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1  |  INTRODUC TION

Since the first child issued from in vitro fertilization (IVF) was born 
in 19781; physicians have never stopped trying to improve people's 
chances of getting a child. All aspects of the artificial reproductive 
technology (ART) process have benefited from this effort: ovarian 

hyper-stimulation protocols,2 embryo culture conditions,3,4 embryo 
transfer procedures,5,6 and embryo freezing techniques7,8 have been 
improved. The choice of embryo to be transferred is based on either 
morphological criteria at D2 (day 2 post fertilization),9 at D3,10 or 
at the blastocyst stage,11 or on preimplantation genetic diagnosis 
(PGD) techniques.12,13
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Abstract
Purpose: The purpose of this work was to construct shallow neural networks (SNN) 
using time-lapse technology (TLT) from morphokinetic parameters coupled to assisted 
reproductive technology (ART) parameters in order to assist the choice of embryo(s) 
to be transferred with the highest probability of achieving a live birth (LB).
Methods: A retrospective observational single-center study was performed, 654 cy-
cles were included. Three SNN: multilayers perceptron (MLP), simple recurrent neu-
ronal network (simple RNN) and long short term memory RNN (LSTM-RNN) were 
trained with K-fold cross-validation to avoid sampling bias. The predictive power of 
SNNs was measured using performance scores as AUC (area under curve), accuracy, 
precision, Recall and F1 score.
Results: In the training data group, MLP and simple RNN provide the best perfor-
mance scores; however, all AUCs were above 0.8. In the validating data group, all 
networks were equivalent with no performance scores difference and all AUC values 
were above 0.8.
Conclusion: Coupling morphokinetic parameters with ART parameters allows to 
SNNs to predict the probability of LB, and all SNNs seems to be efficient according 
to the performance scores. An automatic time recognition system coupled to one 
of these SNNs could allow a complete automation to choose the blastocyst(s) to be 
transferred.
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In order to improve the embryos quality, incubators can be 
equipped with a time-lapse technology (TLT) that enables the cul-
ture conditions improvement and the embryo growth longitudinal 
follow-up. Thus, new information is available to embryologists re-
garding the choice of the embryo(s) to be transferred, that is mor-
phokinetic data and embryos images at different stages of their 
growth. Importantly, in the context where the transfer of a single 
embryo can be preferred to reduce the risks inherent to multiple 
pregnancy; the choice of the embryo to be transferred is all the more 
essential.14,15

Several algorithms for embryo selection based on morphokinetic 
data have been proposed.16 The first algorithms were derived from 
decision trees based solely on these morphokinetic data.17–22 More 
recent algorithms have included deep learning technologies for data 
analysis, and preferentially convolutional neural network (CNN) for 
images classification. However, deep learning requires a significant 
amount of data and resources to be efficient in its development. 
Hence, the embryos classification could be performed by: machine 
learning algorithms based on morphokinetic data (Blank et al., 2019; 
2019), deep learning analyzing time-lapse images,23,24 or standard 
optical light microscope images from mounted camera25,26. Some of 
the methods mentioned above involve very sophisticated algorithms 
(genetic algorithm, Google's inception technology), which allow ac-
curate results in embryo classification.23–26 Shallow neural network 
(SNN) is more often used for data analysis for classification or re-
gression, but in some cases it can also be used for image analysis.27,28 
However, in the majority of the neural networks used to predict live 
birth from time-lapse data (images or morphokinetic parameters), no 
bio-clinical data was used.

The chronology of the ART process is somewhat stereotyped: 
gonadotropin is administered to a woman, oocytes are collected, 
fertilized, and some embryos are obtained. Some of the embryos 
reach the blastocyst stage following specific kinetics, and finally 
the transfer of one or more blastocysts can be performed. The re-
current neural networks (RNN) are simple and able to consider this 
chronology.

The aim of the present study was to build three SNN: a multi-
layers perceptron (MLP) not able to consider the events chronol-
ogy, and two RNNs (simple RNN and long short term memory RNN, 
(LSTM-RNN)) able to consider the events chronology. The capacity 
these SNN to predict the best embryos to be transferred according 
to their likelihood of achieving a live birth; and if the events chronol-
ogy allows to RNNs to provide better prediction compared to MLP 
neural network were studied.

