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Abstract: Long-term sunlight exposure will cause the accumulation of free radicals in the skin and
lead to oxidative damage and aging, antioxidant drugs have gradually become the focus of research,
but there is little research on antioxidant drugs for percutaneous treatment. The purpose of this
study was to prepare ligustrazine hydrochloride (TMPZ)-loaded liposome–hydrogel (TMPZ-LG),
evaluate its antioxidant properties, and apply it on the skin of mice to observe whether it had
preventive and therapeutic effect on the irradiation under the ultraviolet rays, in an attempt to make
it into a new kind of delivery through the skin. TMPZ-LG was prepared by the combination of film
dispersion and sodium carboxymethylcellulose (2%, CMC-Na) natural swelling method. The release
rates in vitro permeation across the dialysis membrane and ex vivo transdermal had both reached
40%; the scavenging effect of TMPZ-LG on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and H2O2 were
65.57 ± 4.13% and 73.06 ± 5.65%; the inhibition rate of TMPZ-LG on malondialdehyde (MDA)
production in liver homogenate and anti-low density lipoprotein (LDL) oxidation experiments ex
vivo were 15.03 ± 0.9% and 21.57 ± 1.2%. Compared with untreated mice, the skin pathological
symptoms of mice coated with TMPZ-LG were significantly reduced after ultraviolet irradiation, and
there was statistical significance. The results showed TMPZ-LG could exert good antioxidant activity
in vitro and ex vivo; therefore, it is feasible to prevent and treat skin oxidation.

Keywords: ligustrazine hydrochloride; liposome–hydrogel; in vitro and ex vivo release; antioxidant

1. Introduction

With the improvement in people’s quality of life, people are paying increasingly more
attention to oxidation damage and aging. The skin is the largest organ of the human body,
accounting for 10–15% of the body weight [1]. Once oxidative damage occurs, it will lead
to skin aging and other diseases. Photoaging accounts for more than 80% of facial aging [2].
The concept of antioxidation is not only applied to clinical treatment of diseases but also
widely used in the field of cosmetics. Antioxidation and antiaging of skin are the focus of
skin care.

Ultraviolet rays (UV) are the main cause of oxidation and aging of skin, which are
divided into ultraviolet A (UVA) (315–400 nm), ultraviolet B (UVB) (280–315 nm) and
ultraviolet C (UVC) (100–280 nm) [3]; among them, UVA and UVB can induce oxidative
aging of human skin. UVA can reach the dermal layer to denature the collagen in the skin
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and weaken the skin elasticity [4], UVB could reach the epidermis and cause erythema and
wrinkles on the skin [5]. This pathological reaction is mainly caused by the production of
reactive oxygen species (ROS) [6]. In the skin, about 2% of oxygen consumption is converted
into ROS through internal processes [1]; once the ROS accumulate, an inflammatory reaction
would occur, thus accelerating the oxidative aging of skin, so it is very important to resist
ROS to exert antioxidation.

Chuanxiong (CX) is a traditional Chinese medicine plant, which can be used as food
and medicine, and the rhizome of CX is the main edible and medicinal part. It is a typical
therapy to keep healthy by consuming the rhizome with food. For example, stewed CX
with duck meat can promote blood circulation and remove blood stasis; CX wine can
be used for treating joint pain and dysmenorrhea in women. Ligustrazine is one of the
effective components of CX, and its hydrochloride form is often used for clinical treatment.
Ligustrazine hydrochloride, also known as tetramethylpyrazine hydrochloride (TMPZ),
not only has the function of activating blood circulation and removing blood stasis, but
also has strong antioxidant activity. Studies have shown that TMPZ can not only scavenge
ROS [7], but also inhibit the epidermal and dermal cells secreting inflammatory factors in
large quantities, such as interleukin (IL), cyclooxygenase-2 (COX-2) and tumor necrosis
factor (TNF-α) [8]. In addition, TMPZ can also prevent the excessive production of melanin
of the skin by inhibiting the activity of tyrosinase.

Therefore, based on the antioxidant properties of TMPZ, we prepared it into TMPZ-LG,
which is a novel preparation as the transdermal delivery. In recent years, the transdermal
delivery system has become a hot topic which acts on the skin surface, absorbs drugs
through capillaries and reaches the blood circulation of the whole body, thus exerting
local or systemic effects [9]. Compared with other drug delivery routes, such as oral
administration and injection, transdermal drug delivery is convenient, which could avoid
the first-pass effect of liver and the pH effect of gastrointestinal tract, and has the effect of
sustained and controlled release. The liposome–hydrogel [10] delivery system can not only
exert the characteristics of the sustained and controlled release of liposomes [11–13] and
stimulation-responsive release of the drug [14], but also improve the stability of liposomes
in the hydrogel three-dimensional space network structure [15], and better adhere to the
surface of the skin.

