensitivity and
leptin resistance (63), obesity reciprocally impairs microglia
function (64). Central and peripheral inflammation processes are
in constant communication and create feedback signaling that
predisposes opioid-exposed individuals to adverse neurological
and peripheral effects, i.e., cognitive and cardiometabolic
deficits (65, 66). Obesity as a pro-inflammatory state disrupts
the blood-brain barrier and reduces the expression of tight
junction proteins, enhancing the permeability and recruitment
of peripheral/plasma constituents with the resultant microglial
inflammatory activation (66–68). Neonates with an immature
blood-brain barrier are at a higher risk for both peripheral and
neurological effects of prenatal opioids and are prone to the
vicious cycle depicted in Figure 2.

GROWTH DYSREGULATION IN
OPIOID-EXPOSED NEONATES AND
ADVERSE METABOLIC RISKS

While studies increasingly found adverse neurodevelopmental
outcomes and poor academic performance in children exposed
to opioids in utero (69–71), the somatic growth trajectory of
these neonates is poorly understood. In utero exposure to opioids
and other illicit drugs is linked to prematurity, and smaller
overall size, head circumference, and brain volume at birth (72–
76), all postulated to be multifactorial, i.e., a poor diet during
pregnancy, compromised placental transfer of nutrition, and
direct effects of the drugs on fetal growth (77, 78). Exposed
neonates have lower growth velocity that persists to 10 years of
age (79–81). Others have reported that despite the lower growth
parameters at one year, neonates demonstrate catch-up growth
starting at 4 months, with a more prominent catch-up in weight
by 12 months of age (82). Evidence of catch-up growth has
also been reported by Shankaran et al., who reported growth
discrepancies disappearing by 2 years of age (for weight and head
circumference) and by 3 years of age (for height) (83).

A longitudinal study of 238 children with prenatal cocaine
exposure and 323 children without exposure showed a four-
fold obesity risk in cocaine-exposed children at 9 years of
age (84). These exposed neonates were significantly small for
gestational age (SGA) and had more rapid earlier weight gain.
When analyzed based on prenatal cocaine-by-alcohol exposure,
there was no difference in the prevalence of obesity from birth

FIGURE 2 | Inflammatory modulation of opioids and multiorgan effects with

long-term adverse effects leading to increased predisposition to opioid use

disorder (CNS=central nervous system, PNS=peripheral nervous system,

GI=gastrointestinal system). Well-studied or known topics are indicated by

solid lines; hypothetical topics or knowledge gaps are indicated by dashed

lines.

to 6 years of age. However, by age 7, children who were
exposed to cocaine but not alcohol were more obese than
those exposed to both substances, to neither substance, or to
alcohol but not cocaine. This pattern continued to 9 years of
age. Similarly, children with prenatal cocaine but not alcohol
exposure had higher BMI Z-scores than those not exposed
to either substance, with a difference in the Z-scores noted
between 3 and 9 years of age, but not earlier. Obesity was
associated with faster early weight gain, high caloric intake,
and inadequate exercise. However, a key predictor of obesity
at 9 years of age is the rate at which neonates grow from
birth to one year, supporting that rapid catch-up growth in the
first year of life proved to be most impactful on metabolism
later in life (85, 86). A similar phenomenon has been observed
in neonates with intrauterine growth restriction. The in utero
nutritional deficiency compromises fetal growth and organ
differentiation. quickly replaced by ample postnatal nutritional
supply and a period of rapid catch-up growth. The unique
fetal programming and aberrant postnatal growth trajectory
predispose these neonates to a higher incidence of metabolic
syndrome, early signs of atherosclerotic diseases, and increased
cardiovascular risks (87, 88).

A pilot study looking at air displacement plethysmography
measurements in neonates with NAS showed a rapid increase
in the mean body mass, fat-free mass, and fat percentage by 4
months of life (89). This study showed that these neonates were
born smaller and remained leaner in the first few weeks of life.
However, by 4 months of age, neonates with NAS had similar
mean body mass and fat-free mass measurements as the non-
exposed neonates, with doubling of mean fat mass percentage
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from 14% to 28% between weeks 4 and 16. The rapid increase
in the body mass of neonates with NAS may predispose them
to future obesity. Compared to non-exposed neonates, those
with NAS also had a larger variability in growth in the first
year of life compared to non-exposed neonates (90), evidence
of a distinct growth pattern that may place them at risk for
subsequent aberrant development.