2  |  MATERIAL S AND METHODS

2.1  |  Study population

This retrospective observational study took place between January 
2013 and December 2018 at the Hospices Civils de Lyon, France 
(Hôpital Femme Mère Enfant). This study was approved by the 

Institutional Review Board of the Hospices Civils de Lyon. Cycles 
from couples with embryos cultured in time-lapse systems until the 
blastocyst stage were included in the study; no PGD on embryos 
was performed. Cycles resulting from oocyte donation were not in-
cluded. Participants age was not an exclusion criterion.

2.2  |  Assisted reproduction process

Gonadotrophin releasing hormone (GnRH) agonist protocol was 
used for the controlled ovarian stimulation.29,30 The follicle stimulat-
ing hormone starting dose was adjusted according to the female age, 
ovarian reserve, and previous ovarian stimulation outcomes when 
available. Ovulation was triggered using recombinant human cho-
rionic gonadotropin (Ovitrelle (MerckSerono, Darmstadt, Germany) 
when at least 3 follicles reached 18 mm. Only intra-cytoplasmic 
sperm injection (ICSI) cycles were included, allowing to control the 
time of insemination and to report oocyte- and fertilization-related 
measures. Sequential media were used for embryo culture, and half-
medium change was performed in the afternoon of D2. All embryos 
were cultured in the Embryoscope or Embryoscope Plus (Vitrolife, 
Copenhagen, Denmark) TLT incubators. For the present study, only 
the outcome regarding the transfer of fresh embryos was used. One 
or two blastocysts per cycle were transferred depending on medical 
history. In case of live birth, ART procedures for which the number 
of babies did not match the number of transferred blastocysts were 
excluded. In case of failure, cycles were included in the study.

2.3  |  Statistic

2.3.1  |  Shallow neural networks

The data analysis was performed using R software (4.05).31 Each SNN 
was optimized for the hyperparameters. Keras32 with “Tensorflow”33 
as backend was used to construct the SNN: MLP, simple RNN, and 
LSTM-RNN.34 In ART process, decisions are made in sequence, each 
decision being based on previous information, so there is a chrono-
logical sequence. The age of the patient will determine the type of 
treatment, hence the number of oocytes punctured, hence the num-
ber of embryos obtained, and the rate of cell division, which cor-
responds to embryonic development. The hypothesis as to the use 
of neural network including chronological sequence, as simple RNN 
or LSTM-RNN, would allow obtaining a neural network providing a 
greater predictive power. Data were normalized: the mean of the 
feature values was subtracted to the input value and the result was 
divided by the standard deviation of the feature values. The number 
of hidden layers and neurons were chosen empirically, and improved 
in order to increase the accuracy of the SNN.35 The different SNN 
architectures were described in Table 1. For simple RNNs, up to 5 
hidden layers can be added in order to highlight more or less com-
plex relationships, moreover, given the small number of layers and 
the few inputs, the simple RNN is not very exposed to the risk of 
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vanishing gradient. In order to enhance the memory process and to 
decrease the risk of vanishing gradient, the recurrent LSTM network 
was tested. The argument of “layer_lstm” had been let as Keras de-
faults parameters34; however, for all cells (name of neuron in recur-
rent neural network) in the hidden layers, the activation function for 
output gate is an hyperbolic tangent, and sigmoid function for input 
and forget gates. The SNN improvements were performed by back-
propagation in order to reduce as much as possible the loss value 
(Table 1). Belonging to a category (birth failure or birth success) was 
determined from the embryo birth probability calculated according 
to the used SNN. The cut-off value of each probability provided by 
the neural network allowed transforming a numerical variable to bi-
nary variable, was determined by an automatic thresholding from 
the ROC curve (pROC package, (Robin et al., 2011). The SNN ar-
chitectures were saved to h5 format in order to be easily used in 
an R or Python script. To measure the SNN efficiency the following 
performance scores were used: area under the curve (AUC) (pROC 
package), accuracy, precision, Recall, and F1 score (caret package36). 
The K-folds cross-validation was used to avoid sampling bias and 
to estimate the performance scores (Figure  1). ANOVA test and 
Bonferroni's test for pairwise were used for the performance scores 
comparisons obtained from K-fold validation. A test was considered 
significant when the p value was lower than 0.05.