2. Materials and Methods
2.1. Materials

TMPZ (purity 99%), soybean phospholipids (purity 99%) and cholesterol (purity
99%) were purchased from Shanghai Jinsong Industry Corp., Ltd (Shanghai, China). Car-
boxymethylcellulose sodium (CMC-Na) was purchased from Tianjin Guangfu Institute of
Fine Chemical Industry. DPPH and 2-thiobarbituric acid (TBA) were obtained from Shang-
hai yuanye biology science and technology Corp., Ltd (Shanghai, China). FeSO4·7H2O was
purchased from Sinopharm Chemical Reagents Co., Ltd. (Shanghai, China). Trichloroacetic
acid (TCA) was obtained from Damao Chemical Reagent Factory (Tianjin, China). T-
SOD Test kit was acquired from Jiancheng Bioengineering Institute (Nanjing, China). All
chemical reagents were of analytical grade, and deionized distilled water was used in
all experiments.

2.2. Animals

Healthy Kuming female mice (22± 2 g) were purchased from the Animal Experimental
Center of Anhui University of Chinese Medicine (Hefei, China). All animal experiments
were carried out according to the guidelines approved by the ethics committee of Anhui
University of Chinese Medicine (Hefei, China).

2.3. Preparation of TMPZ Solution

Adopting the preparation method of El-Badry et al. [16], briefly, 0.06 g powder of
TMPZ was weighed accurately, placed in a 100 mL brown volumetric flask, the volume was
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then set to the scale with phosphate buffer solution (PBS, pH 7.4), shaken well to obtain
a TMPZ solution with a concentration of 0.6 mg/mL and stored in the dark at 4 ◦C for
later use.

2.4. Preparation of TMPZ Loaded-Liposomes (TMPZ-L)

We prepared TMPZ-L by film dispersion method [17,18] and chose the mass ratio of
phospholipid to cholesterol to be 3:1. Amounts of 0.60 g phospholipid and 0.20 g cholesterol
were weighed accurately, and 10 mL absolute ethyl alcohol was added into a round-bottom
flask, which was completely dissolved in an ultrasonic water bath (70 ◦C) instrument. While
the bottom flask was rotated, the ethanol was slowly evaporated, and then under the action
of the rotary evaporator, an adhesive liquid film formed on the flask wall. A total of 10 mL
of TMPZ (0.6 mg/mL) was placed into the film-forming flask and ultrasonic mixing until
it was completely hydrated, then it was filtered across the microporous membrane with
pore diameter of 0.22 µm three times to obtain TMPZ-L. The above steps were followed
replacing the TMPZ solution with PBS to prepare blank liposomes (B-L).

The zeta potential and particle size of TMPZ-L were measured by using a particle size
analyzer (Malvern Instruments Ltd., Malvern, UK) at 25 ◦C with a 90◦ scattering angle [19].
The sample was diluted 5-fold with PBS and transferred to a specific cell for analysis. The
values are means of triplicate analyses.

A quantity of 1.0 mL of TMPZ-L was added to a 10 mL volumetric flask, and the
volume was set to the scale with PBS, a 4 mL sample was removed, then centrifuged at
4500 revolutions per minute (rpm) for 15 min, the supernatant liquid was then obtained and
the absorbance at the wavelength of 295 nm was measured and the concentration of drug
which was not encapsulated into liposomes could be calculated according to the standard
curve. Another 1.0 mL of TMPZ-L was removed and placed in a 10 mL volumetric flask,
ethanol was added to a constant volume, ultrasonically dissolved liposome membrane,
the supernatant liquid was then removed, followed by the same steps as above, and the
whole concentration of drug could be calculated according to the standard curve, the
encapsulation rate (ER%) of TMPZ-L was calculated by equation:

ER% =
[Cw −Cn]

Cw
∗ 100% (1)

where “Cn” was free drug concentration in liposomes; “Cw” was whole drug concentration
in liposomes.

2.5. Preparation of TMPZ-Loaded Hydrogel (TMPZ-G)

The TMPZ-G was prepared according to the description of El-Badry et al. [16] and
simply modified. Briefly, 0.1, 0.2, 0.3, 0.4, and 0.50 g CMC-Na powder was weighed in a
10 mL test tube, the volume was fixed with TMPZ solution (0.6 mg/mL) and stirred quickly.
After the powder was almost completely dissolved, it was left to stand for 24 h to obtain
hydrogel with a different percentage (1%, 2%, 3%, 4% and 5%) and the best percentage was
chosen to prepare the final TMPZ-G.

2.6. Preparation of TMPZ-Loaded Liposome–Hydrogel (TMPZ-LG)

A solution of 10 mL of TMPZ-L and B-L was prepared by film dispersion method
according to the above steps, and then sprinkled with 0.20 g of CMC-Na, stirred quickly
until all particles were dissolved and left to stand for 24 h and become completely swollen;
thus, TMPZ-LG and B-LG were obtained.

A quantity of 0.10 g of TMPZ-LG was obtained, and 3 groups were set up in total, par-
ticles were dissolved in 5 mL distilled water by ultrasound and the pH value was measured
when they were fully dissolved. According to the standard of Chinese Pharmacopoeia, the
pH value of liposome–hydrogel should generally be checked, and it was necessary to test
whether it was irritating to the skin.
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The stability of TMPZ-LG was determined by accelerated centrifugation. An amount
of 6.0 g of TMPZ-LG was placed in a centrifuge tube, and set in 3 groups, centrifuged at
6000 rpm for 15 min, then it was removed to observe whether there was stratification.