MOLECULAR AND BEHAVIORAL
EVIDENCE OF SEX-SPECIFIC IMPACT OF
PRENATAL OPIOIDS ON NEONATAL
FEEDING REGULATION AND
FUTURE IMPLICATIONS

In addition to the abnormal growth parameters described above,
opioid-exposed neonates exhibit a unique feeding phenotype that
may compound their future metabolic risk. An early withdrawal
sign in NAS is poor oral coordination shortly after birth, followed
by excessive eating/hyperphagia thereafter (91–93). While most
neonates are discharged home without feeding difficulty, many
continue to exhibit hyperphagia, consuming up to two-fold the
caloric intake of healthy newborns. Using neonatal saliva, our
laboratory studied the expression of select hypothalamic and
reward genes that regulate feeding—neuropeptide Y2 receptor
(NPY2R), POMC, LEPR, DRD2 (13). A higher proportion of
opioid-exposed males required pharmacotherapy (41% males
vs. 22% females). While there was no significant difference
in the gene expression between opioid- and non-exposed
neonates, stratification by sex showed that opioid-exposed
males had significantly higher expression of DRD2 than
females. Furthermore, males who required pharmacotherapy had
significantly higher expression of DRD2 and LEPR than females,
evidence that prenatal opioid exposure creates an imbalance
between reward (DRD2) and anorexigenic (LEPR) signaling. The
expression of DRD2 also correlated significantly with volume
intake, evidence that hyperphagia may be a compensatory
behavior to replace the reward signaling provided in utero. Males
with pharmacotherapy requirement consumed an average of 180
mL/kg/day by one week of life and 210 mL/kg/day on the day of
discharge, 15% above the amount ingested by females.

The expression of DRD2 in neonates requiring
pharmacotherapy also showed a trend of positive correlation
with percent weight change at discharge, evidence of early
catch-up growth seen in other studies. Our study supports the
hypothesis that opioid-exposed neonates exhibit hyperphagia
early in life that continues throughout the withdrawal course,
with males displaying more molecular and behavioral effects
than females. While limited by the small number of subjects
and duration (hospital stay), our study provided the foundation
for an ongoing study examining the sex-specific impact of
prenatal opioid exposure in a larger cohort and beyond the
hospital stay. The higher expression of DRD2 may carry
important implications for future reward-seeking behavior,
albeit drugs or food. Sex-specific findings in our study may
explain the predominance of males in OUD (94, 95) and male
sex as a risk factor for more severe NAS and pharmacotherapy

requirement (96). Additionally, serial salivary DRD2 may
predict if opioid-exposed neonates are at risk for an early
hyperdopaminergic followed by a hypodopaminergic state, e.g.,
through a desensitizing process over time. Subjects with chronic
OUD and obesity showed evidence of dopamine deficiency
that may induce compensatory and pathological behaviors
exacerbating their drug or food dependency (30–33).

The higher expression of LEPR in our opioid-exposed
male cohort may induce a hyperleptinemia state that triggers
insulin resistance and cardiometabolic complications. While
leptin serves as satiety signaling in the context of energy
surplus (97), chronic hyperleptinemia may lead to blunted
responses and obesity (97). A study in adults undergoing
weight-loss treatment programs showed associations between
food craving, overeating, and genetic polymorphisms involved
in addiction, as well as a significant gene-gene interaction
between DRD2 and LEPR, which synergistically influences the
development of severe obesity (98). Our data highlighted the sex-
specific impact of prenatal opioid exposure on the developing
brain accompanied by anthropometric and behavioral changes,
predisposing these neonates to future reward-seeking behaviors
with adverse growth, neurodevelopmental, and cardiometabolic
consequences. Given the intersection between food and drug
dependence, future studies ought to understand the metabolic
consequences of higher reward signaling, abnormal feeding
phenotype, and rapid catch-up growth in these neonates.

CONCLUSION

Animal and human studies highlight the intricate and complex
intersection between reward and feeding receptors in the brain,
as well as central and peripheral inflammation that may explain
the linkage between OUD and metabolic syndrome. Emerging
studies in the neonatal population, including ours, indicate that
the adverse effects of prenatal opioids start early on in life.
However, these topics are understudied and remain significant
knowledge gaps in the neonatal and pediatric population,
either due to the fragile nature of the population or the
limited non-invasive and validated methodologies available
to this group. Additionally, the socioeconomic circumstances
encountered by families with OUD pose unique challenges
that may hinder robust long-term follow-up, further limiting
comprehensive understanding of the cardiometabolic impact
of prenatal opioids. Despite these obstacles, the field urgently
needs robust research to understand the impact of prenatal
opioids on brain reward signaling, inflammatory modulation
of opioids, hyperphagia, and abnormal growth, including
rapid catch-up growth in these neonates, and long-term
cardiometabolic consequences. Animal and human adult data
on the inflammatory impact of opioids provide an opportunity
to develop and utilize non-opioid interventions, such as anti-
inflammatory agents, in dealing with postnatal withdrawal
signs and future metabolic syndrome. Furthermore, research
in these topics will enable non-pharmacological interventions,
such as nutritional programs and cognitive behavioral therapy,
that could potentially ameliorate inflammation and prevent
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the development of metabolic syndrome in opioid-exposed
infants and children. Well-funded public health research will
enable precision and personalized medicine, such as more
individualized and balanced nutrition to reduce the likelihood of
early rapid catch-up growth, diligent monitoring of nutritional
intake over time, exercise regimen and cognitive behavioral
interventions that reduce the neuroinflammatory impact of
opioids on future neurodevelopment and somatic growth,
personalized health surveillance, e.g., early lipid screening, all of
which may halt the vicious cycle that predisposes these growing
neonates to adverse health outcomes in adulthood.
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