2.3.2  |  Sampling process

Total data available was separated into two batches by random sam-
pling, which allowed the creation of a training data group (70% of the 
data) and a validating data group (30% of the data). The SNNs were 
trained on the training group with K-fold cross validation. With the 
K-fold validation, the different performance scores are calculated K 
times, averages are then calculated and it is then easy to compare 

the scores using statistical tests and to rank the different neural net-
works according to the performance scores. The final SNNs were 
trained on the totality of the training data group and the validating 
data group was used to confirm the performance of the different 
final SNNs (Figure 1).34 These results were then confirmed with the 
performance scores obtained with the final SNNs.

2.3.3  | Morphokinetic parameters

Since the aim was to obtain SNNs developed on real data obtained 
from routine practice, no time-lapse annotation was retrospectively 
performed on embryos. To determine the timing of cell division from 
the TLT system, each embryo images were acquired every 20 min 
at seven different focal planes, which enabled to determine the de-
velopmental events from syngamy to blastocyst stage. From these 
events, the morphokinetic parameters were obtained. The follow-
ing morphokinetic parameters were annotated: tPNf as the time of 
fading of pronuclei, t2, t3, t4, t5, t6, t7 t8, t9 time for correspond 
cells number, tM as morula time, tSB as sub-blastocyst formation 
time, and tB as blastocyst formation time. The unit was hour, and the 
origin was the time of the sperm injection into oocyte. Each embryo 
has its own temporal origin, so the timing of events is comparable.

2.3.4  |  Parameters used

As blastocysts were transferred, from the list of morphokinetics 
parameters (tPNF to tB), the late morphokinetic parameters were 
used: tM (time to morula stage), tSB (time to sub-blastocyst stage), 
and tB (time to blastocyst stage). These morphokinetic parameters 
allowed obtaining a blastocyst development chronology, eight ART 
parameters were added to the morphokinetic parameters: woman 

TA B L E  1 Simplified R scripts (Keras package) of neural networks architecture

MLP Simple RNN LSTM-RNN

Inputs ordered 
(n = 11)

Female age, Cumulative FSH dose, Oocytes retrieved, Fertilization rate, Embryos obtained, Blastocysts obtained, Blastulation 
rate, Transferred blastocysts, tM, tSB, tB.

Layers ① layer_dense 
(units = 6, 
activation = “relu”) 
layer_dropout(0.2)

② layer_dense 
(units = 6, 
activation = “relu”) 
layer_dropout(0.2)

① layer_simple_rnn (units = 26, return_
sequences = TRUE, dropout = 0.2, 
recurrent_dropout = 0.2)

② layer_simple_rnn (units = 26, return_
sequences = TRUE, dropout = 0.2, 
recurrent_dropout = 0.2)

③ layer_simple_rnn (units = 26, return_
sequences = FALSE, dropout = 0.2, 
recurrent_dropout = 0.2)

① layer_lstm (units = 26, recurrent_
activation = “sigmoid”, return_sequences = TRUE, 
dropout = 0.2, recurrent_dropout = 0.2)

② layer_lstm (units = 26, recurrent_
activation = “sigmoid”, return_sequences = TRUE, 
dropout = 0.2, recurrent_dropout = 0.2)

③ layer_lstm (units = 26, recurrent_
activation = “sigmoid”, return_sequences = FALSE, 
dropout = 0.2, recurrent_dropout = 0.2)

Output layer_dense (units = 1, activation = “sigmoid”)

Compilation optimizer = “adam”, learning rate = 0.01 loss = “binary_crossentropy”, metrics = c(“accuracy”)