2.7. In Vitro and Ex Vivo Release Rate of TMPZ, TMPZ-L, TMPZ-G and TMPZ-LG across
Dialysis Membrane and Mice Skin

The release rate (R%) of the drug was investigated by Franz diffusion pool (Figure 1).
As an in vitro simulation device, the Franz diffusion cell could be effectively used to study
the in vitro release characteristics of transdermal preparation. The constant-temperature
circulating water kept the constant-temperature working state of the diffusion cell, and
constant-speed magnetic stirring ensured the solution was evenly distributed.

The volume of the diffusion cell was measured and PBS was used to fill the receiving
pool and place it into a small stirrer, spread the dialysis membrane onto the receiving pool
and ensure there were no bubbles between the supplying pool and the receiving pool.
The Franz diffusion cells were placed on a constant temperature magnetic stirrer, and the
temperature was set at 37 ◦C. An amount of 1.0 mL of PBS, TMPZ, BL, TMPZ-L, B-G,
TMPZ-G, B-LG and TMPZ-LG was into the supplying pool and 2 mL of the samples from
the receiving pool were removed at time points of 5 min, 10 min, 20 min, 30 min, 60 min,
120 min, 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h, 9 h, 10 h, 11 h, 12 h, 24 h, 36 h, 48 h, 60 h, 72 h and 84 h.
When every sampling was completed, 2 mL of PBS was injected into the receiving pool.

The skin on the back of mice was used for the transdermal release of the drug. The hair
on the back of mice was shaved and 0.2 mL of 20% urethane per 20 grams of body weight
was injected into it, the skin was peeled with scissors and the excess subcutaneous fat was
removed with tweezers. The next operation steps were the same as the dialysis membrane
in vitro except the skin of the mouse replaced the dialysis membrane. The absorbance of
the samples was measured at the wavelength of 295 nm and the R% was plotted according
to the following equation:

A = 0.0382 ∗C− 0.0079 (R 2= 0 .9994) (2)

R% =
Cn∗Vn + ∑n−1

i=1 Ci∗Vi

Qt
∗ 100% (3)

where “A” is the absorbance of the samples; “C” is the concentration of drug; “Cn” is the
drug concentration of the dissolution medium at each sampling time point; “Ci” is the
drug concentration in the sample; “Vn” and “Vi” are the dissolution medium volume and
sample volume respectively; “Qt” is the theoretical drug amount.
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2.8. In Vitro Antioxidation: Scavenging DPPH Free Radical (DPPH·)
The scavenging effect of TMPZ on DPPH· was determined by colorimetric [20]. Pre-

pared DPPH solution with the concentration of 0.08 mg/mL in the absolute ethanol, the
experiment was divided into three groups. The blank group was set as 2 mL PBS mixed
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1 mL DPPH; the sample groups included TMPZ, TMPZ-L, TMPZ-G and TMPZ-LG mixed
with 1 mL DPPH, the concentration of sample was 0.18 mg/mL; the control group was a
2 mL sample mixed with 1 mL PBS. Each group was mixed evenly and left to react for 2 h
in the dark. The absorbance was measured at 517 nm, and the scavenging effect (SE%) of
DPPH· was calculated according to the following equation:

SE% =
Ao − (As −Ac)

Ao
∗ 100% (4)

where “Ao” is the absorbance value of blank group; “As” is the absorbance value of sample
groups; “Ac” is the absorbance value of control group.

2.9. In Vitro Antioxidation: Scavenging H2O2

It was also possible to measure the antioxidant activity of the drug in vitro by reacting
it with H2O2 [21,22]. A solution of 0.4% H2O2 was prepared, and three groups were
set. The blank group contained 0.6 mL of PBS mixed with 1.8 mL H2O2; sample groups
included different concentration of TMPZ and TMPZ-L, TMPZ-G and TMPZ-LG with a
concentration of 0.09 mg/mL, and the sample groups contained 0.6 mL of sample mixed
with 1.8 mL H2O2; the control group contained 0.6 mL of sample mixed with 1.8 mL PBS;
they were evenly mixed and after 10 min, the absorbance was measured at the wavelength
of 230 nm, and the SE% was calculated according to Equation (4).

2.10. Ex Vivo Antioxidant: Inhibitory Effect on MDA Production from Liver Homogenate

We measured the inhibition rate of MDA production according to the experimental
method reported by AlKreathy et al. [23]. The liver homogenate of mice was prepared first,
then the mouse liver was removed, rinsed repeatedly in cold saline at 4 ◦C, blood stains
were washed away and then it was blotted dry with filter paper, followed by the addition
of 9 times the weight of cold saline (added in three parts), and then the liver was crushed
with a homogenizer. The product was then centrifuged at 4000 rpm for 15 min, and the
supernatant was obtained to make 10% liver homogenate.