Abbreviations: ①, layer number; activation, activation function; and sigmoid function for input and forget gates (recurrent_activation). FSH, follicle 
stimulating hormone; Layer_lstm, the activation function for output gate is a hyperbolic tangent; LSTM-RNN, long short term memory recurrent 
neural network; MLP, multi layers perceptron; simple RNN, simple recurrent neural network; tB, blastocyst formation time; tM, morula formation 
time; tSB, sub-blastocyst formation time; units, number of neurons in the layer.
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age,37,38 gonadotropin injected quantity,37 retrieved oocyte num-
ber,37 obtained embryos number,37 fertilization rate,37 obtained 
blastocyst number, blastulation rate39 and transferred blastocyst 
number. The blastulation rate corresponds to blastocysts obtained 
number divided by embryos number obtained at D2, so eleven pa-
rameters were used to feed the SNNs. Among all embryos that have 
been cultured in the TLM and reached the blastocyst stage, only 
those whose result of implantation was known have been selected 
(KID status). For the classification of blastocyst according to KID sta-
tus, ART procedures with a delivery in which the number of babies 
did not match the number of transferred blastocysts were excluded. 
Furthermore, if several blastocysts were transferred but no delivery 
was obtained, these cases were included in the study. These eleven 

parameters fed the different neural networks (MLP, simple RNN and 
LSTM-RNN) (Table 1).

3  |  RESULTS

During the study period, 876 cycles have had embryos cultured in TLT 
incubators, among them, 654 cycles (1027 blastocysts) were included. 
The training data group was constituted by 458 cycles (733 blasto-
cysts), and the validating data group by 196 cycles (294 blastocysts). 
The baseline and cycle characteristics for each data group are provided 
in Table 2. The live birth rate per fresh transfer was 26.0% for the train-
ing data group, and 25.0% for the validating data group (Table 2).

F I G U R E  1 ① K-fold cross-validation: 
The total available data is randomly 
splitted in “Training data group” (n = 733 
blastocysts) and “Validating data group” 
(n = 294 blastocysts). The “training 
data group” is splitted in K partitions 
(K = 6 in our case) of equal size (n = 122 
blastocysts). For each partition k, 
the neural network is trained on the 
K-1 (training) partitions and tested 
on partition k (test). With the K-fold 
validation, the different scores (AUC, 
accuracy, precision, Recall, F1 score) 
are calculated K times, means are then 
calculated and the scores were compared 
using statistical tests and allow to rank the 
different neural networks according to the 
scores. ② the final SNNs were trained on 
the totality of the” training data group” 
(n = 733 blastocysts) and the “validating 
data group” (n = 294 blastocysts) was 
used to confirm the performance of the 
different final SNNs
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3.1  |  Comparison of shallow networks with only 
morphokinetics parameters with: tM, tSB And tB

When only morphokinetics parameters (tM, tSB and 
tB) were used to feed the three shallow networks, no 

difference was observed for the AUCs values and the differ-
ent performance scores. Theses AUCs means were bellows 
0.700 with the values obtained with the K-folds cross validation 
(Table  3) and below 0.800 for the validating data group (Table  3, 
Figure 2).

TA B L E  2 Baseline and cycle characteristics according to delivery outcome (mean ± sd) for training and validating data groups

Training data group

Number of couples

Delivery

TotalNo Yes

p valuen = 339 n = 119 n = 458

ART parameters

Female age (years) 34.5 ± 4.2 32.0 ± 3.5 0.0001 33.8 ± 4.2

Cumulative FSH dose (IU) 2642.2 ± 1139.3 2133.1 ± 912.7 0.0001 2509.9 ± 1106.8

Oocytes retrieved (n) 12.6 ± 6.9 12.7 ± 6.0 0.9452 12.7 ± 6.7

Fertilization rate (%) 69.6 ± 21.8 69.3 ± 19.2 0.8802 69.5 ± 21.1

Embryos obtained (n) 7.4 ± 5.0 6.9 ± 3.9 0.3123 7.3 ± 4.7

Blastocysts obtained (n) 3.5 ± 2.7 3.9 ± 2.6 0.1619 3.6 ± 2.7

Blastulation rate (%) 53.1 ± 26.4 61.3 ± 24.6 0.0022 55.2 ± 26.2

Transferred blastocysts (n) 1.6 ± 0.6 1.3 ± 0.5 0.0001 1.6 ± 0.6

Cryopreserved blastocysts (n) 1.5 ± 2.2 1.9 ± 1.9 0.0595 1.6 ± 2.1

Delivery rate (%) – – – 26.0

Morphokinetic parameter

tM (hours) 90.6 ± 10.8 88.3 ± 8.2 0.0422 89.8 ± 10.0

tSB (hours) 102.6 ± 10.0 97.8 ± 7.9 0.0001 101.1 ± 9.7

tB (hours) 110.8 ± 11.6 106.2 ± 10.1 0.0039 109.2 ± 11.3

Validating data group

Number of couples Delivery

TotalNo Yes

p valuen = 147 n = 49 n = 196

ART parameters

Female age (years) 33.6 ± 4.5 30.8 ± 3.7 0.0001 32.9 ± 4.5

Cumulative FSH dose (IU) 2631.8 ± 1157.6 2270.9 ± 1187.8 0.0675 2541.6 ± 1172.7

Oocytes retrieved (n) 11.4 ± 6.0 10.9 ± 4.4 0.5325 11.3 ± 5.6

Fertilization rate (%) 68.1 ± 21.8 71.6 ± 20.3 0.3091 69.0 ± 21.4

Embryos obtained (n) 6.5 ± 4.1 6.6 ± 3.2 0.9523 6.5 ± 3.9

Blastocysts obtained (n) 3.5 ± 2.9 3.9 ± 2.8 0.3762 3.6 ± 2.9

Blastulation rate (%) 55.5 ± 27.4 57.7 ± 25.7 0.6059 56.0 ± 26.9

Transferred blastocysts (n) 1.6 ± 0.6 1.2 ± 0.4 0.0001 1.5 ± 0.6

Cryopreserved blastocysts (n) 1.4 ± 2.3 2.1 ± 2.2 0.0350 1.6 ± 2.3

Delivery rate (%) – – – 25.0

Morphokinetic parameter

tM (hours) 92.3 ± 11.6 87.2 ± 6.4 0.0022 90.6 ± 10.4

tSB (hours) 102.3 ± 10.4 98.1 ± 6.1 0.0063 100.9 ± 9.3

tB (hours) 111.3 ± 11.1 104.8 ± 6.0 0.0007 108.7 ± 9.9

Abbreviations: FSH, follicle stimulating hormone; IU, international unit; sd, standard deviation; tB, blastocyst formation time; tM, morula formation 
time; tSB, sub-blastocyst formation time.
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3.2  |  Comparison of shallow neural networks

When the eleven parameters were used to feed the three shallow 
neural networks, with the K-folds cross validation, in the training 
data group for all SNNs the means of AUC value was above 0.800, 
above the AUC values obtained with only morphokinetics param-
eters (Table 3, Table 4 and Figure 2). However, the lowest AUC value 
was obtained with the LSTM-RNN (AUC = 0.853 ± 0.014, p < 0.05). 
A statistically significant difference was observed for the accuracy 
values; the lowest accuracy value was obtained with LSTM-RNN (ac-
curacy = 0.757 ± 0.017, p < 0.05). A statistically significant difference 
was observed for the precision values; the lowest precision value 
was obtained with LSTM-RNN (precision = 0.60 ± 0.041, p < 0.05). 
The Recall value was similar for all tested SNNs. A statistically signif-
icant difference was observed for the F1 score values; the lowest F1 
score value was obtained with LSTM-RNN (F1 score = 0.721 ± 0.024, 
p < 0.05, Table 4).

With the K-folds cross validation, in the testing data group for all 
SNNs the AUC value was above 0.700, no statistical difference was 
observed for the AUC values. A statistically significant difference 
was observed for the accuracy values; the lowest accuracy value was 
obtained with LSTM-RNN (accuracy = 0.600 ± 0.078, p < 0.05). No 
statistical difference was observed among the SNNs for precision 
and Recall values. A statistically significant difference was observed 
for the F1 score values; the lowest F1 score value was obtained with 
LSTM-RNN (F1 score = 0.487 ± 0.172, p < 0.05, Table 4).