Three groups were set; the sample groups included 100 µL sample (0.05 mg/mL)
and 100 µL FeSO4 and 1 mL of 10% liver homogenate. The samples were a different
concentration of TMPZ and TMPZ-L, TMPZ-G, and TMPZ-LG, with a concentration of
0.05 mg/mL, the positive model group included 100 µL normal saline and 100 µL FeSO4
and 1 mL of 10% liver homogenate; the negative blank group included 200 µL normal saline
and 1 mL of 10% liver homogenate. After mixing, the groups were placed in a constant
temperature shaker at 37◦C for 1.5 h. Then 3 mL of thiobarbituric acid (TBA) working
solution (0.375% TBA:5.6% TCA; 2:1) was added, they were placed in a water bath at 95 ◦C
for 40 min, then cooled with running water and centrifuged at 4000 rpm for 8 min, the
supernatant was sucked and its absorbance value was measured at 532 nm. The inhibition
rate (IR%) was calculated according to the following Equation (5):

IR% =
Am −As

Am −Ab
∗ 100% (5)

where “Am” is the absorbance value of positive model group; “As” is the absorbance value
of sample groups; “Ab” is the absorbance value of negative blank group.

2.11. Ex Vivo Antioxidant: Inhibitory Effect on MDA Production Due to Low Density Lipoprotein
(LDL) Being Oxidized

LDL extracts were prepared as follows: fresh blood from mice was removed, allowed
to clot naturally, and centrifuged at 1000 rpm for 10 min to obtain serum.

A 1 mL heparin citrate buffer solution (0.064 mol/L trisodium citrate was prepared
with 20 mL of 5 mol/L HCL and 10 mg heparin was added to the extacts, and the pH value
was adjusted to 5.04 every 100 µL of serum. After mixing, the precipitate was allowed to
stand at room temperature for 10 min, centrifuged at 1000 rpm for 10 min, and the final
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pH was adjusted to 5.1. The precipitate was collected and weighed, and the precipitate
was dissolved in 1–2 times the volume of serum in high-salt phosphate buffer (pH 7.4) and
dialyzed at 4 ◦C for 24 h to obtain LDL extract. The FeSO4 solution with a concentration of
10 mmol/mL was prepared by distilled water.

The sample groups were 1 mL of sample and 0.2 mL of FeSO4 and 1 mL of LDL extract,
which included different concentrations of TMPZ and TMPZ-L/TMPZ-G/TMPZ-LG with
the concentration of 0.0125 mg/mL. The model group was 1 mL of PBS and 0.2 mL of
FeSO4 and 1 mL of LDL extract; the blank group was 1.2 mL of PBS and 1 mL of LDL
extract. The three groups were incubated at 37 ◦C for 3 h, and 0.1 mL of EDTA-Na2 was
added to stop the reaction. They were centrifuged at 3000 rpm for 10 min, 0.3 mL of the
supernatant was obtained, and 2.5 mL of 20% TCA solution and 1.0 mL of 0.67% TBA were
added, and then mixed well. The mixtures were soaked in boiling water for 30 min, cooled
to room temperature, the absorbance was measured at 532 nm wavelength, and the IR% of
MDA production due to LDL being oxidized was calculated according to Equation (5).

2.12. Preliminary Antioxidant Experiment of TMPZ-LG Applied to Aice Akin under
Ultraviolet Rays

Three groups were randomly created (blank control group, model group and treatment
group) with 30 healthy Kunming mice (female, 22 ± 2.0 g). The hair on the back of the
mice was shaved with depilatory machine and depilatory cream, and the area of bare skin
was about 2 cm × 2 cm. The blank control group was fed under normal light; the model
group was smeared with 0.3 mL PBS and irradiated under a self-made ultraviolet light box,
the vertical height between the ultraviolet lamp tube and the mice was 10–15 cm, and the
initial irradiation time was 20 min/d, then the irradiation time was increased for 20 min
every 5 days; the whole irradiation lasted for 30 days. The treatment group was treated in
the same way as the model group, except that PBS was replaced with the same amount
of TMPZ-LG. The skin thickness of the mice was measured with a vernier caliper: the left
thumb and forefinger pinch the skin of mice′s back together with subcutaneous tissue,
the caliper is then held with the right hand at the skin fold thickness 1 cm away from the
pinch position of the left thumb; the actual thickness was equal to half of the measured
thickness. The appearance of changes to the back skin of the mice (wrinkles, roughness,
edema, erythema, ulceration) were observed [24].

2.13. Determination of Superoxide Dismutase (SOD) Activity in Mouse Skin

First, the mouse skin homogenate was prepared, washed repeatedly in 4 ◦C cold salt
water, the blood stains were washed and then dried with filter paper, and 9 times the weight
of cold salt water was added (in three parts), and then homogenized with a homogenizer
and centrifuged at 4000 rpm for 15 min, then the supernatant was obtained to make 10%
skin homogenate

The test group and control group were set. In the test groups, including the blank
group, the model group, and treatment group, 1 mL of reagent 1 application solution
(0.1 mL stock solution was used and distilled water was added to dilute to 1 mL), 0.05
mL of skin homogenate supernatant, 0.1 mL of reagent 2, 0.1 mL of reagent 3, 0.1 mL of
reagent 4 application solution (prepared according to stock solution: diluent = 1:14) to
the reagent tube of test group. In the control group, all the reagents were the same as
above except; 0.05 mL of skin homogenate supernatant was replaced by 0.05 ml of distilled
water. It was fully mixed with a vortex mixer and placed it in a constant temperature water
bath at 37 ◦C for 40 minutes. Then, 2 mL of color developing agent was added to each
reagent tube (75 mL of distilled water was added to the powder, and heated to 70–80 ◦C to
dissolve it to make reagent 5, then 75 mL of distilled water was added to the powder to
make reagent 6, that was then prepared with reagent 5; reagent 6: glacial acetic acid = 3:2:2),
mixed well, and placed at room temperature for 10 min. The absorbance was determined
at a wavelength of 550 nm.
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2.14. Statistical Analysis

All the experiments in this paper were statistically analyzed for three independent
repeated experiments. The data are expressed as mean and standard deviation (SD). The
calculation results were plotted by Origin software (version 9.1). The mean value was
compared by SPSS software (version 22.0), and the significance level was 0.05 (p < 0.05).

3. Results and Discussion
3.1. The Morphological Characteristics and Physical Properties of TMPZ-L

The zeta potential of TMPZ-L was negative with the value of −38.2 ± 3.1 mV, lipo-
somes had the same charge and repelled each other, thus ensured that they would not
stick together to form block and sediment, and existed in a uniform distribution form. The
average particle size of liposomes was 116 ± 10.35 nm, which showed that the TMPZ-L
was uniform. The zeta potential, particle size of TMPZ-L had hardly changed after 15 days
of cold storage at 4 ◦C, which indicates that the TMPZ-L (Figure 2A) prepared by film
dispersion method has good stability.
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3.2. Encapsulation Rate of TMPZ-L

We used ultraviolet spectrophotometry to measure the ER% of TMPZ-L. We carried
out the same operation on the blank liposomes, and determined whether it had absorbance
at 295 nm. The results showed that the absorbance was negligible, which showed that
the lipid and all other components in the liposomes had no absorption at 295 nm and
they would not interfere with the absorbance of the drug; therefore, this method was
feasible. The ER% of TMPZ-L was 73.05 ± 9.59%, the higher the ER%, the better the quality
of liposomes.

3.3. Quality Evaluation Results of TMPZ-LG

The viscosity and release rate of hydrogel with different percentages were investigated,
and the optimal ratio was selected. We found that 1% CMC-Na kept the liquidity; 2%
and 3% could maintain a semisolid state with suitable viscosities; 2% CMC-Na was more
uniform and delicate; 4% and 5% had higher viscosities, which were not distributed well
enough; and 5% CMC-Na had some agglomerate phenomenon. In addition, the R% in vitro
of 1–5% TMPZ-G was tested; it was found that except for TMPZ, the R% of 1% and 2%
TMPZ-G was better, so comprehensively, the viscosity of 2% CMC-Na was the most suitable
choice for preparing TMPZ-G (Figure 2B). The TMPZ-LG (Figure 2C) prepared with 2%
CMC-Na was well distributed, with a light yellow and transparent appearance. The result
of pH value was 7.3 ± 0.5 and there was no irritation when it was applied to the skin of
mice. The centrifugal test results showed that there was no stratification and discoloration
of TMPZ-LG, which indicated that the liposome–hydrogels were relatively stable.

3.4. Release Rate across Dialysis Membrane and Transdermal Experiments of TMPZ, TMPZ-L,
TMPZ-G and TMPZ-LG

The drug preparation had different release behavior between dialysis membrane and
mouse skin. According to the dialysis release curve (Figure 3A), it was found that TMPZ
had the best release rate, followed by TMPZ-L, TMPZ-LG and the R% of TMPZ-G was the
lowest. TMPZ-LG had a double effect as the drug storage and slow down the drug release,
TMPZ not only had to escape from the bilayer of phospholipids but also break away from
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the shackles of hydrogel three-dimensional network structure, so the R% was always lower
than that of the TMPZ solution in the same amount of time.
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According to the experimental results of Zhao et al. [25], the transmissivity of TMPZ
is in direct proportion to the concentration in the in vitro dialysis experiment and in vitro
transdermal experiment. However, when the dialysis membrane was replaced by the back
skin of mice to simulate the transdermal administration route of the human body, the
release effect of TMPZ and its preparations were completely different from that of dialysis.
The skin of human body is a complex structure, which consists of epidermis, dermis
and subcutaneous tissue, and contains accessory organs such as sweat glands, sebaceous
glands, blood vessels, lymphatic vessels and nerves. In the process of transdermal release
(Figure 3B), the R% of TMPZ-L was always the highest, the dose of drug penetrating the
skin was the largest and the ability to penetrate the skin was the strongest, because it
had the structure of phospholipid bilayer [26], which was similar to cell membrane [27],
phospholipid bilayer constitutes the basic skeleton of cell membrane and has certain fluidity.
The horny layer of skin is the rate-limiting barrier of drug’s absorption, and liposome can
strengthen the humidification and hydration of it [28]. On the basis of the principle of
similarity and compatibility, liposomes can interact with the cell membrane and easily
penetrate the cell membrane. The phospholipid membrane of the liposomes and the cell
membrane of horny layer are fused with each other, resulting in the structure between the
horny layer cells being changed, and forming a flat granular structure in the lipid bilayer;
drug in the liposomes can easily enter the skin through the granular gap of the lipid bilayer
and form the “drug warehouse” [29] between the epidermis layer and dermis layer of skin,
continuously release drug, and then the drug flow through blood vessels to reach the target
site could play a sustained therapeutic role [30].