In the validating data group, the AUC values were above 0.800 
for all SNNs and no statistical difference was observed for the 
AUCs; however, the highest AUC value was obtained with the MLP 
(AUC  =  0.866). No difference was observed for the accuracy val-
ues; however, the highest accuracy value was obtained with MLP 

(accuracy = 0.798). The highest precision value was obtained with 
MLP (precision = 0.700), the highest Recall value was obtained with 
the LSTM-RNN (Recall = 0.969). The highest F1 score value was ob-
tained with LSTM-RNN (F1 score = 0.785, Table 4).

4  |  DISCUSSION

With our data, we have shown herein that it is possible to construct 
relevant SNNs for predicting live birth using clinical and laboratory 
data issued from the ART process coupled to morphokinetic data. 
All presented SNNs provided interesting results with included vari-
ables. Among the three SNNs, MLP and simple RNN networks pro-
vide the best results in training, testing data groups; however, all 
tested SNNs were similar in validating data group. The used SNNs 
provided AUCs close but lower than based on the blastocyst images 
analysis, whether classified with random forest algorithm,40 or deep 
learning algorithm.23,24,26

Simple tree decision algorithms based only on morphokinetic 
data have been reported to predict the quality of blastocysts with 
an AUC reaching a maximum of 0.65,41 0.748 (Storr et al., 2015), and 
0.76222; however, these algorithms were unable to predict live birth. 
Random forest could be considered as an extension of algorithms 
based on decision tree.17–22 Random forest provide good results as it 
was previously shown,42–44 and seem predictive of embryo implan-
tation.42–46 Others algorithms have been used for pregnancy predic-
tion from blastocyst images. The logistic regression algorithm has 
been used and resulted in an AUC equal to 0.659.47 The naive Bayes 
algorithm was used from blastocyst images with an accuracy of 58% 
for pregnancy prediction,47 or from images of D2 or D3 transferred 
embryos with an accuracy of 80.4%48 even 85.49%.49 Blank42 had 

TA B L E  3 Neural networks performance scores in training and testing data groups calculating with K-fold cross validation, and neural 
networks performance score in validating data group, for predicting live birth using included parameters: tM, tSB and tB

K-folds cross 
validation Neural networks AUC (mean ± sd) Accuracy (mean ± sd)

Precision 
(mean ± sd)

Recall 
(mean ± sd)

F1 score 
(mean ± sd)

Training data 
group

MLP 0.697 ± 0.013 0.700 ± 0.038 0.602 ± 0.065 0.579 ± 0.120 0.579 ± 0.058

Simple RNN 0.693 ± 0.016 0.652 ± 0.036 0.525 ± 0.055 0.675 ± 0.107 0.583 ± 0.020

LSTM-RNN 0.680 ± 0.013 0.677 ± 0.023 0.539 ± 0.042 0.627 ± 0.056 0.577 ± 0.016

Testing data 
group

MLP 0.643 ± 0.119 0.552 ± 0.072 0.452 ± 0.232 0.439 ± 0.231 0.390 ± 0.117

Simple RNN 0.612 ± 0.119 0.523 ± 0.067 0.397 ± 0.126 0.522 ± 0.239 0.414 ± 0.104

LSTM-RNN 0.603 ± 0.094 0.582 ± 0.056 0.468 ± 0.201 0.556 ± 0.184 0.474 ± 0.128

Neural networks AUC [95% CI] Accuracy [95% CI] Precision Recall F1 score

Validating data 
group

MLP 0.781 [0.673; 
0.785]

0.700 [0.588; 0.804] 0.605 0.793 0.687

Simple RNN 0.791 [0.680; 
0.794]

0.714 [0.594; 0.816] 0.605 0.897 0.722

LSTM-RNN 0.733 [0.620; 
0.734]

0.657 [0.534; 0.767] 0.561 0.793 0.657

Abbreviations: 95% CI, 95% confidence interval; AUC, area under the curve, Included parameters in the neural networks; K-folds cross validation, 
mean ± standard deviation (sd) of model indicators provided with k-folds cross validation; LSTM-RNN, long short term memory recurrent neural 
network; MLP, multi layers perceptron; simple RNN, simple recurrent neural network; tB, blastocyst formation time in hours; tM, morula formation 
time in hours; tSB, sub-blastocyst formation time in hours.
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obtained an AUC of 0.74 when random forest was used and 0.66 
for multivariate logistic regression for the prediction of an evolving 
pregnancy. In Blank's study,42 even if a greater number of morphoki-
netic and clinical variables were included, the AUCs were always 
lower than those obtained with SNNs. Bori et al.,27 who have linked 
the morphokinetic data with information from image analysis, had 
constructed a pregnancy prediction algorithm with an AUC equal to 
0.77.