Before the 48th hour, the R% of TMPZ was higher than that of TMPZ-LG because the
structure of hydrogel slowed down the drug release rate, and the R% of TMPZ-LG was
better than that of TMPZ after the 48th hour. Maybe the easy penetration of liposomes
into skin played an important role. Unlike liposomes, TMPZ-G was not skin-permeable,
and was bound by hydrogel, so the R% of it was the lowest. TMPZ-LG not only had the
function of drug storage, but also had a good ability to penetrate the skin. It could be
preliminarily considered that it is feasible to prepare TMPZ-LG for transdermal treatment,
which lays a foundation for the further study of its transdermal therapeutic effect.

In addition, we used origin software to fit the diffusion curve and adopted the Weibull
CDF model (Figure 4). Weibull CDF model was the most suitable for processing in vitro
release rate, the results showed that the fitted R2 values were great (Table 1).
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Table 1. Weibull CDF model fitting of release curves for TMPZ, TMPZ-L, TMPZ-G and TMPZ-LG.

Classify Model and Equation Group y0 A1 a b R2

In vitro
release
curves Weibull CDF

y = y0 + A1
(

1− e−(
x
a )

b)
TMPZ 8.37184 67.32706 78.34531 1.2956 0.99729

TMPZ-L 3.40842 64.55999 130.08482 0.86904 0.99883
TMPZ-G 6.67230 54.69415 119.81602 0.99259 0.99109

TMPZ-LG 4.48311 44.07996 177.18407 0.86488 0.99914

Ex vivo
release
curves

TMPZ 2.30239 35.40483 526.85667 1.91493 0.97162
TMPZ-L 4.66285 41.84560 557.47196 1.00453 0.99279
TMPZ-G 3.46305 23.84930 677.53003 0.57271 0.94730

TMPZ-LG 3.29748 42.41687 1215.72499 0.72917 0.99549

3.5. In Vitro Results of Antioxidation of TMPZ, TMPZ-L, TMPZ-G and TMPZ-LG:
Scavenging DPPH

1,1-diphenyl-2-picrylhydrazyl free radical (DPPH·) is stable with dark purple pris-
matic crystals. The scavenging DPPH·method is widely used to evaluate the antioxidant
activity of antioxidant components in vitro and quantitatively determine the antioxidant
capacity [31]. This method is based on the fact that DPPH· has a single electron and a
strong absorption at 517 nm, and its alcohol solution is purple. Antioxidants (free radical
scavengers) can pair single electrons, thus reducing the value of absorbance and fading the
solution. Because this change is quantitatively related to the number of electrons it accepts,
it can be measured by colorimetry (such as spectrophotometer).

The SE% of the TMPZ solution with different concentrations (0.075, 0.1, 0.125, 0.25
and 0.5 mg/mL) is shown in Figure 5A. The SE% was constantly rising with the increase in
TMPZ concentration, even reaching nearly 80%, which was enough to show that TMPZ
had strong antioxidant activity. We found that the SE% of TMPZ, TMPZ-L, TMPZ-G and
TMPZ-LG to DPPH· was 50.50 ± 3.82%, 79.75 ± 7.06%, 16.57 ± 1.50% and 65.57 ± 4.13%,
respectively (Figure 6A), which clearly showed that the SE% of TMPZ-L and TMPZ-LG
to DPPH· was much higher than that of TMPZ (p < 0.01). However, in theory, the SE% of
TMPZ-L and TMPZ-LG should be smaller than that of TMPZ with the same concentration
because the drug could not’ be completely released in a short time under the double-layer
membrane structure of liposomes and three-dimensional network of hydrogel. It might
be that the excipients in liposomes or hydrogel also play a synergistic role with TMPZ
in scavenging DPPH; and the SE% of TMPZ-G was very low, which indicated that the
excipients in hydrogel had no scavenging effect, so the excipients in liposomes played an
antioxidant role.
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3.6. In Vitro Results of Antioxidation of TMPZ, TMPZ-L, TMPZ-G and TMPZ-LG: Scavenging H2O2

There are several sources of hydrogen peroxide in the body, mainly in metabolism
and in the process of the oxidative decomposition of substances. The production of free
radicals can also be understood as the process of electron transfer [32,33], for example,
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NADH dehydrogenase and cytochrome C oxidase can transfer electrons to oxygen, thus
generate various reactive oxygen species (ROS), including H2O2 [34]. H2O2 would attack
life macromolecules and all kinds of cells if it were not cleared away in time, causing all
kinds of damages at molecular, cell, tissue and organ level.

TMPZ solutions with five different concentrations (1.5, 2, 2.5, 3 and 3.5 mg/mL)
reacted with H2O2 (Figure 5B). With the increase in TMPZ concentration, the SE% almost
showed a straight-line rising trend and its SE% can reach 50%. The SE% of TMPZ-L
and TMPZ-LG were 75.71 ± 6.13% and 73.06 ± 5.65%, which were higher than TMPZ
(p < 0.001), but the SE% of TMPZ-G was 14.76 ± 1.2% which was lower than TMPZ
(p < 0.01) (Figure 6B). Although the TMPZ was encapsulated in liposome–hydrogel, it still
played a good antioxidant role.

3.7. Ex Vivo Results of Antioxidation of TMPZ, TMPZ-L, TMPZ-G and TMPZ-LG: Inhibit the
Production of MDA in Liver Homogenate

MDA is the final product of lipid peroxidation, and it is a toxic substance to cells [35];
its content can be used as one of the indexes to examine the severity of cell damage.
There are two ways to produce MDA, one is through the degradation of eicosanoids,
such as arachidonic acid (AA) by enzymatic reaction; the second is produced by non-
enzymatic oxidative degradation of polyunsaturated fatty acids (PUFAs) [36] (Figure 7).
When the body is damaged by oxidation, such as skin photoaging, a large number of
ROS accumulated in the body will act on the cell membrane, damaging the structure and
function of the cell membrane, changing the permeability of the membrane and causing
lipid peroxidation on the cell membrane to produce MDA [37], thus affecting the normal
progress of a series of physiological and biochemical reactions.

We selected TMPZ solutions with five different concentrations (0.025 0.0375 0.05, 0.0725
and 0.1 mg/mL) reacting with liver homogenate (Figure 5C), the lowest IR% of TMPZ
on MDA was about 20%. The IR% of TMPZ was 20.77 ± 1.80%; the IR% of TMPZ-L was
18.14 ± 1.00%, which was lower than TMPZ (p < 0.05) (Figure 6C); the IR% of TMPZ-LG
was 15.03 ± 0.90%, which was lower than TMPZ (p < 0.001). The reaction color of TMPZ,
TMPZ-L, TMPZ-G and TMPZ-LG with MDA were lighter than that of the model group
(Figure 8A), which means the IR% of sample groups were better, the amount of MDA
produced was less, and the reaction with TBA was weakened. The IR% of MDA in each
group was different from that in vitro, because the environment inside the body was very
complicated, with various cells, tissues and organs including tissue fluid, plasma and
lymph, so the antioxidant effect of various preparations was not as sensitive as that in vitro.
Liposomes and hydrogel played a role in drug storage, so the IR% of TMPZ-L, TMPZ-G
and TMPZ-LG on MDA were not as strong as TMPZ in short time, but the IR% of TMPZ-LG
on MDA can still meet the needs of antioxidation.
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3.8. Ex Vivo Results of antioxidation of TMPZ, TMPZ-L, TMPZ-G and TMPZ-LG: Inhibit the
Production of MDA in LDL

Low density lipoprotein (LDL) is a kind of lipoprotein particle that carries cholesterol
into peripheral tissue cells and can be oxidized into oxidized LDL [38,39]. There are many
unsaturated fatty acids (PUFAs) in the core fatty acids of LDL, accounting for about 35–70%
of the total fatty acids of LDL, which are prone to self-oxidation. There is a double bond
structure of diallylmethylene in PUFAs, and the methylene group between the double
bonds weakens the force of carbon–hydrogen bonds, and free radicals can easily obtain
hydrogen from the double bonds, so PUFAs can easily form free radicals centered on
carbon atoms. Carbon free radicals can easily react with oxygen molecules to generate
peroxy radicals (Roo·), which then react with the double bonds in other PUFAs to obtain
hydrogen to form hydroperoxide (RooH), and RooH undergoes intramolecular cleavage to
generate MDA [40,41].

The IR% of TMPZ solutions with different concentrations (0.005, 0.01, 0.0125, 0.025
and 0.05 mg/mL) on MDA were within the range of 19.92–34.13% (Figure 5D). The IR%
of TMPZ was 30.82 ± 2.03%; the IR% of TMPZ-L and TMPZ-LG was 26.89 ± 1.74% and
21.57 ± 1.25%, which were lower values than TMPZ (p < 0.05, p < 0.001); and the IR%
of TMPZ-G was 9.12 ± 0.6%, which was lower than TMPZ (p < 0.001) (Figure 6D). The
color results of the reaction were shown in the Figure 8B. The results showed that although
TMPZ-LG had a sustained and controlled release effect, it could still prevent LDL from
oxidizing to MDA and played a role in antioxidant activity.