The particularity of the SNNs presented herein, lies in the fact 
that their construction was based on the coupling of morphokinetic 
variables with variables issued from the ART procedure. The used of 
chronology of events with RNN (simple or LSTM) not allow obtaining 
better results than the MLP network, this means that in our study, 
the events chronology did not play a major role. However, the ART 
parameters used in the SNNs represent a key stage of ART process. 
By example age represents the initial state of the patient and it is 
known to be involved in the embryo late development37,38 and to 
be linked to occurrence of a live birth. The gonadotropin amount 
is a consequence of the ovarian stimulation; and it can be seen as a 
reflection of the ovarian stimulation quality.37 The blastulation rate 

represents the synthesis of both the clinician's and embryologist's 
involvement and the blastulation rate relates to the ART chances 
of success.39 Among the selected morphokinetic parameters, the 
morula time seemed predictive of embryo implantation and this is 
consistent with the fact that this parameter has been shown to be 
predictive of live birth.50 Similarly, late blastulation has been shown 
to be correlated with a drop in the chances of implantation,51 this 
is why this morphokinetic parameter (tB), should be included. Thus, 
the addition of clinical and laboratory variables to embryo growth 
kinetics allows to accurately predict the embryos that can be im-
planted and maximize the chances of live birth. The necessity to add 
clinical and laboratory data to morphokinetic data to increase the 
AUC of the algorithms further underlines that embryo morphology 
and its growth dynamic would not be sufficient to predict the occur-
rence of a birth. This has been shown by Khosravi et al.23 where the 
addition of maternal age to embryonic quality allows to predict the 
attainment of pregnancy through the use of a neural network.

Our study has many limitations, the first being its single-centre 
retrospective design. It would be necessary to test these SNNs 
using data from other centers in order to validate them. However, 

F I G U R E  2 ROC curves for the different final neural network. These ROC curves reflect AUC with morphokinetic factors alone (tM, tSB 
and tB): (A), and with the addition of bio-clinical factors to the morphokinetic factors (woman age, gonadotropin injected quantity, retrieved 
oocyte number, obtained embryos number, fertilization rate, obtained blastocyst number, blastulation rate, transferred blastocyst number, 
tM, tSB and tB): (B); according to the three shallow neuronal networks: MLP: multi layers perceptron, RNN_S: simple recurrent neural 
network, LSTM-RNN: long short term memory recurrent neural network
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the use of K-fold cross validation improves the validity of the 
performance scores. Another limitation was that morphokinetic 
parameters were annotated by different persons, increasing the 
possibility of significant variance between morphokinetic measure-
ments. In addition, there were missing data causing a loss of power 
in the statistical analysis, this bias was partially compensated by 
the number of included embryos. Data entry was dependent on 
humans and, therefore, required the involvement of the technical 
team. In the real world, data entry is time-consuming and adds to 
the ever-increasing workload, resulting in a decrease in the time 
that can be devoted to this task, hence the increased risk of missing 
data. One solution to avoid the problems of non-homogenization 
and missing data would be to obtain the morphokinetic parame-
ters using automatic time recognition systems.52 This would allow 
a homogenization of measurements of morphokinetic parameters 
and a complete automation regarding the choice of blastocyst to 
be transferred, which would in turn probably increase the chances 
of live birth as suggested by Fishel et al.45

In conclusion, SNN, are able to predict live birth by coupling mor-
phokinetic data to clinical data. The next steps will be to use one 
of these SNN coupled to an automatic time recognition system as 
a support for a complete automation system for the choice of em-
bryo(s) to be transferred.
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