3.9. The Antioxidant Activity of the Liposomes’ and Hydrogel’ Component: Phospholipid
and CMC-Na

Liposomes are composed of phospholipid and cholesterol, and the matrix of hydrogel
is CMC-Na. In order to further verify whether the adjuvants of liposomes and hydrogels
have antioxidant properties and a synergistic effect with TMPZ, we also carried out the
above antioxidant tests in vitro and ex vivo on B-L and B-G, with the same specific operation
steps and the same dilution times as the preparation. The SE% of DPPH· by B-L and B-G
were 68.81 ± 5.17% and 0.96 ± 0.12%, respectively; the SE% of H2O2 by B-L and B-G were
58.34 ± 5.69% and 2.6 ± 0.21%, respectively. The IR% of MDA in the liver homogenate
experiment were 14.08 ± 0.98% and 1.08 ± 0.1%, respectively; the IR% of LDL oxidation to
MDA were 19.92± 1.67% and 1.03± 0.89%, which proved phospholipids and cholesterol in
liposomes had an antioxidant effect, and were oxidized to produce oxidized phospholipids
and oxidized cholesterol, while CMC-Na had no antioxidant effect. The result showed
liposome–hydrogel could produce a synergistic antioxidant effect with TPMZ, and play a
better antioxidant role.
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3.10. The Results of TMPZ-LG Applied to Mouse Skin to Resist Oxidation

During the experiment, we found that the mice in the blank control group had smooth
skin without erythema, ruptured ulcers and other symptoms, while the mice in the model
group had rough skin with wrinkles, localized erythema and severe ulceration symptoms.
The mice in the treatment group showed a milder degree of wrinkles, the area of erythema
and ulceratum was smaller than that of the model group, and the symptoms were milder
than those of the model group (Table 2), and we evaluated the skin symptoms of each group
of mice (Table 3). The average skin thickness of the mice in each group was measured; the
skin thickness of the blank control group was 0.52 ± 0.05 mm, and the skin thickness of
the mice in the model group was 0.98 ± 0.12 mm, which was almost double the thickness
as that of the mice in the blank control group (* p < 0.05), and was statistically significant.
The skin thickness of the mice in the treatment group was 0.06 ± 0.038 mm which showed
significant differences with the model group (* p < 0.05) and no significant differences with
the blank control group (p > 0.05) (Figure 9).

The results showed that TMPZ-LG had preventive and therapeutic effects on mice,
which were exposed to UV for a long time, it could effectively exert a better antioxidant
effect and prevented the pathological skin changes. So, it was feasible to prepare TMPZ as
a liposome–hydrogel to prevent or treat the oxidation of skin.

Liposomes had a synergistic effect with TMPZ, played a stronger antioxidant role
and could penetrate the barrier of the skin well; hydrogel increased the adhesion to the
skin and prolonged the retention time of the drug on the skin, so encapsulated TMPZ
into liposome–hydrogel was a good choice for percutaneous treatment [42]. The results
showed that TMPZ-LG exerted a good antioxidant effect ex vivo and in vitro and slow
the release effect. It could effectively alleviate the symptoms of oxidative stress caused
when UV was applied to the skin of mice. On the one hand, TMPZ-LG applied to the skin
absorbed part of the energy of UV, which weakened UV ability to act on the skin. On the
other hand, TMPZ-LG was better adhered to the skin due to its biological compatibility.
Under the action of liposome, TMPZ more easily passed through the cell membrane to
reach the sites where ROS gathered, inhibited the production of inflammatory factors,
played an antioxidation and anti-inflammatory role and prevented the skin from producing
photoaging symptoms such as erythema and wrinkles.

Table 2. Skin status of mice in each group within 30 days.

Group/Day 0 5 10 15 20 25 30

B
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Table 3. Skin appearance evaluation standard of mice.

Group Appearance

Wrinkle Roughness Edema Erythema Ulceration

B - - - - -
M ++ +++ +++ +++ +++
T + + ++ ++ +

Where “-” is “asymptomatic”; “+” is “mild symptoms”; “++” is “moderate symptoms”; “+++” is “severe symptoms”.
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3.11. The Results of Determination of SOD Activity in Mouse Skin

According to the experimental results, after adding the TMPZ-LG mouse skin ho-
mogenate supernatant test group, the average activity of SOD was much higher than that
of the model group, but slightly lower than that of the blank group (Figure 10). SOD can
eliminate ROS in organisms, catalyze the disproportionation reaction of peroxy anion and
resist and block the damage of ROS to cells.

The experimental results showed that TMPZ-LG could significantly promote the SOD
activity of mouse epidermis, and could almost completely make the SOD activity reach the
level of non oxidation. Therefore, it is feasible to prepare TMPZ as liposome hydrogel to
treat or prevent skin oxidation.
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4. Conclusions

In conclusion, we encapsulated ligustrazine hydrochloride in liposomes and loaded it
into sodium carboxymethyl cellulose hydrogel to improve the bioavailability of ligustrazine
hydrochloride and skin drug delivery efficiency. The experiment shows that ligustrazine
hydrochloride lipid gel has good stability, skin adhesion and slow release effect. For in vitro
and in vitro experiments, TMPZ-LG showed a strong ability to scavenge free radicals and
inhibit the production of MDA in mouse liver homogenate and LDL in serum. In the mouse
photoaging model, TMPZ-LG significantly promoted the activity of SOD in the mouse
epidermis, which proved that TMPZ could reach the place where ROS gathered through
the skin mucosa with the help of lipid gel carrier, weakened the damage of ultraviolet rays
to the epidermis, alleviated the photoaging symptoms of the mouse epidermis, and could
become one of the methods for treating photoaging clinically in the future. Next, we will
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conduct more in-depth research on TMPZ-LG, such as individual sensitivity, acceptability
and side effects.
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